Publikationsserver der Universitätsbibliothek Marburg

Titel:Quantum-Spectroscopy Studies on Semiconductor Nanostructures
Autor:Mootz, Martin
Weitere Beteiligte: Kira, Mackillo (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0407
URN: urn:nbn:de:hebis:04-z2014-04078
DOI: https://doi.org/10.17192/z2014.0407
DDC: Physik
Titel (trans.):Quantenspektroskopie-Untersuchungen an Halbleiternanostrukturen
Publikationsdatum:2014-10-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Optische Eigenschaft, Quasiteilchen, quasiparticle, Halbleiterquantenoptik, Dropleton, many-body theory, low-dimensional semiconductors, Theoretische Physik, Vielteilchentheorie, Niederdimensionaler Halbleiter, Quantenspektroskopie, Halbleiter, quantum spectroscopy, semiconductor quantum optics
Referenziert von:

Summary:
Quantum spectroscopy utilizes the quantum fluctuations of the light source to characterize and control matter. More specifically, desired many-body states can be directly excited to the semiconductor by adjusting light source's quantum fluctuations. The method is experimentally realizable by projecting an extensive set of classical measurements into a quantum-optical response resulting from any possible quantum source. In this work, quantum spectroscopy is used to identify new classes of many-body states and quantum processes in semiconductor nanostructures. In the first part of this Thesis, the optical properties of semiconductor quantum wells are analyzed with quantum spectroscopy by projecting high-precision optical measurements into quantum-optical responses. It is shown that quantum spectroscopy can characterize the properties of specific stable electron-hole cluster – called quasiparticles – much more sensitively than traditional ultrafast laser spectroscopy. In particular, unambiguous evidence is demonstrated for the identification of a new highly correlated quasiparticle in direct-gap Galliumarsenide quantum wells, the dropleton, that is a quantum droplet consisting of four-to-seven electron-hole pairs. To determine the detectable excitation energetics of such correlated quasiparticles in optically excited semiconductor quantum wells, a new theoretical framework is presented which allows for the computation of the excitation spectrum based on a pair-correlation function formulation of the quasiparticle state. Another study in this Thesis deals with the emission properties of optically pumped quantum-dot microcavities. Experimental and theoretical evidence is shown for a new intriguing quantum-memory effect that is controllable by adjusting pump source's quantum fluctuations. The last part of this Thesis presents a fundamental study about the general applicability of quantum spectroscopy in dissipative systems.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten