Publikationsserver der Universitätsbibliothek Marburg

Titel:Identifizierung und Charakterisierung neuer Faktoren der zytosolischen Fe-S Proteinbiogenese
Autor:Paul, Viktoria Désirée
Weitere Beteiligte: Lill, Roland (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0427
URN: urn:nbn:de:hebis:04-z2014-04270
DOI: https://doi.org/10.17192/z2014.0427
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Identification and characterization of new components involved in cytosolic Fe-S protein biogenesis
Publikationsdatum:2014-11-18
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Lto1, CIA machinery, Eisen-Schwefel-Cluster Biogenese, Saccharomyces cerevisiae, Tandem Affinity Purification, Protein-Protein Interaktion, Rli1, Yae1

Zusammenfassung:
Eisen-Schwefel (Fe-S) Cluster sind wichtige Kofaktoren zahlreicher Proteine und kommen in allen bekannten Lebensformen vor. Fe-S Proteine haben vielfältige Funktionen, u.a. beim Elektronentransport, in Enzymkatalysen und in der Genregulation. In neuester Zeit wurden überdies Fe-S Cluster-haltige Proteine mit einer Funktion in essentiellen zellulären Prozessen wie der DNA-Replikation, DNA-Reparatur, Transkription und Ribosomenassemblierung entdeckt. Die Synthese der Fe-S Cluster und der anschließende Einbau in Apoproteine erfordern in Eukaryoten drei komplexe Synthesemaschinerien, die in den Mitochondrien und im Zytosol lokalisiert sind. Die Reifung zytosolischer und nukleärer Fe-S Proteine wird durch das Zusammenwirken der mitochondrialen Eisen-Schwefel Cluster (ISC)-Assemblierungsmaschinerie, der ISC-Exportmaschinerie und der zytosolischen Eisen-Schwefel Protein Assemblierungs (CIA)-Maschinerie ermöglicht. Die CIA-Maschinerie besteht bisher aus acht Proteinen, jedoch sind deren Interaktionen nicht umfassend beschrieben. Darüber hinaus ist wahrscheinlich, dass weitere CIA-Proteine an diesem komplexen Prozess beteiligt sind. Im ersten Teil dieser Arbeit wurden die Interaktionen der bisher bekannten CIA-Proteine im Modellorganismus Saccharomyces cerevisiae analysiert. Dabei konnte in einer systematischen CIA-Protein Interaktionsanalyse gezeigt werden, dass die einzelnen CIA-Faktoren keinen Superkomplex bilden, sondern in drei funktionelle Subkomplexe unterteilt werden können, die unterschiedlichen Phasen der Biogenese zytosolischer und nukleärer Fe-S Proteine zuzuordnen sind. Auf dem Gerüstproteinkomplex bestehend aus Cfd1-Nbp35 wird in der frühen Phase ein [4Fe-4S] Cluster assembliert. Die für diese Reaktion nötigen Elektronen werden durch den CIA-Subkomplex Dre2-Tah18 bereitgestellt. In der späten Phase der zytosolischen Fe-S Proteinbiogenese wird der neu assemblierte Fe-S Cluster vom Gerüstproteinkomplex auf Apoproteine übertragen. Dieser Schritt erfolgt mithilfe des sog. „CIA-Targetingkomplexes“ bestehend aus Cia1, Cia2 und Met18. Der CIA-Faktor Nar1 nimmt dabei eine intermediäre, noch nicht genau definierte Funktion ein und interagiert sowohl mit den frühen als auch mit den späten Teilen der CIA-Maschinerie. Im zweiten Teil dieser Arbeit wurden die essentiellen Faktoren Yae1 und Lto1 als neue Bestandteile der CIA-Maschinerie entdeckt und charakterisiert. Diese beiden Proteine zeichnen sich durch eine hohe Konservierung aus und bilden einen Komplex, der unter aeroben Bedingungen von besonderer Bedeutung ist. Yae1 und Lto1 wurden durch Auswertung der proteomweiten Interaktionsanalyse als Bindepartner der Komponenten des CIA-Targetingkomplexes identifiziert. Eine frühere systematische Interaktionsstudie hat außerdem gezeigt, dass Yae1 und Lto1 mit dem Fe-S Protein Rli1 interagieren. Die Verbindung zur CIA-Maschinerie war jedoch bis dato nicht bekannt. Es konnte in dieser Arbeit gezeigt werden, dass die Depletion von Yae1 oder Lto1 einen Reifungsdefekt des essentiellen Fe-S Proteins Rli1, nicht aber anderer zytosolischer oder nukleärer Zielproteine zur Folge hat. Darüber hinaus wurde unter Verwendung einer neu etablierten Methode gezeigt, dass Rli1 seine Fe-S Cluster auch nach raschem Abbau von Yae1 stabil gebunden hält, was gegen eine Rolle des Yae1 als Stabilisator der beiden Fe-S Cluster spricht. Diese Befunde legen nahe, dass den beiden Proteinen Yae1 und Lto1 eine Funktion als hoch spezifische Reifungsfaktoren für Rli1 zukommt. Der Komplex aus Yae1 und Lto1 ist in Eukaryoten konserviert und kann durch den humanen YAE1D1-ORAOV1 Komplex funktionell in der Hefe ersetzt werden. Diese Arbeit zeigt, dass bestimmte zytosolische Fe-S Proteine wie Rli1 offensichtlich nicht nur die generelle CIA-Maschinerie, sondern auch die Funktion weiterer spezifischer CIA-Komponenten für die Reifung ihrer Fe-S Cluster benötigen. Eine vergleichbar hohe Substratspezifität wie bei diesen neu entdeckten CIA-Faktoren wurde kürzlich auch für den humanen CIA-Faktor CIA2A beschrieben, der ausschließlich für die Maturierung des zytosolischen Fe-S Proteins IRP1 verantwortlich ist. Zukünftige Untersuchungen müssen deshalb die interessante Frage angehen, ob nicht weitere CIA-Faktoren existieren, die auf bisher unbekannte Weise die Reifung eukaryotischer Fe-S Proteine unterstützen. Ein weiteres Ziel wird die Klärung der Frage sein, nach welchem molekularen Mechanismus solch hoch spezifische Faktoren den Fe-S Cluster-Einbau in Zielproteine gewährleisten.

Bibliographie / References

  1. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685
  2. Rees DC (2002) Great metalloclusters in enzymology. Annual review of biochemistry 71: 221-246
  3. Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FC, Weissman JS, Krogan NJ (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Molecular & cellular proteomics : MCP 6: 439-450
  4. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24: 218-229
  5. Gelling C, Dawes IW, Richhardt N, Lill R, Muhlenhoff U (2008) Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Molecular and cellular biology 28: 1851-1861
  6. Sheftel AD, Stehling O, Pierik AJ, Netz DJ, Kerscher S, Elsasser HP, Wittig I, Balk J, Brandt U, Lill R (2009) Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Molecular and cellular biology 29: 6059-6073
  7. Urzica E, Pierik AJ, Muhlenhoff U, Lill R (2009) Crucial role of conserved cysteine residues in the assembly of two iron-sulfur clusters on the CIA protein Nar1. Biochemistry 48: 4946-4958
  8. Gerber J, Neumann K, Prohl C, Muhlenhoff U, Lill R (2004) The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe/S proteins. Molecular and cellular biology 24: 4848-4857
  9. Stehling O, Lill R (2013) The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harbor perspectives in biology 5: a011312
  10. Rudolf J, Makrantoni V, Ingledew WJ, Stark MJ, White MF (2006) The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Molecular cell 23: 801- 808
  11. Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. Journal of molecular biology 317: 41-72
  12. Malkin R, Rabinowitz JC (1966) The reconstitution of clostridial ferredoxin. Biochemical and biophysical research communications 23: 822-827
  13. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase- catalyzed chain reaction. Methods in enzymology 155: 335-350
  14. Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F (2013) Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochimica et biophysica acta 1827: 455-469
  15. Zhao Z, Fang LL, Johnsen R, Baillie DL (2004) ATP-binding cassette protein E is involved in gene transcription and translation in Caenorhabditis elegans. Biochemical and biophysical research communications 323: 104-111
  16. Stehling O, Mascarenhas J, Vashisht AA, Sheftel AD, Niggemeyer B, Rosser R, Pierik AJ, Wohlschlegel JA, Lill R (2013) Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron- sulfur proteins. Cell metabolism 18: 187-198
  17. Minamino T, Kazetani K, Tahara A, Suzuki H, Furukawa Y, Kihara M, Namba K (2006) Oligomerization of the bacterial flagellar ATPase FliI is controlled by its extreme N- terminal region. Journal of molecular biology 360: 510-519
  18. Ito S, Tan LJ, Andoh D, Narita T, Seki M, Hirano Y, Narita K, Kuraoka I, Hiraoka Y, Tanaka K (2010) MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Molecular cell 39: 632-640
  19. White MF, Dillingham MS (2012) Iron-sulphur clusters in nucleic acid processing enzymes. Current opinion in structural biology 22: 94-100
  20. Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19: 1038-1052
  21. Macnab RM (2004) Type III flagellar protein export and flagellar assembly. Biochimica et biophysica acta 1694: 207-217
  22. Wittschieben BO, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H, Ohba R, Li Y, Allis CD, Tempst P, Svejstrup JQ (1999) A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Molecular cell 4: 123-128
  23. Netz DJ, Stumpfig M, Dore C, Muhlenhoff U, Pierik AJ, Lill R (2010) Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nature chemical biology 6: 758-765
  24. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome- protected mRNA fragments. Nature protocols 7: 1534-1550
  25. Py B, Barras F (2010) Building Fe-S proteins: bacterial strategies. Nature reviews Microbiology 8: 436-446
  26. Milkereit P, Strauss D, Bassler J, Gadal O, Kuhn H, Schutz S, Gas N, Lechner J, Hurt E, Tschochner H (2003) A Noc complex specifically involved in the formation and nuclear export of ribosomal 40 S subunits. The Journal of biological chemistry 278: 4072-4081
  27. Dong J, Lai R, Nielsen K, Fekete CA, Qiu H, Hinnebusch AG (2004) The essential ATP- binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. The Journal of biological chemistry 279: 42157-42168
  28. Pugh RA, Honda M, Leesley H, Thomas A, Lin Y, Nilges MJ, Cann IK, Spies M (2008) The iron-containing domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNA-double- stranded DNA junction. The Journal of biological chemistry 283: 1732-1743
  29. Pondarre C, Antiochos BB, Campagna DR, Clarke SL, Greer EL, Deck KM, McDonald A, Han AP, Medlock A, Kutok JL, Anderson SA, Eisenstein RS, Fleming MD (2006) The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis. Human molecular genetics 15: 953-964
  30. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic acids research 39: D561-568
  31. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome research 14: 1188-1190
  32. Luo D, Bernard DG, Balk J, Hai H, Cui X (2012) The DUF59 family gene AE7 acts in the cytosolic iron-sulfur cluster assembly pathway to maintain nuclear genome integrity in Arabidopsis. The Plant cell 24: 4135-4148
  33. Snoek IS, Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS yeast research 6: 393-403
  34. Rees DC, Howard JB (2003) The interface between the biological and inorganic worlds: iron-sulfur metalloclusters. Science 300: 929-931
  35. Minamino T, Namba K (2004) Self-assembly and type III protein export of the bacterial flagellum. Journal of molecular microbiology and biotechnology 7: 5-17
  36. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141-147
  37. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440: 631-636
  38. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nature biotechnology 17: 1030-1032
  39. Muhlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, Zhang Y, Stubbe J, Pierrel F, Herrero E, Lillig CH, Lill R (2010) Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell metabolism 12: 373-385
  40. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature protocols 2: 1896-1906
  41. Srinivasan V, Netz DJ, Webert H, Mascarenhas J, Pierik AJ, Michel H, Lill R (2007) Structure of the yeast WD40 domain protein Cia1, a component acting late in iron-sulfur protein biogenesis. Structure 15: 1246-1257
  42. Xu C, Min J (2011) Structure and function of WD40 domain proteins. Protein & cell 2: 202-214
  43. CuSO4 4 mg / 100 ml KI 10 mg / 100 ml FeCl3 20 mg / 100 ml MnSO4 40 mg / 100 ml Na2MoO4 20 mg / 100 ml ZnSO4 40 mg / 100 ml 10000x Vitamin-Mix Biotin 0,2 mg / 100 ml Calcium Pantothensäure 40 mg / 100 ml Inositol 200 mg / 100 ml Niacin 40 mg / 100 ml para-Aminobenzoesäure 20 mg / 100 ml Pyroxidin HCl 40 mg / 100 ml Thiamin HCl
  44. Vernis L, Facca C, Delagoutte E, Soler N, Chanet R, Guiard B, Faye G, Baldacci G (2009) A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast. PloS one 4: e4376 von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic acids research 31: 258-261
  45. Teschner J, Lachmann N, Schulze J, Geisler M, Selbach K, Santamaria-Araujo J, Balk J, Mendel RR, Bittner F (2010) A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis. The Plant cell 22: 468-480
  46. Craig EA, Marszalek J (2002) A specialized mitochondrial molecular chaperone system: a role in formation of Fe/S centers. Cellular and molecular life sciences : CMLS 59: 1658- 1665
  47. Hausmann A, Samans B, Lill R, Muhlenhoff U (2008) Cellular and mitochondrial remodeling upon defects in iron-sulfur protein biogenesis. The Journal of biological chemistry 283: 8318-8330
  48. Mascarenhas, J., Paul, V.D., Seebacher, J., Kugler, K.G., Kötter, P., Zörnig, M., Gavin, A.C., Pierik, A.J. & Lill, R. (2014). Cia2 assembles iron-sulfur clusters by direct interaction with cytosolic and nuclear apoproteins (Manuskript in Vorbereitung).
  49. Paul, V.D., Stümpfig, M., Taxis, C., Renicke C., Pierik, A.J. & Lill, R. (2014). Dedicated maturation factors for the essential ribosome-associated Fe-S protein Rli1 (Manuskript in Vorbereitung).
  50. Fan F, Macnab RM (1996) Enzymatic characterization of FliI. An ATPase involved in flagellar assembly in Salmonella typhimurium. The Journal of biological chemistry 271: 31981-31988
  51. Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460: 831-838
  52. Paul, V.D., Seebacher, J., Gavin, A.C., Pierik, A.J. & Lill, R.: Function and dynamics of the CIA interactome (Poster), 6th International Conference on Biogenesis of Iron Sulphur Proteins, August 2011, Cambridge (GB).
  53. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425: 737
  54. Paul, V.D.: How the CIA targeting complex affects DNA repair and nuclear genome integrity (Vortrag), Klausurtagung SFB 593, Februar 2012, Hirschegg (A).
  55. Zimmerman C, Klein KC, Kiser PK, Singh AR, Firestein BL, Riba SC, Lingappa JR (2002) Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature 415: 88-92
  56. Zhang Y, Liu L, Wu X, An X, Stubbe J, Huang M (2011) Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein: requirement of Rnr4 and contribution of Grx3/4 AND Dre2 proteins. The Journal of biological chemistry 286: 41499-41509
  57. Seki M, Takeda Y, Iwai K, Tanaka K (2013) IOP1 protein is an external component of the human cytosolic iron-sulfur cluster assembly (CIA) machinery and functions in the MMS19 protein-dependent CIA pathway. The Journal of biological chemistry 288: 16680-16689
  58. Prakash L, Prakash S (1977) Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics 86: 33-55
  59. Gari K, Leon Ortiz AM, Borel V, Flynn H, Skehel JM, Boulton SJ (2012) MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science 337: 243-245
  60. Wachtershauser G (2007) On the chemistry and evolution of the pioneer organism. Chemistry & biodiversity 4: 584-602
  61. Thomas D, Barbey R, Henry D, Surdin-Kerjan Y (1992) Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. Journal of general microbiology 138: 2021-2028
  62. Pierik, A.J., Netz, D.J.A., Paul, V.D. & Lill, R. (2014). P-loop NTPases in metalloprotein maturation Trends Biochem. Sci. (to be submitted).
  63. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data.
  64. Dagert M, Ehrlich SD (1979) Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6: 23-28
  65. Noma A, Suzuki T (2006) Ribonucleome analysis identified enzyme genes responsible for wybutosine synthesis. Nucleic acids symposium series: 65-66
  66. Strain J, Lorenz CR, Bode J, Garland S, Smolen GA, Ta DT, Vickery LE, Culotta VC (1998) Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate iron-sulfur cluster assembly.
  67. Tagungsbeiträge (Auswahl)
  68. Schrader EK, Harstad KG, Matouschek A (2009) Targeting proteins for degradation. Nature chemical biology 5: 815-822
  69. Renicke C, Schuster D, Usherenko S, Essen LO, Taxis C (2013) A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chemistry & biology 20: 619-626
  70. Molik, S., Paul, V.D., Rietzschel, N., Lill, R.: The fabulous world of eukaryotic Fe-S clusters: small, but essential for life (Poster), International Meeting: Endosymbiosis from Prokaryotes to Eukaryotic Organelles, Oktober 2012, München.
  71. Paul, V.D. & Lill, R. (2014). The impact of iron-sulfur protein biogenesis on genome stability FEBS Lett. (Manuskript in Vorbereitung).
  72. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods in enzymology 350: 87-96
  73. Paul, V.D., Pierik, A.J., Lill, R.: Two adaptor CIA proteins required for the Fe-S clusters of the essential ribosomal protein Rli1 (Poster), Gordon Research Conference on Cell Biology of Metals, Juli 2013, Newport, Rhode Island (USA).
  74. Paul, V.D.: Two new CIA proteins required for the maturation of the ribosomal Fe-S protein Rli1 (Vortrag), Klausurtagung SFB 593, Oktober 2013, Hirschegg (A).
  75. Paul, V.D.: Two new components of cytosolic iron-sulfur cluster assembly? (Vortrag), Klausurtagung GRK1216 Intra-and Interzellulärer Transport and Kommunikation, September 2012, Hirschegg (A).
  76. Liu G, Zhang J, Choi H, Lambert JP, Srikumar T, Larsen B, Nesvizhskii AI, Raught B, Tyers M, Gingras AC (2012) Using ProHits to store, annotate, and analyze affinity purification-mass spectrometry (AP-MS) data. Current protocols in bioinformatics / editoral board, Andreas D Baxevanis [et al] Chapter 8: Unit8 16
  77. Lill R, Muhlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annual review of cell and developmental biology 22: 457-486
  78. Netz DJ, Pierik AJ, Stumpfig M, Muhlenhoff U, Lill R (2007) The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nature chemical biology 3: 278-286
  79. Taxis C, Maeder C, Reber S, Rathfelder N, Miura K, Greger K, Stelzer EH, Knop M (2006) Dynamic organization of the actin cytoskeleton during meiosis and spore formation in budding yeast. Traffic 7: 1628-1642
  80. Zheng L, White RH, Cash VL, Dean DR (1994) Mechanism for the desulfurization of L- cysteine catalyzed by the nifS gene product. Biochemistry 33: 4714-4720
  81. Minamino T, Imada K, Namba K (2008) Mechanisms of type III protein export for bacterial flagellar assembly. Molecular bioSystems 4: 1105-1115
  82. Lill R, Muhlenhoff U (2008) Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annual review of biochemistry 77: 669-700
  83. Trost B, Moore SA (2009) Statistical characterization of the GxxxG glycine repeats in the flagellar biosynthesis protein FliH and its Type III secretion homologue YscL. BMC microbiology 9: 72
  84. Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G (2002) Maturation of cytosolic iron-sulfur proteins requires glutathione. The Journal of biological chemistry 277: 26944
  85. Nicolet Y, Fontecilla-Camps JC (2012) Structure-function relationships in [FeFe]- hydrogenase active site maturation. The Journal of biological chemistry 287: 13532- 13540
  86. Zhai C, Li Y, Mascarenhas C, Lin Q, Li K, Vyrides I, Grant CM, Panaretou B (2013) The function of ORAOV1/LTO1, a gene that is overexpressed frequently in cancer: essential roles in the function and biogenesis of the ribosome. Oncogene
  87. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nature chemical biology 2: 406-414
  88. Pallesen LJ, Solodovnikova N, Sharma AK, Walden WE (2013) Interaction with Cfd1 increases the kinetic lability of FeS on the Nbp35 scaffold. The Journal of biological chemistry 288: 23358-23367
  89. Lange H, Lisowsky T, Gerber J, Muhlenhoff U, Kispal G, Lill R (2001) An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic
  90. CM, Kolevski B, Walker CD, Lavagi I, Shaw T, Ebert A, Leevers SJ, Marygold SJ (2005) A genetic screen for dominant modifiers of a small-wing phenotype in Drosophila melanogaster identifies proteins involved in splicing and translation. Genetics 171: 597-614
  91. Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR (2000) NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proceedings of the National Academy of Sciences of the United States of America 97: 599-604
  92. Lange H, Kaut A, Kispal G, Lill R (2000) A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. Proceedings of the National Academy of Sciences of the United States of America 97: 1050-1055
  93. Silverman RH (2007) A scientific journey through the 2-5A/RNase L system. Cytokine & growth factor reviews 18: 381-388
  94. Roy A, Solodovnikova N, Nicholson T, Antholine W, Walden WE (2003) A novel eukaryotic factor for cytosolic Fe-S cluster assembly. The EMBO journal 22: 4826-4835
  95. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. Journal of bacteriology 153: 163-168
  96. Wallander ML, Leibold EA, Eisenstein RS (2006) Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochimica et biophysica acta 1763: 668-689
  97. Lauder S, Bankmann M, Guzder SN, Sung P, Prakash L, Prakash S (1996) Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription. Molecular and cellular biology 16: 6783-6793
  98. Zhang Y, Lyver ER, Nakamaru-Ogiso E, Yoon H, Amutha B, Lee DW, Bi E, Ohnishi T, Daldal F, Pain D, Dancis A (2008) Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Molecular and cellular biology 28: 5569- 5582
  99. Yeeles JT, Cammack R, Dillingham MS (2009) An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases. The Journal of biological chemistry 284: 7746-7755
  100. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324: 218-223
  101. Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS, Hoffman BM, Riggs-Gelasco PJ, Huynh BH, Johnson MK, Outten CE (2009) The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 48: 9569-9581
  102. Sharma AK, Pallesen LJ, Spang RJ, Walden WE (2010) Cytosolic iron-sulfur cluster assembly (CIA) system: factors, mechanism, and relevance to cellular iron regulation.
  103. Liu G, Zhang J, Larsen B, Stark C, Breitkreutz A, Lin ZY, Breitkreutz BJ, Ding Y, Colwill K, Pasculescu A, Pawson T, Wrana JL, Nesvizhskii AI, Raught B, Tyers M, Gingras AC (2010) ProHits: integrated software for mass spectrometry-based interaction proteomics. Nature biotechnology 28: 1015-1017
  104. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annual review of biochemistry 77: 755-776
  105. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468: 790-795
  106. Pisareva VP, Skabkin MA, Hellen CU, Pestova TV, Pisarev AV (2011) Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. The EMBO journal 30: 1804-1817
  107. Navarro-Sastre A, Tort F, Stehling O, Uzarska MA, Arranz JA, Del Toro M, Labayru MT, Landa J, Font A, Garcia-Villoria J, Merinero B, Ugarte M, Gutierrez-Solana LG, Campistol J, Garcia-Cazorla A, Vaquerizo J, Riudor E, Briones P, Elpeleg O, Ribes A, Lill R (2011) A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. American journal of human genetics 89: 656-667
  108. Netz DJ, Stith CM, Stumpfig M, Kopf G, Vogel D, Genau HM, Stodola JL, Lill R, Burgers PM, Pierik AJ (2012b) Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nature chemical biology 8: 125-132
  109. Shoemaker CJ, Green R (2011) Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proceedings of the National Academy of Sciences of the United States of America 108: E1392-1398
  110. Muhlenhoff U, Richter N, Pines O, Pierik AJ, Lill R (2011) Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. The Journal of biological chemistry 286: 41205-41216
  111. Netz DJ, Pierik AJ, Stumpfig M, Bill E, Sharma AK, Pallesen LJ, Walden WE, Lill R (2012a) A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation. The Journal of biological chemistry 287: 12365-12378
  112. Xie LX, Ozeir M, Tang JY, Chen JY, Jaquinod SK, Fontecave M, Clarke CF, Pierrel F (2012) Overexpression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway. The Journal of biological chemistry 287: 23571-23581
  113. Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T, Netz DJ, Pierik AJ, Wohlschlegel JA, Lill R (2012) MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 337: 195-199
  114. Soler N, Craescu CT, Gallay J, Frapart YM, Mansuy D, Raynal B, Baldacci G, Pastore A, Huang ME, Vernis L (2012) A S-adenosylmethionine methyltransferase-like domain within the essential, Fe-S-containing yeast protein Dre2. The FEBS journal 279: 2108- 2119
  115. van Wietmarschen N, Moradian A, Morin GB, Lansdorp PM, Uringa EJ (2012) The mammalian proteins MMS19, MIP18, and ANT2 are involved in cytoplasmic iron-sulfur cluster protein assembly. The Journal of biological chemistry 287: 43351-43358
  116. Thompson JW, Bruick RK (2012) Protein degradation and iron homeostasis. Biochimica et biophysica acta 1823: 1484-1490
  117. Haunhorst P, Hanschmann EM, Brautigam L, Stehling O, Hoffmann B, Muhlenhoff U, Lill R, Berndt C, Lillig CH (2013) Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation. Molecular biology of the cell 24: 1895-1903
  118. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America 76: 4350-4354
  119. Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 90: 2754-2758
  120. Yarunin A, Panse VG, Petfalski E, Dez C, Tollervey D, Hurt EC (2005) Functional link between ribosome formation and biogenesis of iron-sulfur proteins. The EMBO journal 24: 580-588
  121. Hausmann A, Aguilar Netz DJ, Balk J, Pierik AJ, Muhlenhoff U, Lill R (2005) The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proceedings of the National Academy of Sciences of the United States of America 102: 3266-3271
  122. Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W, Hell K, Herrmann JM (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121: 1059-1069
  123. Netz DJ, Mascarenhas J, Stehling O, Pierik AJ, Lill R (2013) Maturation of cytosolic and nuclear iron-sulfur proteins. Trends in cell biology
  124. Walden WE, Selezneva AI, Dupuy J, Volbeda A, Fontecilla-Camps JC, Theil EC, Volz K (2006) Structure of dual function iron regulatory protein 1 complexed with ferritin IRE- RNA. Science 314: 1903-1908
  125. Soler N, Delagoutte E, Miron S, Facca C, Baille D, d'Autreaux B, Craescu G, Frapart YM, Mansuy D, Baldacci G, Huang ME, Vernis L (2011) Interaction between the reductase Tah18 and highly conserved Fe-S containing Dre2 C-terminus is essential for yeast viability. Molecular microbiology 82: 54-67


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten