Publikationsserver der Universitätsbibliothek Marburg

Titel:Targeting Bid for mitoprotection - Bid crystallization, new mechanisms and inhibitory compounds
Autor:Oppermann, Sina
Weitere Beteiligte: Culmsee, Carsten (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0353
DOI: https://doi.org/10.17192/z2014.0353
URN: urn:nbn:de:hebis:04-z2014-03535
DDC:500 Naturwissenschaften
Titel (trans.):Bid als Zielstruktur zur Erhaltung der mitochondrialen Funktion - Bid Kristallisation, neue Mechanismen und Bid Inhibitoren
Publikationsdatum:2014-07-02
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
crystallization, Protein-Protein Interaktionen, neuroprotection, mitochondrium, mitochondria, Inhibitoren, Bid, Neuroprotektion, protein interactions, Kristallisation, Mitochondrien, Bid, inhibitory compounds, drugs

Summary:
Mitochondriale Prozesse des Zelltods spielen eine entscheidende Rolle für den progressiven Verlust von Neuronen bei neurodegenerativen Erkrankungen (M. Alzheimer, M. Parkinson) und nach akuter Hirnschädigung durch Schädel-Hirn-Trauma oder zerebraler Ischämie. Eine Schlüsselfunktion nimmt hierbei das pro-apoptotische Bcl-2 Protein Bid ein. Durch die Aktivierung und mitochondriale Translokation von Bid kommt es zur Schädigung und Fragmentierung von Mitochondrien und letztlich zur Freisetzung von weiteren pro-apoptotischen Faktoren (AIF, Cytochrom C, Smac/DIABLO), die den Untergang der Neurone steuern. Um in Zukunft Bid als potentielles Target für die Therapie von akuten und chronischen neurologischen sowie nicht neurologischen Erkrankungen nutzen zu können, müssen die bisher ungeklärten Mechanismen der Bid-induzierten mitochondrialen Schädigung, sowie die Interaktionen von aktiviertem Bid mit weiteren am Zelltod beteiligten Proteine aufgeklärt werden. Ziel dieser Arbeit war daher die Untersuchung Bid-abhängiger, mitochondrialer Zelltod Mechanismen und beteiligter Protein-Wechselwirkungen. Darüber hinaus stand die Entwicklung neuer Leitstrukturen für protektive Bid-Inhibitoren sowie die Etablierung erster Kristallisationsansätze verschiedener Bid Konstrukte im Fokus dieser Arbeit. Als Modellsyteme mitochondrialer Prozesse des Zelltods dienten vor allem immortalisierte hippokampale Neurone (HT-22 Zellen), in denen eine Behandlung mit Glutamat den durch oxidativen Stress gekennzeichneten Zelltod induziert. Als weiteres Schädigungsmodell wurde die Überexpression von aktiviertem Bid (tBid) eingesetzt. Zum Nachweis von Proteininteraktionen wurden weiterhin eine primäre neuronale Zellkultur und ein in vivo-Modell der zerebralen Ischämie verwendet, sowie verschiedene Untersuchung mit rekombinanten Proteinen durchgeführt. Neue niedermolekulare Bid-Inhibitoren aus drei strukturell verschiedenen Substanzklassen wurden mittels Zellviabilitätsmessungen auf neuroprotektive Effekte geprüft. Sieben Substanzen zeigten nicht nur deutliche Protektion gegenüber dem Glutamat- und tBid-induzierten Zelltod, sondern konnten ebenso die Bid-abhängige mitochondriale Schädigung verhindern. Weiterhin bietet die Arbeit Einblicke in die Kristallisation von rekombinantem Bid Protein, welche als Basis für ein grundlegendes Verständnis der molekularen Proteinfunktion sowie der Struktur-basierten Wirkstoffentwicklung dient. Durch Verfolgung wichtiger Strategien im Konstruktdesign konnte eines der verwendeten Bid Konstrukte erfolgreich kristallisiert werden und lieferte eine Strukturauflösung von 3.75 bis 3.95 Ǻ unter Synchrotronstrahlung. Weiterhin wurde der Effekt der rekombinanten Proteine Bid, cBid und Bax auf Fluoreszenz-Liposomen getestet, um die Mechanismen der Bid-abhängigen mitochondrialen Membranpermeabilisierung zu untersuchen. Es konnte hier eine Schlüsselrolle für das mitochondriale Lipid Cardiolipin gezeigt werden, in dessen Abhängigkeit Caspase-8 aktiviertes Bid (cBid) eine Membrandestabilisierung vermittelte, welche durch die Koexistenz von Bax gesteigert werden konnte. Letztlich konnte erstmals eine direkte Interaktion zwischen Bid und dem mitochondrialen Porin VDAC1 in kultivierten Neuronen sowie in einem in vivo Modell der zerebralen Ischämie nachweisen. Die Inhibition von VDAC1 mittels Einsatz des Anionen-Kanal-Blockers DIDS sowie der Verwendung von VDAC1 siRNA konnte sowohl die Funktion als auch die Integrität der Mitochondrien nach Glutamat- und tBid-induzierter Schädigung schützen und bestätigte somit die essentielle Rolle von VDAC1 im Bid-abhängigen Zelltod. Weitere Untersuchungen zeigten erstmalig, dass beide Proteine, Bid und VDAC1, gleichermaßen im neuronalen Zelltod involviert sind und offensichtlich zusammen eine Schädigung der mitochondrialen Membran induzieren. Im Gegensatz dazu konnte gezeigt werden, dass die Isoform VDAC2 nur eine untergeordnete Rolle im Bid-induzierten Zelltod in Neuronen spielt. Die nachgewiesene Bid-VDAC1 Wechselwirkung besitzt hohe Relevanz für die mitochondrialen Prozesse des Zelltods. Damit verbindet die vorliegende Arbeit die bisher kontrovers betrachten Mechanismen der mitochodrialen Membranschädigung, die zuvor entweder auf die alleinige Aktivität der Bcl-2 Proteine oder auf VDACs zurückgeführt wurde. Mit der Identifizierung neuer potentieller Bid-Inhibitoren sowie durch Etablierung wichtiger Grundlagen für die Aufklärung der Kristallstruktur von Bid, stellt die Arbeit einen wesentlichen Beitrat für die strukturbasierte Wirkstoffentwicklung und Therapie verschiedener neurologischer und nicht neurologischer Erkrankungen dar, in welchen Bid-abhängige mitochondriale Prozesse des Zelltods eine wesentliche Rolle spielen.

Bibliographie / References

  1. Lucken-Ardjomande, S., Montessuit, S. & Martinou, J. C. Contributions to Bax insertion and oligomerization of lipids of the mitochondrial outer membrane. Cell Death. Differ. 15, 929-937 (2008).
  2. Azarias, G. et al. Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes. J. Neurosci. 31, 3550-3559 (2011).
  3. Lee, E. F. et al. Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death. Differ. 14, 1711-1713 (2007).
  4. De, P., V et al. New functions of an old protein: the eukaryotic porin or voltage dependent anion selective channel (VDAC). Ital. J. Biochem. 52, 17-24 (2003).
  5. De, P., V, Messina, A., Lane, D. J. & Lawen, A. Voltage-dependent anion-selective channel (VDAC) in the plasma membrane. FEBS Lett. 584, 1793-1799 (2010).
  6. Leone, M. et al. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res. 63, 8118-8121 (2003).
  7. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205-219 (2004).
  8. Xue, J., Zhou, D., Yao, H. & Haddad, G. G. Role of transporters and ion channels in neuronal injury under hypoxia. Am. J. Physiol Regul. Integr. Comp Physiol 294, R451-R457 (2008).
  9. Guegan, C. et al. Instrumental activation of bid by caspase-1 in a transgenic mouse model of ALS. Mol. Cell Neurosci. 20, 553-562 (2002).
  10. Van, M. N., Kajava, A. V., Bonfils, C., Martinou, J. C. & Harricane, M. C. Interactions of Bax and tBid with lipid monolayers. J. Membr. Biol. 207, 1-9 (2005).
  11. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135-147 (2014).
  12. Stierand, K. & Rarey, M. From modeling to medicinal chemistry: automatic generation of two-dimensional complex diagrams. ChemMedChem. 2, 853-860 (2007).
  13. Rosenbaum, D. M. et al. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J. Neurosci. Res. 88, 1569-1576 (2010).
  14. Henshall, D. C. et al. Cleavage of bid may amplify caspase-8-induced neuronal death following focally evoked limbic seizures. Neurobiol. Dis. 8, 568-580 (2001).
  15. Walker, J. M. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 32, 5-8 (1994).
  16. Konig, T., Stipani, I., Horvath, I. & Palmieri, F. Inhibition of mitochondrial substrate anion translocators by a synthetic amphipathic polyanion. J. Bioenerg. Biomembr. 14, 297-305 (1982).
  17. Stein, C. A. & Colombini, M. Specific VDAC inhibitors: phosphorothioate oligonucleotides. J. Bioenerg. Biomembr. 40, 157-162 (2008).
  18. Konig, T. et al. Interaction of a synthetic polyanion with rat liver mitochondria. Biochim. Biophys. Acta 462, 380-389 (1977).
  19. Colombini, M., Yeung, C. L., Tung, J. & Konig, T. The mitochondrial outer membrane channel, VDAC, is regulated by a synthetic polyanion. Biochim. Biophys. Acta 905, 279-286 (1987).
  20. De, P., V et al. Characterization of human VDAC isoforms: a peculiar function for VDAC3? Biochim. Biophys. Acta 1797, 1268-1275 (2010).
  21. Shoshan-Barmatz, V., Keinan, N., bu-Hamad, S., Tyomkin, D. & Aram, L. Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo. Biochim. Biophys. Acta 1797, 1281-1291 (2010).
  22. Lemasters, J. J. & Holmuhamedov, E. Voltage-dependent anion channel (VDAC) as mitochondrial governator--thinking outside the box. Biochim. Biophys. Acta 1762, 181-190 (2006).
  23. Satsoura, D. et al. Interaction of the full-length Bax protein with biomimetic mitochondrial liposomes: a small-angle neutron scattering and fluorescence study. Biochim. Biophys. Acta 1818, 384-401 (2012).
  24. Banerjee, J. & Ghosh, S. Bax increases the pore size of rat brain mitochondrial voltage-dependent anion channel in the presence of tBid. Biochem. Biophys. Res. Commun. 323, 310-314 (2004).
  25. Petros, A. M. et al. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein. Bioorg. Med. Chem. Lett. 24, 1484-1488 (2014).
  26. Drzyzga, L. R., Marcinowska, A. & Obuchowicz, E. Antiapoptotic and neurotrophic effects of antidepressants: a review of clinical and experimental studies. Brain Res. Bull. 79, 248-257 (2009).
  27. Kale, J., Liu, Q., Leber, B. & Andrews, D. W. Shedding light on apoptosis at subcellular membranes. Cell 151, 1179-1184 (2012).
  28. Waldmeier, P. C. Prospects for antiapoptotic drug therapy of neurodegenerative diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 303-321 (2003).
  29. Liu, J., Weiss, A., Durrant, D., Chi, N. W. & Lee, R. M. The cardiolipin-binding domain of Bid affects mitochondrial respiration and enhances cytochrome c release. Apoptosis. 9, 533-541 (2004).
  30. Ott, M., Norberg, E., Zhivotovsky, B. & Orrenius, S. Mitochondrial targeting of tBid/Bax: a role for the TOM complex? Cell Death. Differ. 16, 1075-1082 (2009).
  31. Gonzalvez, F., Bessoule, J. J., Rocchiccioli, F., Manon, S. & Petit, P. X. Role of cardiolipin on tBid and tBid/Bax synergistic effects on yeast mitochondria. Cell Death. Differ. 12, 659-667 (2005).
  32. Lucken-Ardjomande, S., Montessuit, S. & Martinou, J. C. Bax activation and stress- induced apoptosis delayed by the accumulation of cholesterol in mitochondrial membranes. Cell Death. Differ. 15, 484-493 (2008).
  33. Kazhdan, I., Long, L., Montellano, R., Cavazos, D. A. & Marciniak, R. A. Targeted gene therapy for breast cancer with truncated Bid. Cancer Gene Ther. 13, 141-149 (2006).
  34. Bermpohl, D., You, Z., Korsmeyer, S. J., Moskowitz, M. A. & Whalen, M. J. Traumatic brain injury in mice deficient in Bid: effects on histopathology and functional outcome. J. Cereb. Blood Flow Metab 26, 625-633 (2006).
  35. Mader, A., Abu-Hamad, S., Arbel, N., Gutierrez-Aguilar, M. & Shoshan-Barmatz, V. Dominant-negative VDAC1 mutants reveal oligomeric VDAC1 to be the active unit in mitochondria-mediated apoptosis. Biochem. J. 429, 147-155 (2010).
  36. Kudla, G. et al. The destabilization of lipid membranes induced by the C-terminal fragment of caspase 8-cleaved bid is inhibited by the N-terminal fragment. J. Biol. Chem. 275, 22713-22718 (2000).
  37. Han, D., Antunes, F., Canali, R., Rettori, D. & Cadenas, E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J. Biol. Chem. 278, 5557-5563 (2003).
  38. Cirman, T. et al. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J. Biol. Chem. 279, 3578-3587 (2004).
  39. Polster, B. M., Basanez, G., Etxebarria, A., Hardwick, J. M. & Nicholls, D. G. Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J. Biol. Chem. 280, 6447-6454 (2005).
  40. Yuan, S. et al. Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis. FASEB J. 22, 2809-2820 (2008).
  41. Plesnila, N. et al. Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J. Cereb. Blood Flow Metab 24, 458-466 (2004).
  42. Yamamoto, A. et al. Endoplasmic reticulum stress and apoptosis signaling in human temporal lobe epilepsy. J. Neuropathol. Exp. Neurol. 65, 217-225 (2006).
  43. Zinkel, S. S. et al. Proapoptotic BID is required for myeloid homeostasis and tumor suppression. Genes Dev. 17, 229-239 (2003).
  44. Suen, D. F., Norris, K. L. & Youle, R. J. Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577-1590 (2008).
  45. McPherson, A. & Kuznetsov, Y. G. Mechanisms, kinetics, impurities and defects: consequences in macromolecular crystallization. Acta Crystallogr. F. Struct. Biol. Commun. 70, 384-403 (2014).
  46. Petit, P. X. et al. Interaction of the alpha-helical H6 peptide from the pro-apoptotic protein tBid with cardiolipin. FEBS J. 276, 6338-6354 (2009).
  47. Pusch, M., Zifarelli, G., Murgia, A. R., Picollo, A. & Babini, E. Channel or transporter? The CLC saga continues. Exp. Physiol 91, 149-152 (2006).
  48. Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J. & Korsmeyer, S. J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513-517 (2003).
  49. McPherson, A. & DeLucas, L. Crystal-growing in space. Science 283, 1459 (1999).
  50. Wu, M. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol Cell Physiol 292, C125-C136 (2007).
  51. O'Neill, J. W. & Hockenbery, D. M. Bcl-2-related proteins as drug targets. Curr. Med. Chem. 10, 1553-1562 (2003).
  52. Czabotar, P. E. & Lessene, G. Bcl-2 family proteins as therapeutic targets. Curr. Pharm. Des 16, 3132-3148 (2010).
  53. Tan, S., Schubert, D. & Maher, P. Oxytosis: A novel form of programmed cell death. Curr. Top. Med. Chem. 1, 497-506 (2001).
  54. Mohammad, R., Giri, A. & Goustin, A. S. Small-molecule inhibitors of Bcl-2 family proteins as therapeutic agents in cancer. Recent Pat Anticancer Drug Discov. 3, 20- 30 (2008).
  55. Albrecht, P. et al. Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system xc-as a neuroprotective drug target. CNS. Neurol. Disord. Drug Targets. 9, 373-382 (2010).
  56. Chandra, D., Choy, G., Daniel, P. T. & Tang, D. G. Bax-dependent regulation of Bak by voltage-dependent anion channel 2. J. Biol. Chem. 280, 19051-19061 (2005).
  57. Gonzalvez, F. & Gottlieb, E. Cardiolipin: setting the beat of apoptosis. Apoptosis. 12, 877-885 (2007).
  58. Jalmar, O. et al. Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid. PLoS. One. 8, e55250 (2013).
  59. Osford, S. M., Dallman, C. L., Johnson, P. W., Ganesan, A. & Packham, G. Current strategies to target the anti-apoptotic Bcl-2 protein in cancer cells. Curr. Med. Chem. 11, 1031-1039 (2004).
  60. Landsberg, M. J., Bond, J., Gee, C. L., Martin, J. L. & Hankamer, B. A method for screening the temperature dependence of three-dimensional crystal formation. Acta Crystallogr. D. Biol. Crystallogr. 62, 559-562 (2006).
  61. Gonzalvez, F. et al. tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death. Differ. 12, 614-626 (2005).
  62. Sattler, M. et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983-986 (1997).
  63. Shoshan-Barmatz, V. et al. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Aspects Med. 31, 227-285 (2010).
  64. Autret, A. & Martin, S. J. Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. Mol. Cell 36, 355-363 (2009).
  65. Burdo, J., Dargusch, R. & Schubert, D. Distribution of the cystine/glutamate antiporter system xc-in the brain, kidney, and duodenum. J. Histochem. Cytochem. 54, 549-557 (2006).
  66. Öxler, E. M., Dolga, A. & Culmsee, C. AIF depletion provides neuroprotection through a preconditioning effect. Apoptosis. 17, 1027-1038 (2012).
  67. Schneider, N. et al. Substantial improvements in large-scale redocking and screening using the novel HYDE scoring function. J. Comput. Aided Mol. Des 26, 701-723 (2012).
  68. Schneider, N., Lange, G., Hindle, S., Klein, R. & Rarey, M. A consistent description of HYdrogen bond and DEhydration energies in protein-ligand complexes: methods behind the HYDE scoring function. J. Comput. Aided Mol. Des 27, 15-29 (2013).
  69. Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470-489 (1996).
  70. Tzung, S. P. et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat. Cell Biol. 3, 183-191 (2001).
  71. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257 (1972).
  72. Friedlander, R. M. Apoptosis and caspases in neurodegenerative diseases. N. Engl. J. Med. 348, 1365-1375 (2003).
  73. Culmsee, C. et al. Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J. Neurosci. 25, 10262-10272 (2005).
  74. Mattson, M. P. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120-129 (2000).
  75. Fannjiang, Y. et al. BAK alters neuronal excitability and can switch from anti-to pro- death function during postnatal development. Dev. Cell 4, 575-585 (2003).
  76. Roucou, X., Montessuit, S., Antonsson, B. & Martinou, J. C. Bax oligomerization in mitochondrial membranes requires tBid (caspase-8-cleaved Bid) and a mitochondrial protein. Biochem. J. 368, 915-921 (2002).
  77. Yin, X. M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886-891 (1999).
  78. Tobaben, S. et al. Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT- 22 hippocampal neurons. Cell Death. Differ. 18, 282-292 (2011).
  79. Yin, X. M. et al. Bid-mediated mitochondrial pathway is critical to ischemic neuronal apoptosis and focal cerebral ischemia. J. Biol. Chem. 277, 42074-42081 (2002).
  80. Gill S.C. & Hippel P.H. Calculation of Protein Extinction Coefficients from Amino Acid Sequence Data. Analytical Biochemistry 182, 319-326 (1989).
  81. Lutter, M. et al. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat. Cell Biol. 2, 754-761 (2000).
  82. Sutton, V. R., Wowk, M. E., Cancilla, M. & Trapani, J. A. Caspase activation by granzyme B is indirect, and caspase autoprocessing requires the release of proapoptotic mitochondrial factors. Immunity. 18, 319-329 (2003).
  83. Roy, M. J., Vom, A., Czabotar, P. E. & Lessene, G. Cell death and the mitochondria: therapeutic targeting of the BCL-2 family-driven pathway. Br. J. Pharmacol.(2013).
  84. Oppenheim, R. W. Cell death during development of the nervous system. Annu. Rev. Neurosci. 14, 453-501 (1991).
  85. Sagara, Y. et al. Cellular mechanisms of resistance to chronic oxidative stress. Free Radic. Biol. Med. 24, 1375-1389 (1998).
  86. Wangemann, P. et al. Cl(-)-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pflugers Arch. 407 Suppl 2, S128-S141 (1986).
  87. Smits, S. H., Mueller, A., Grieshaber, M. K. & Schmitt, L. Coenzyme-and His-tag- induced crystallization of octopine dehydrogenase. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 64, 836-839 (2008).
  88. Chayen, N. E. Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques. Acta Crystallogr. D. Biol. Crystallogr. 54, 8-15 (1998).
  89. Culmsee, L.O. Essen, Conformational flexibility of VDAC and the influence of effectors, Molecular life science, Gesellschaft für Biochemie und Molekularbiologie (GBM), Frankfurt, Germany (2013) Publications | 277
  90. McPherson, A. Crystallization of macromolecules: general principles. Methods Enzymol. 114, 112-120 (1985).
  91. McPherson, A. Crystallization of proteins by variation of pH or temperature. Methods Enzymol. 114, 125-127 (1985).
  92. Benvenuti, M. & Mangani, S. Crystallization of soluble proteins in vapor diffusion for x- ray crystallography. Nat. Protoc. 2, 1633-1651 (2007).
  93. 12 Publications 12.1.1 Original papers S. Oppermann, F. Schrader, K. Elsässer, A.M. Dolga, L. Krause, N. Doti, C. Wegscheid- Gerlach, M. Schlitzer, C. Culmsee, Novel N-Phenyl substituted thiazolidinediones protect neuronal cells against glutamate-and tBid-induced toxicity. (resubmitted)
  94. S. Oppermann, B. Mertins, G. Psakis, S. Schneider, C. Krasel, M. Bünemann, L.O. Essen, C. Culmsee, VDAC1 mediated neuronal cell death requires tBid, 21 th ECDO Euroconference on Apoptosis, Paris, France (2013)
  95. Kagan, V. E. et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1, 223-232 (2005).
  96. Zhou, H. et al. Design of Bcl-2 and Bcl-xL inhibitors with subnanomolar binding affinities based upon a new scaffold. J. Med. Chem. 55, 4664-4682 (2012).
  97. Schlitzer, C. Culmsee, Development of novel Bid inhibitors for therapeutic approaches in models of neuronal cell death, 78. Jahrestagung der Deutschen Gesellschaft für Experimentelle und Klinische Pharmakologie und Toxikologie (DGPT), Dresden, Germany (2012)
  98. Shimizu, S., Ide, T., Yanagida, T. & Tsujimoto, Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J. Biol. Chem. 275, 12321-12325 (2000).
  99. Shimizu, S., Matsuoka, Y., Shinohara, Y., Yoneda, Y. & Tsujimoto, Y. Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J. Cell Biol. 152, 237-250 (2001).
  100. Morimoto, B. H. & Koshland, D. E., Jr. Excitatory amino acid uptake and N-methyl-D- aspartate-mediated secretion in a neural cell line. Proc. Natl. Acad. Sci. U. S. A 87, 3518-3521 (1990).
  101. Bathori, G. et al. Extramitochondrial porin: facts and hypotheses. J. Bioenerg. Biomembr. 32, 79-89 (2000).
  102. Choi, D. W. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Lett. 58, 293-297 (1985).
  103. Tajeddine, N. et al. Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin- induced cell death. Oncogene 27, 4221-4232 (2008).
  104. Degterev, A. et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat. Cell Biol. 3, 173-182 (2001).
  105. Diemert, S. et al. Impedance measurement for real time detection of neuronal cell death. J. Neurosci. Methods 203, 69-77 (2012).
  106. Plesnila, M. Bünemann, L.O. Essen, C. Culmsee, Interaction of Bid and VDAC1 determines mitochondrial demise, Keystone Symposia on mitochondrial Dynamics and Physiology, Santa Fe, NM, USA (2014) 2013
  107. Bünemann, L.O. Essen, C. Culmsee, Interaction of tBid and VDAC1 determines mitochondrial demise. (submitted) 12.1.2 Poster presentations 2014
  108. Stoka, V. et al. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro- caspases, is the most likely route. J. Biol. Chem. 276, 3149-3157 (2001).
  109. Liu, Y., Peterson, D. A., Kimura, H. & Schubert, D. Mechanism of cellular 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J. Neurochem. 69, 581-593 (1997).
  110. Lovell, J. F. et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135, 1074-1084 (2008).
  111. Cheung, N. S., Pascoe, C. J., Giardina, S. F., John, C. A. & Beart, P. M. Micromolar L-glutamate induces extensive apoptosis in an apoptotic-necrotic continuum of insult- dependent, excitotoxic injury in cultured cortical neurones. Neuropharmacology 37, 1419-1429 (1998).
  112. Arnoult, D. Mitochondrial fragmentation in apoptosis. Trends Cell Biol. 17, 6-12 (2007).
  113. Perfettini, J. L., Roumier, T. & Kroemer, G. Mitochondrial fusion and fission in the control of apoptosis. Trends Cell Biol. 15, 179-183 (2005).
  114. S. Oppermann, M.T. Barho, K., F.Schrader, I. Degenhardt, K. Elsässer, C. Wegscheid- Gerlach, C. Culmsee, M. Schlitzer, N-Acyl derivatives of phenoxyaniline as novel neuroprotective agents. (submitted)
  115. Zong, W. X. & Thompson, C. B. Necrotic death as a cell fate. Genes Dev. 20, 1-15 (2006).
  116. Mattson, M. P., Duan, W., Pedersen, W. A. & Culmsee, C. Neurodegenerative disorders and ischemic brain diseases. Apoptosis. 6, 69-81 (2001).
  117. Plesnila, C. Culmsee, Novel small molecule inhibitors of Bid provide neuroprotection in vitro, Annual Meeting of the American Society of Neuroscience, New Orleans, USA (2012)
  118. S. Oppermann, K. Elsässer, F. Schrader, C. Krasel, A.M. Dolga, M. Bünemann, M. Schlitzer, N. Plesnila, C. Culmsee, Novel small molecules provide protection against glutamate and tBid induced toxicity in neuronal hippocampal cells, 21 th ECDO Euroconference on Apoptosis, Paris, France (2013)
  119. Gohil, V. M. et al. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat. Biotechnol. 28, 249-255 (2010).
  120. Zha, J., Weiler, S., Oh, K. J., Wei, M. C. & Korsmeyer, S. J. Posttranslational N- myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290, 1761-1765 (2000).
  121. Graham, S. H. & Chen, J. Programmed cell death in cerebral ischemia. J. Cereb. Blood Flow Metab 21, 99-109 (2001).
  122. Becattini, B. et al. Rational design and real time, in-cell detection of the proapoptotic activity of a novel compound targeting Bcl-X(L). Chem. Biol. 11, 389-395 (2004).
  123. S. Oppermann, J. Grohm, F. Schrader, C. Krasel, M. Bünemann, M. Schlitzer, N. Plesnila, C. Culmsee, Small molecule Bid inhibitors prevent Drp1-dependent mitochondrial fission and cell death in neurons, 7 th International Symposium on Neuroprotection and Neurorepair, Potsdam, Germany (2012)
  124. S. Oppermann, F. Schrader, K. Elsässer, C. Krasel, H. Steuber, M. Bünemann, M. Schlitzer, N. Plesnila, C. Culmsee, Small molecule inhibitors of the BH3-only protein Bid as novel therapeutic agents in neurodegenerative diseases, Science to market 2013, European Association of Pharma Biotechnology (EABP), Cologne, Germany (2013) 2012
  125. Rayment, I. Small-scale batch crystallization of proteins revisited: an underutilized way to grow large protein crystals. Structure. 10, 147-151 (2002).
  126. Becattini, B. et al. Structure-activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proc. Natl. Acad. Sci. U. S. A 103, 12602-12606 (2006).
  127. Geula, S., Naveed, H., Liang, J. & Shoshan-Barmatz, V. Structure-based analysis of VDAC1 protein: defining oligomer contact sites. J. Biol. Chem. 287, 2179-2190 (2012).
  128. Wei, M. C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060-2071 (2000).
  129. Shamas-Din, A. et al. tBid undergoes multiple conformational changes at the membrane required for Bax activation. J. Biol. Chem. 288, 22111-22127 (2013).
  130. Kroemer, G., Petit, P., Zamzami, N., Vayssiere, J. L. & Mignotte, B. The biochemistry of programmed cell death. FASEB J. 9, 1277-1287 (1995).
  131. Plesnila, M. Bünemann, L.O. Essen, C. Culmsee, The interaction of Bid and VDAC1 is essential for neuronal cell death in vitro and in vivo, 8 th International Symposium on Neuroprotection and Neurorepair, Magdeburg, Germany (2014)
  132. S. Oppermann, B. Mertins, C. Krasel, M. Bünemann, L.O. Essen, C. Culmsee, The interaction of tBid with VDAC1 is essential for mitochondrial damage in intrinsic death pathways, The Cold Spring Harbor Meeting on Cell Death, Cold Spring Habor -New York, USA (2013)
  133. Zamzami, N. & Kroemer, G. The mitochondrion in apoptosis: how Pandora's box opens. Nat. Rev. Mol. Cell Biol. 2, 67-71 (2001).
  134. Keinan, N., Pahima, H., Ben-Hail, D. & Shoshan-Barmatz, V. The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis. Biochim. Biophys. Acta 1833, 1745-1754 (2013).
  135. S. Oppermann, S. Schneider, C. Culmsee, The role of VDAC in glutamate toxicity and tBid- induced cell death in HT-22 cells, Tag der Pharmazie, Marburg, Germany (2013)
  136. Shoshan-Barmatz, V., Israelson, A., Brdiczka, D. & Sheu, S. S. The voltage- dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr. Pharm. Des 12, 2249-2270 (2006).
  137. Chayen, N. E. Turning protein crystallisation from an art into a science. Curr. Opin. Struct. Biol. 14, 577-583 (2004).
  138. Colombini, M. VDAC: the channel at the interface between mitochondria and the cytosol. Mol. Cell Biochem. 256-257, 107-115 (2004).
  139. Krajewski, S. et al. Upregulation of bax protein levels in neurons following cerebral ischemia. J. Neurosci. 15, 6364-6376 (1995).
  140. Tauskela, J. S. et al. Protection of cortical neurons against oxygen-glucose deprivation and N-methyl-D-aspartate by DIDS and SITS. Eur. J. Pharmacol. 464, 17- 25 (2003).
  141. Inoue, H., Ohtaki, H., Nakamachi, T., Shioda, S. & Okada, Y. Anion channel blockers attenuate delayed neuronal cell death induced by transient forebrain ischemia. J. Neurosci. Res. 85, 1427-1435 (2007).
  142. Kitada, S. et al. Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J. Med. Chem. 46, 4259-4264 (2003).
  143. Godbole, A., Varghese, J., Sarin, A. & Mathew, M. K. VDAC is a conserved element of death pathways in plant and animal systems. Biochim. Biophys. Acta 1642, 87-96 (2003).
  144. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674 (2007).
  145. Krug, M., Weiss, M. S., Heinemann, U. & Mueller, U. XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. Appl. Cryst. J.568-572 (2012).
  146. Chen, M. et al. Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J. Biol. Chem. 276, 30724-30728 (2001).
  147. Grinberg, M. et al. tBID Homooligomerizes in the mitochondrial membrane to induce apoptosis. J. Biol. Chem. 277, 12237-12245 (2002).
  148. Epand, R. F., Martinou, J. C., Fornallaz-Mulhauser, M., Hughes, D. W. & Epand, R. M. The apoptotic protein tBid promotes leakage by altering membrane curvature. J. Biol. Chem. 277, 32632-32639 (2002).
  149. Yethon, J. A., Epand, R. F., Leber, B., Epand, R. M. & Andrews, D. W. Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J. Biol. Chem. 278, 48935-48941 (2003).
  150. Iverson, S. L., Enoksson, M., Gogvadze, V., Ott, M. & Orrenius, S. Cardiolipin is not required for Bax-mediated cytochrome c release from yeast mitochondria. J. Biol. Chem. 279, 1100-1107 (2004).
  151. Terrones, O. et al. Lipidic pore formation by the concerted action of proapoptotic BAX and tBID. J. Biol. Chem. 279, 30081-30091 (2004).
  152. Terrones, O. et al. BIM and tBID are not mechanistically equivalent when assisting BAX to permeabilize bilayer membranes. J. Biol. Chem. 283, 7790-7803 (2008).
  153. Korytowski, W., Basova, L. V., Pilat, A., Kernstock, R. M. & Girotti, A. W. Permeabilization of the mitochondrial outer membrane by Bax/truncated Bid (tBid) proteins as sensitized by cardiolipin hydroperoxide translocation: mechanistic implications for the intrinsic pathway of oxidative apoptosis. J. Biol. Chem. 286, 26334-26343 (2011).
  154. Schubert, D. & Piasecki, D. Oxidative glutamate toxicity can be a component of the excitotoxicity cascade. J. Neurosci. 21, 7455-7462 (2001).
  155. Crimi, M. & Esposti, M. D. Apoptosis-induced changes in mitochondrial lipids. Biochim. Biophys. Acta 1813, 551-557 (2011).
  156. Lessene, G. et al. Structure-guided design of a selective BCL-X(L) inhibitor. Nat. Chem. Biol. 9, 390-397 (2013).
  157. Polcic, P. et al. Cardiolipin and phosphatidylglycerol are not required for the in vivo action of Bcl-2 family proteins. Cell Death. Differ. 12, 310-312 (2005).
  158. Rostovtseva, T. & Colombini, M. VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys. J. 72, 1954-1962 (1997).
  159. Roucou, X., Rostovtseva, T., Montessuit, S., Martinou, J. C. & Antonsson, B. Bid induces cytochrome c-impermeable Bax channels in liposomes. Biochem. J. 363, 547-552 (2002).
  160. Rostovtseva, T. K. & Bezrukov, S. M. ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys. J. 74, 2365-2373 (1998).
  161. Abu-Hamad, S., Sivan, S. & Shoshan-Barmatz, V. The expression level of the voltage-dependent anion channel controls life and death of the cell. Proc. Natl. Acad. Sci. U. S. A 103, 5787-5792 (2006).
  162. Shimizu, S. & Tsujimoto, Y. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc. Natl. Acad. Sci. U. S. A 97, 577-582 (2000).
  163. Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A. & Okada, Y. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. U. S. A 97, 9487-9492 (2000).
  164. Setoguchi, K., Otera, H. & Mihara, K. Cytosolic factor-and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins. EMBO J. 25, 5635-5647 (2006).
  165. Majno, G. & Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146, 3-15 (1995).
  166. Schafer, B. et al. Mitochondrial outer membrane proteins assist Bid in Bax-mediated lipidic pore formation. Mol. Biol. Cell 20, 2276-2285 (2009).
  167. Yuan, J. Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis. 14, 469-477 (2009).
  168. Yao, H., Felfly, H., Wang, J., Zhou, D. & Haddad, G. G. DIDS protects against neuronal injury by blocking Toll-like receptor 2 activated-mechanisms. J. Neurochem. 108, 835-846 (2009).
  169. Gonzalvez, F. et al. Mechanistic issues of the interaction of the hairpin-forming domain of tBid with mitochondrial cardiolipin. PLoS. One. 5, e9342 (2010).
  170. Chung, C. T., Niemela, S. L. & Miller, R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. U. S. A 86, 2172-2175 (1989).
  171. Jalmar, O., Garcia-Saez, A. J., Berland, L., Gonzalvez, F. & Petit, P. X. Giant unilamellar vesicles (GUVs) as a new tool for analysis of caspase-8/Bid-FL complex binding to cardiolipin and its functional activity. Cell Death. Dis. 1, e103 (2010).
  172. Franklin, J. L. Redox regulation of the intrinsic pathway in neuronal apoptosis.
  173. Dessau, M. A. & Modis, Y. Protein Crystallization for X-ray Crystallography. JoVE 47, (2011).
  174. Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death. Differ. 19, 107-120 (2012).
  175. Malkesman, O. et al. Targeting the BH3-interacting domain death agonist to develop mechanistically unique antidepressants. Mol. Psychiatry 17, 770-780 (2012).
  176. Jakobson, M., Lintulahti, A. & Arumae, U. mRNA for N-Bak, a neuron-specific BH3- only splice isoform of Bak, escapes nonsense-mediated decay and is translationally repressed in the neurons. Cell Death. Dis. 3, e269 (2012).
  177. Clerc, P. & Polster, B. M. Investigation of mitochondrial dysfunction by sequential microplate-based respiration measurements from intact and permeabilized neurons. PLoS. One. 7, e34465 (2012).
  178. Bleicken, S., Garcia-Saez, A. J., Conte, E. & Bordignon, E. Dynamic interaction of cBid with detergents, liposomes and mitochondria. PLoS. One. 7, e35910 (2012).
  179. Ku, B., Liang, C., Jung, J. U. & Oh, B. H. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res. 21, 627-641 (2011).
  180. Mueller, U. et al. Facilities for macromolecular crystallography at the Helmholtz- Zentrum Berlin. J. Synchrotron. Radiat. 19, 442-449 (2012).
  181. Grohm, J. et al. Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death. Differ. 19, 1446-1458 (2012).
  182. Pamenter, M. E. et al. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release. PLoS. One. 7, e43995 (2012).
  183. Mertins, B. et al. Flexibility of the N-terminal mVDAC1 segment controls the channel's gating behavior. PLoS. One. 7, e47938 (2012).
  184. Hetz, C. et al. Bax channel inhibitors prevent mitochondrion-mediated apoptosis and protect neurons in a model of global brain ischemia. J. Biol. Chem. 280, 42960-42970 (2005).
  185. Henke, N. et al. The plasma membrane channel ORAI1 mediates detrimental calcium influx caused by endogenous oxidative stress. Cell Death. Dis. 4, e470 (2013).
  186. Pamenter, M. E., Perkins, G. A., Gu, X. Q., Ellisman, M. H. & Haddad, G. G. DIDS (4,4-diisothiocyanatostilbenedisulphonic acid) induces apoptotic cell death in a hippocampal neuronal cell line and is not neuroprotective against ischemic stress.
  187. Sarig, R. et al. BID-D59A is a potent inducer of apoptosis in primary embryonic fibroblasts. J. Biol. Chem. 278, 10707-10715 (2003).
  188. Jakobson, M., Jakobson, M., Llano, O., Palgi, J. & Arumae, U. Multiple mechanisms repress N-Bak mRNA translation in the healthy and apoptotic neurons. Cell Death. Dis. 4, e777 (2013).
  189. Liu, Q. et al. Akt and mTOR mediate programmed necrosis in neurons. Cell Death. Dis. 5, e1084 (2014).
  190. Gorman, A. M. Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. J. Cell Mol. Med. 12, 2263-2280 (2008).
  191. Kim, T. H. et al. Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome C release. Mol. Biol. Cell 15, 3061-3072 (2004).
  192. Plesnila, N. et al. BID mediates neuronal cell death after oxygen/ glucose deprivation and focal cerebral ischemia. Proc. Natl. Acad. Sci. U. S. A 98, 15318-15323 (2001).
  193. Zamzami, N., Brenner, C., Marzo, I., Susin, S. A. & Kroemer, G. Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 16, 2265-2282 (1998).
  194. Tomasello, F. et al. Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis. Cell Res. 19, 1363-1376 (2009).
  195. Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L. & Coyle, J. T. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547-1558 (1989).
  196. Raemy, E. & Martinou, J. C. Involvement of cardiolipin in tBID-induced activation of BAX during apoptosis. Chem. Phys. Lipids 179, 70-74 (2014).
  197. Himi, T., Ishizaki, Y. & Murota, S. I. 4,4'-diisothiocyano-2 ,2'-stilbenedisulfonate protects cultured cerebellar granule neurons from death. Life Sci. 70, 1235-1249 (2002).
  198. McKernan, D. P., Dinan, T. G. & Cryan, J. F. "Killing the Blues": a role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog. Neurobiol. 88, 246-263 (2009).
  199. Yuan, J., Lipinski, M. & Degterev, A. Diversity in the mechanisms of neuronal cell death. Neuron 40, 401-413 (2003).
  200. Porter, J. et al. Tetrahydroisoquinoline amide substituted phenyl pyrazoles as selective Bcl-2 inhibitors. Bioorg. Med. Chem. Lett. 19, 230-233 (2009).
  201. McPherson, A. Introduction to protein crystallization. Methods 34, 254-265 (2004).
  202. Sasaki, Y. F. et al. The alkaline single cell gel electrophoresis assay with mouse multiple organs: results with 30 aromatic amines evaluated by the IARC and U.S. NTP. Mutat. Res. 440, 1-18 (1999).
  203. Manion, M. K. & Hockenbery, D. M. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol. Ther. 2, S105-S114 (2003).
  204. Darwish, R. S. Regulatory mechanisms of apoptosis in regularly dividing cells. Cell Health and Cytoskeleton 2010,2, 59-68 (2010).
  205. Lutter, M., Perkins, G. A. & Wang, X. The pro-apoptotic Bcl-2 family member tBid localizes to mitochondrial contact sites. BMC. Cell Biol. 2, 22 (2001).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten