Publikationsserver der Universitätsbibliothek Marburg

Titel:A Classical Analysis of Double Ionization of Helium in Ultra Short Laser Pulses
Autor:Beran, Lisa
Weitere Beteiligte: Eckhardt, Bruno (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0409
URN: urn:nbn:de:hebis:04-z2014-04097
DOI: https://doi.org/10.17192/z2014.0409
DDC:530 Physik
Titel (trans.):Klassische Analyse der Doppelionisation von Helium in ultrakurzen Laserpulsen
Publikationsdatum:2014-10-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Doppelionisation, Helium, Helium, Double Ionization

Summary:
Experiments of double ionization in noble gases [58, 64, 68, 84] were the catalyst for extensive theoretical investigations [9, 11, 13, 21, 39, 80, 87]. The measurement of the momenta of outgoing electrons in non-sequential strong field double ionization exposed the correlated nature of their escape [66, 67, 88, 90]. A (1+1)-dimensional model for helium, introduced in [25, 73], has been the foundation of ongoing research into non-sequential double ionization [24, 26, 27, 71, 74]. The model reproduces the re-scattering scenario, the correlation between the outgoing electrons, and the interference patterns in the momentum distribution [72]. The observed interference patterns depend on the amplitude of the external field, pulse duration, and carrier envelope phase. Guided by the semi-classical idea that many paths contribute to the double ionization events and the interference between these paths could cause the patterns, a rigorous analysis of the classical trajectories depicting double ionization was undertaken. Applying few-cycle pulses, the effects from multiple re-scattering are intrinsically minimized. In classical calculations, field parameters were varied and configurations yielding trajectories of reduced complexity were targeted. The classical trajectories allow a connection between the initial conditions in phase space and the final states to be established. A link between the external field strength and the electrons initial conditions was found. In the single-cycle limit, the electrons mutual repulsion ensures that anti-parallel double ionization is the only double ionization mechanism at intensities above the threshold. Stable and symmetric back-to-back double ionization trajectories are identified. Parallel non-symmetric double ionization with same final momentum was generated from two-cycle fields. The extent of the frequency and field strength dependency on classical non-sequential double ionization was determined.

Bibliographie / References

  1. B. Eckhardt, J. Prauzner-Bechcicki, K. Sacha, and J. Zakrzewski, Suppression of corre- lated electron escape in double ionization in strong laser fields, Physical Review A 77 (2008), no. 1, 3–6.
  2. Jakub Prauzner-Bechcicki, Krzysztof Sacha, Bruno Eckhardt, and Jakub Zakrzewski, Quantum model for double ionization of atoms in strong laser fields, Physical Review A 78 (2008), no. 1, 013419.
  3. F. Mauger, C. Chandre, and T. Uzer, Strong field double ionization: what is under the "knee"?, Journal of Physics B: Atomic, Molecular and Optical Physics 42 (2009), no. 16, 165602. Bibliography
  4. T. Shaaran, M.T. Nygren, and C.F. de Morisson Faria, Laser-induced nonsequential double ionization at and above the recollision-excitation-tunneling threshold, Physical Review A 81 (2010), no. 6, 063413.
  5. A.D. Bandrauk, F. Fillion-Gourdeau, and E. Lorin, Atoms and molecules in intense laser fields: gauge invariance of theory and models, Journal of Physics B: Atomic, Molecular and Optical Physics 46 (2013), no. 15, 153001.
  6. M.Y. Kuchiev, Atomic antenna, JETP Lett 45 (1987), 404.
  7. K. Sacha and B. Eckhardt, Pathways to double ionization of atoms in strong fields, Physical Review A 63 (2001), no. 4, 1–9.
  8. L.-B. Fu, J. Liu, J. Chen, and S.-G. Chen, Classical collisional trajectories as the source of strong-field double ionization of helium in the knee regime, Physical Review A 63 (2001), no. 4, 043416.
  9. L.-B. Fu, J. Liu, and S.-G. Chen, Correlated electron emission in laser-induced nonse- quence double ionization of helium, Physical Review A 65 (2002), no. 2, 021406. Bibliography
  10. P. Ho and J. Eberly, Classical Effects of Laser Pulse Duration on Strong-Field Double Ionization, Physical Review Letters 95 (2005), no. 19, 193002.
  11. Bruno Eckhardt and Krzysztof Sacha, Classical threshold behaviour in a (1+1)- dimensional model for double ionization in strong fields, Journal of Physics B: Atomic, Molecular and Optical Physics 39 (2006), no. 18, 3865–3871.
  12. B. Eckhardt and K. Sacha, Classical Analysis of Correlated Multiple Ionization in Strong Fields, Physica Scripta T90 (2001), no. 1, 185.
  13. Krzysztof Sacha and Bruno Eckhardt, Pathways to non-sequential multiple ionization in strong laser fields, Journal of Physics B: Atomic, Molecular and Optical Physics 36 (2003), no. 19, 3923–3935. Bibliography 105
  14. D.A. Wasson and S.E. Koonin, Molecular-dynamics simulations of atomic ionization by strong laser fields, Physical Review A 39 (1989), no. 11, 5676–5685.
  15. F. Grossmann, Theoretical Femtosecond Physics, Springer Berlin Heidelberg, 2008.
  16. R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. Schröter, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, K. Hoffmann, and W. Sandner, Momentum Distributions of Ne+ Ions Created by an Intense Ultrashort Laser Pulse, Physical Review Letters 84 (2000), no. 3, 447–450.
  17. P.H. Bucksbaum, R.R. Freeman, M. Bashkansky, and T.J. McIlrath, Role of the pondero- motive potential in above-threshold ionization, Journal of the Optical Society of America B 4 (1987), no. 5, 760.
  18. G. Steinmeyer, Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics, Science 286 (1999), no. 5444, 1507–1512.
  19. G. Arbó, S. Yoshida, E. Persson, K.I. Dimitriou, and J. Burgdörfer, Interference of electrons ionized by short laser pulses, Journal of Physics: Conference Series 88 (2007), 012054.
  20. Bruno Eckhardt, Jakub S. Prauzner-Bechcicki, Krzysztof Sacha, and Jakub Zakrzewski, Phase effects in double ionization by strong short pulses, Chemical Physics 370 (2010), no. 1-3, 168–174.
  21. Bibliography [50] R. Kopold, W. Becker, and M. Kleber, Quantum path analysis of high-order above- threshold ionization, Optics Communications 179 (2000), no. 1-6, 39–50.
  22. F.S. Tsung, C. Ren, L.O. Silva, W.B. Mori, and T. Katsouleas, Generation of ultra- intense single-cycle laser pulses by using photon deceleration., Proceedings of the Na- tional Academy of Sciences of the United States of America 99 (2002), no. 1, 29–32.
  23. T. Weber and M. Weckenbrock, Sequential and nonsequential contributions to double ion- ization in strong laser fields, Journal of Physics B: Atomic and Molecular Physics 33 (2000), no. 4, L127–L133.
  24. G. Wannier, The Threshold Law for Single Ionization of Atoms or Ions by Electrons, Phys- ical Review 90 (1953), no. 5, 817–825.
  25. P. Agostini, J. Kupersztych, and L.A. Lompré, Direct evidence of ponderomotive effects via laser pulse duration in above-threshold ionization, Physical Review A 36 (1987), no. 8, 4111–4114.
  26. J.L. Krause, K.J. Schafer, and K.C. Kulander, Calculation of photoemission from atoms subject to intense laser fields, Physical Review A 45 (1992), no. 7, 4998–5010.
  27. R. Grobe and J.H. Eberly, Single and double ionization and strong-field stabilization of a two-electron system, Physical Review A 47 (1993), no. 3, R1605–R1608.
  28. D.N. Fittinghoff, P.R. Bolton, B. Chang, and K.C. Kulander, Polarization dependence of tunneling ionization of helium and neon by 120-fs pulses at 614 nm, Physical Review A 49 (1994), no. 3, 2174–2177.
  29. C. Guo, R.T. Jones, and G.N. Gibson, Influence of spatial symmetry on the dynamics of strong-field ionization, Physical Review A 62 (2000), no. 1, 015402.
  30. Haan, P. Wheeler, R. Panfili, and J. Eberly, Origin of correlated electron emission in double ionization of atoms, Physical Review A 66 (2002), no. 6, 061402.
  31. G. Xin, D. Ye, and J. Liu, Dependence of the correlated-momentum patterns in double ionization on the carrier-envelope phase and intensity of a few-cycle laser pulse, Physical Review A 82 (2010), no. 6, 2–9.
  32. A. Emmanouilidou, Prevalence of different double ionization pathways and traces of three- body interactions in strongly driven helium, Physical Review A 83 (2011), no. 2, 1–6.
  33. D. Ye, X. Liu, and J. Liu, Classical Trajectory Diagnosis of a Fingerlike Pattern in the Correlated Electron Momentum Distribution in Strong Field Double Ionization of Helium, Physical Review Letters 101 (2008), no. 23, 1–4.
  34. Augst, D. Strickland, and D.D. Meyerhofer, Tunneling ionization of noble gases in a high-intensity laser field, Physical Review Letters 63 (1989), no. 20, 2212–2215.
  35. J. Krause, K. Schafer, and K. Kulander, High-order harmonic generation from atoms and ions in the high intensity regime, Physical Review Letters 68 (1992), no. 24, 3535–3538.
  36. U. Mohideen, M.H. Sher, and H.W.K. Tom, High intensity above-threshold ionization of He, Physical Review Letters 71 (1993), no. 4, 509–512.
  37. B. Walker, B. Sheehy, L.F. DiMauro, P. Agostini, K. Schafer, and K. Kulander, Precision Measurement of Strong Field Double Ionization of Helium, Physical Review Letters 73 (1994), no. 9, 1227–1230.
  38. T. Weber, M. Weckenbrock, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, F. Afaneh, G. Urbasch, M. Vollmer, H. Giessen, and R. Dörner, Recoil-Ion Momentum Distributions for Single and Double Ionization of Helium in Strong Laser Fields, Physical Review Letters 84 (2000), no. 3, 443–446.
  39. J. Prauzner-Bechcicki, K. Sacha, B. Eckhardt, and J. Zakrzewski, Time-Resolved Quantum Dynamics of Double Ionization in Strong Laser Fields, Physical Review Letters 98 (2007), no. 20, 1–4.
  40. P. Agostini, G. Barjot, J. Bonnal, G. Mainfray, C. Manus, and J. Morellec, Multiphoton ionization of hydrogen and rare gases, IEEE Journal of Quantum Electronics 4 (1968), no. 10, 667–669.
  41. Augst, D.D. Meyerhofer, D. Strickland, and S.L. Chint, Laser ionization of noble gases by Coulomb-barrier suppression, Journal of the Optical Society of America B 8 (1991), no. 4, 858.
  42. R. Panfili, J. Eberly, and S. Haan, Comparing classical and quantum simulations of strong- field double-ionization, Optics Express 8 (2001), no. 7, 431.
  43. J. Watson, A. Sanpera, D. Lappas, P. Knight, and K. Burnett, Nonsequential double ion- ization of helium, Physical Review Letters 78 (1997), no. 10, 1884–1887.
  44. J. Chen, J.H. Kim, and C.H. Nam, Frequency dependence of non-sequential double ion- ization, Journal of Physics B: Atomic, Molecular and Optical Physics 36 (2003), no. 4, 691–697.
  45. B. Bergues, M. Kübel, N.G. Johnson, B. Fischer, N. Camus, K.J. Betsch, O. Herrwerth, A. Senftleben, A.M. Sayler, T. Rathje, T. Pfeifer, I. Ben-Itzhak, R.R. Jones, G.G. Paulus, F. Krausz, R. Moshammer, J. Ullrich, and M.F. Kling, Attosecond tracing of correlated electron-emission in non-sequential double ionization., Nature communications 3 (2012), no. may, 813.
  46. D.B. Milosevic, G.G. Paulus, and W. Becker, Above-threshold ionization with few-cycle laser pulses and the relevance of the absolute phase, Laser Physics 13 (2003), no. 7, 948– 958.
  47. Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, Strong-Field Double Ionization of Ar below the Recollision Threshold, Physical Review Letters 101 (2008), no. 5, 053001.
  48. R. Moshammer, B. Feuerstein, J. López-Urrutia, J. Deipenwisch, A. Dorn, D. Fischer, C. Höhr, P. Neumayer, C. Schröter, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, Correlated two-electron dynamics in strong-field double ionization, Phys- ical Review A 65 (2002), no. 3, 035401.
  49. R. Dörner, T. Weber, and M. Weckenbrock, Multiple ionization in strong laser fields, Ad- vances In Atomic, Molecular, and Optical Physics 48 (2002), 1–44.
  50. A. L'Huillier, Theoretical aspects of intense field harmonic generation, Journal of Physics B: Atomic and Molecular Physics 24 (1999), no. 15, 3315–3341.
  51. S. Larochelle, A. Talebpour, and S.L. Chin, Non-sequential multiple ionization of rare gas atoms in a Ti:Sapphire laser field, Journal of Physics B: Atomic, Molecular and Optical Physics 31 (1998), no. 6, 1201–1214.
  52. M. Lein, E.K.U. Gross, and V. Engel, On the mechanism of strong-field double photoion- ization in the helium atom, Journal of Physics B: Atomic, Molecular and Optical Physics 33 (2000), no. 3, 433–442.
  53. L. Haan, Z.S. Smith, K.N. Shomsky, and P.W. Plantinga, Anticorrelated electrons from weak recollisions in nonsequential double ionization, Journal of Physics B: Atomic, Molecular and Optical Physics 41 (2008), no. 21, 211002.
  54. J. Feist, R. Pazourek, S. Nagele, E. Persson, B.I. Schneider, L.A. Collins, and J. Burgdörfer, Electron correlation in two-photon double ionization of helium from attosecond to XFEL pulses, Journal of Physics B: Atomic, Molecular and Optical Physics 42 (2009), no. 13, 134014.
  55. S.E. Moody and M. Lambropoulos, ac Stark effect in multiphoton ionization, Physical Review A 15 (1977), no. 4, 1497–1501.
  56. A. L'Huillier, L.A. Lompre, G. Mainfray, and C. Manus, Multiply charged ions induced by multiphoton absorption in rare gases at 0.53 µm, Physical Review A 27 (1983), no. 5, 2503–2512.
  57. P. Agostini, F. Fabre, and G. Mainfray, Free-free transitions following six-photon ioniza- tion of xenon atoms, Physical Review Letters 42 (1979), no. 17, 1127–1130.
  58. R. Panfili, S. Haan, and J. Eberly, Slow-Down Collisions and Nonsequential Double Ion- ization in Classical Simulations, Physical Review Letters 89 (2002), no. 11, 113001.
  59. P. Ho, R. Panfili, S. Haan, and J. Eberly, Nonsequential Double Ionization as a Completely Classical Photoelectric Effect, Physical Review Letters 94 (2005), no. 9, 1–4.
  60. M. Göppert-Mayer, Über elementarakte mit zwei quantensprüngen, Ph.D. thesis, 1931, pp. 273–294.
  61. T. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dörner, Correlated electron emission in multi- photon double ionization, Nature 405 (2000), no. 6787, 658–61.
  62. D. Bauer, Two-dimensional, two-electron model atom in a laser pulse: Exact treatment, single-active-electron analysis, time-dependent density-functional theory, classical calcu- lations, and nonsequential ionization, Physical Review A 56 (1997), no. 4, 3028–3039. Bibliography [10] H.B. Bebb and A. Gold, Multiphoton Ionization of Hydrogen and Rare-Gas Atoms, Physi- cal Review 143 (1966), no. 1, 1–24.
  63. Andreas Becker and Farhad H.M. Faisal, Interpretation of momentum distribution of recoil ions from laser induced nonsequential double ionization, Physical review letters 84 (2000), no. 16, 3546–9.
  64. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave, Soviet Physics JETP 20 (1965), 1307–1314.
  65. G.S. Voronov and N.B. Delone, Ionization of the xenon atom by the electric field of ruby laser emission, Soviet Physics JETP 1 (1965), no. 2, 66.
  66. K.T. Taylor, J.S. Parker, and D. Dundas, Laser-Driven Helium in Full-Dimensionality, Laser Physics 9 (1999), no. 1, 98–104.
  67. G.S. Voronov, G.A. Delone, and N.B. Delone, Multiphoton Ionization of Krypton and Argon by Ruby Laser Radiation, Soviet Physics JETP 3 (1966), no. 12, 480–483.
  68. K.C. Kulander, K.J. Schafer, and J.L. Krause, Theoretical model for intense field high- order harmonic generation in rare gases, Laser Physics 3 (1993), no. 2, 359–364.
  69. M.V. Ammosov, N.B. Delone, and V. Krainov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field, Soviet Physics JETP 64 (1986), no. 6, 1191.
  70. H.G. Muller and H. B. van Linden van den Heuvell, Multiphoton ionization of xenon with 100-fs laser pulses, Physical Review Letters 60 (1988), no. 7, 565–568.
  71. A. Staudte, C. Ruiz, M. Schöffler, S. Schössler, D. Zeidler, T. Weber, M. Meckel, D. Vil- leneuve, P. Corkum, A. Becker, and R. Dörner, Binary and Recoil Collisions in Strong Field Double Ionization of Helium, Physical Review Letters 99 (2007), no. 26, 1–4.
  72. P.B. Corkum, Plasma perspective on strong field multiphoton ionization, Physical Review Letters 71 (1993), no. 13, 1994–1997.
  73. P. Eckle, A.N. Pfeiffer, C. Cirelli, and A. Staudte, Attosecond ionization and tunneling delay time measurements in helium, science 322 (2008), no. 5907, 1525–9.
  74. Andreas Becker and F.H.M. Faisal, Interplay of electron correlation and intense field dy- namics in the double ionization of helium, Physical Review A 59 (1999), no. 3, R1742– R1745.
  75. A. Becker and F.H.M. Faisal, Mechanism of laser-induced double ionization of helium, Journal of Physics B: Atomic, Molecular and Optical Physics 29 (1996), no. 6, L197– L202.
  76. L. Madsen, Gauge invariance in the interaction between atoms and few-cycle laser pulses, Physical Review A 65 (2002), no. 5, 053417.
  77. E.G. Bessonov, On a class of electromagnetic waves, Soviet Physics JETP 858 (1981), no. March, 433–436.
  78. M. Doerr, Double ionization in a one-cycle laser pulse, Optics Express 6 (2000), no. 5, 111.
  79. A. Gold and H.B. Bebb, Theory of Multiphoton Ionization, Physical Review Letters 14 (1965), no. 3, 60–63.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten