Publikationsserver der Universitätsbibliothek Marburg

Titel:Einfluss der spektralen Phasen von Femtosekunden-Laserpulsen auf Ionisation und Dissoziation von Ethan und DCl
Autor:Schirmel, Nora
Weitere Beteiligte: Weitzel, Karl-Michael (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0341
URN: urn:nbn:de:hebis:04-z2014-03417
DOI: https://doi.org/10.17192/z2014.0341
DDC:540 Chemie
Titel (trans.):Spectral phase influences of femtosecond laser pulses on the ionisation and dissociation of ethane and DCl
Publikationsdatum:2014-06-12
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Laserionisation, Ethan, Laser, Deuteriumchlorid, Träger-Einhüllende Phase, Dissoziation, carrier envelope phase, femtochemistry, Ionisation, spectral phase, Femtochemie, spektrale Phase, deuterium chloride, laser ionisation

Zusammenfassung:
Inhalt der vorliegenden Doktorarbeit ist das Verständnis und die Kontrolle von fs-laserpulsinduzierter Ionisation und Dissoziation. Eine zentrale Rolle spielt in diesem Zusammenhang die spektrale Phase des Laserpulses, welche den elektrischen Feldverlauf charakterisiert. Durch die Manipulation der spektrale Phase und damit des Laserfeldes können Ionisations- und Dissoziationsprozesse beeinflusst werden. Zwei prominente Manipulationen sind die der carrier-envelope phase und der lineare chirp. Es wurden die Auswirkungen der CEP auf DCl und die Auswirkungen höherer Terme der spektralen Phase, wie der lineare chirp, auf Ethan und teilweise deuteriertes Ethan (CH3CD3) untersucht. Für die Untersuchung der CEP-Abhängigkeit wurden die entstehenden D+- und Cl+-Ionen sowie die ebenfalls freigesetzten Elektronen massen- und ortsaufgelöst detektiert. Die Winkelverteilung der Fragmentionen ergab dabei, dass diese vorwiegend in einem Winkel von 60° zur Laserpolarisation entstehen. Die CEP spielt eine entscheidende Rolle in der Ionisation, als dass durch sie kontrolliert werden kann, in welcher Orientierung die Moleküle bevorzugt ionisiert werden. Diese Orientierung wird in der Winkelverteilung der Fragmente abgebildet. Der richtungsabhängige Austritt der Fragmentionen aus dem DCl+ ist für die beiden Ionen entgegengesetzt abhängig (um pi verschoben) von der CEP. Diese CEP-Abhängigkeit der Austrittsrichtung ist für die Elektronen deutlich stärker ausgeprägt als für die Fragmentionen. Sie treten bevorzugt parallel zur Laserpolarisation und auf derselben Seite des Moleküls aus, zu der hin sich auch das Cl+ bewegt. Dieses Ergebnis passt gut zu einer Ionisation aus den HOMOs, welches die zweifach entarteten 3p-Orbitale des Cl sind. Die Manipulation der höheren spektralen Phasenterme erfolgte durch einen 4f-Pulsformer. Die entstehenden Ionen wurden mit einem Flugzeitmassenspektrometer detektiert. Zunächst wurde vor allem die H3+-Entstehung aus Ethan einer genaueren Betrachtung unterzogen und durch ein PIPICO-Experiment bestätigt, dass das H3+ aus der Reaktion C2H62+ ? H3+ + C2H3+ stammt. Weiterhin gelang es durch die Anwendung einer quadratischen spektralen Phase die Ausbeuten aller Fragmentionen und des Mutterions des Ethans zu beeinflussen. Vor allem die chirp-Abhängigkeit der Mutterionenausbeute weist darauf hin, dass die Ionisation eine wichtige Rolle bei der Kontrolle der Reaktionen spielt. Insgesamt spielen aber mehrere Effekte eine Rolle. Zum einen steigt die Fragmentierung mit zunehmender Pulsdauer an, was somit vorrangig auf einen Pulsdauereffekt zurückzuführen ist. Zum anderen aber zeichnet sich eine klare Abhängigkeit der Ionisierungseffizienz von dem Vorzeichen des chirp-Parameters alpha ab. Beide Effekte zusammen führen dazu, dass die Ionenausbeute aller Ionen für negative lineare chirps am größten ist. Der chirp-Effekt ist am ausgeprägtesten für kleine Laserintensitäten und wird mit steigender Pulsenergie von einem Intensitätseffekt überlagert. Weiterhin wirkt sich der chirp-Effekt nicht auf alle Ionensorten gleich aus, sodass die quadratische Phase ebenfalls dazu verwendet werden kann, die Verhältnisse von Ionenausbeuten zu steuern. Es wurden zwei unterschiedliche Kontrollmechanismen identifiziert. Demnach ist es durch die Verwendung einer quadratischen Phase ebenso möglich eine intra-charge-state control wie auch eine inter-charge-state control auszuüben. Um kompliziertere Phasen untersuchen zu können beziehungsweise um die spektrale Phase für eine bestimmte Ionenausbeute oder ein Ausbeutenverhältnis zu optimieren, wurde ein genetischer Algorithmus eingeführt. Bei der Optimierung der spektralen Phase zur Erzeugung maximaler Ionenausbeuten einer einzelnen Spezies zeigte sich am Beispiel von H+ und H3+, dass die optimierten spektralen Phasen in der Regel einen hohen negativen linearen chirp-Anteil aufweisen. Dies lässt sich dadurch zeigen, dass die optimierten Pulse durch zusätzliches Aufprägen eines positiven linearen chirp signifikant verkürzt werden können. Auch das Ergebnis der optimierten Laserpulse ist, wie schon bei der systematischen Variation von alpha, von der Laserpulsintensität abhängig. So werden die optimalen Laserpulse mit steigender Intensität kürzer und die Steigerung der Ionenausbeute gegenüber dem 45 fs-Puls geringer. Es zeigt sich also, dass die spektrale Phase eines Femtosekundenlaserpulses und insbesondere ihr quadratischer Anteil in vielfältiger Hinsicht ein starkes Werkzeug für die Manipulation von Ionenausbeuten ist.

Bibliographie / References

  1. Watson, The rate of formation of interstellar molecules by ion-molecule reactions, Astrophys. J. 183, L17-L20 (1973).
  2. Znakovskaya, P. von den Hoff, S. Zherebtsov, A. Wirth, O. Herrwerth, M. J. J. Vrakking, R. de Vivie-Riedle, M. F. Kling, Attosecond Control of Electron Dynamics in Carbon Monoxide, Phys Rev. Lett. 103, 103002-1-4 (2009).
  3. J. Rosker, M. Dantuns, A. H. Zewail, Femtosecond Clocking of the Chemical Bond, Science 241, 1200-1202 (1988).
  4. -C. Diels, W. Rudolph, Ultrashort laser pulse phenomena, Academic Press, San Diego (1995).
  5. M. Weiner, J. P. Heritage, E. M. Kirschner, High-resolution femtosecond pulse shaping, J. Opt. Soc. Am. B 5(8), 1563-1572 (1988).
  6. Oka, Introductory remarks, Phil. Trans. R. Soc. Lond. A 358, 2363-2369 (2000).
  7. H. Zewail, Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers (Nobel Lecture), Angew. Chem. Int. Ed. 39, 2568-2631 (2000).
  8. Brixner, G. Gerber, Quantum Control of Gas-Phase and Liquid-Phase Femtochemistry, Chem. Phys. Chem. 4, 418-438 (2003).
  9. Steinmeyer, Wie misst man kurze Laserpulse? Welche Verfahren gibt es?, Laser Journal LJT 4, 34-39 (2005).
  10. Reichert, R. Holzwarth, Th. Udem, T.W. Hänsch, Measuring the frequency of light with mode-locked lasers, Opt. Commun. 172, 59-68 (1999).
  11. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, Kluwer Academic Publisher, Norwell (2000).
  12. W. D. Ledingham, R. P. Singhal, High intensity laser mass spectrometry -a review, International Journal of Mass Spectrometry and Ion Processes 163, 149-168 (1997).
  13. 80 W. Becker, F. Grasbon, R. Kopold, D. B. Milošević, G. G. Paulus, H. Walther, Above- Threshold Ionization: From Classical Features to Quantum Effests, S. 36-98 in B.
  14. H. Parker, A. T. J. B. Eppink, Velocity map imagin: applications in molecular dynamics and experimental aspects, S. 20-64 in Benjamin Whitaker (Editor), Imaging in Molecular Dynamics -Technology and Applications, Cambridge University Press (2003).
  15. J. Nesbitt, R. W. Field, Vibrational Energy Flow in Highly Excited Molecules: Role of Intramolecular Vibrational Redistribution, J. Phys. Chem. 100, 12735-12756 (1996).
  16. J. Levis, M. J. DeWitt, Photoexcitation, Ionization, and Dissociation of Molecules Using Intense Near-Infrared Radiation of Femtosecond Duration, J. Phys .Chem 103(33), 6493- 6506 (1999).
  17. 27 T. R. Geballe, T. Oka, Detection of H 3 + in interstellar space, Nature 384, 334-335 (1996).
  18. Trebino, Measuring the seemingly immeasurable, Nature Photonics 5, 189-192 (2011).
  19. Lampton, O. Siegmund, R. Raffanti, Delay line anodes for microchannel‐plate spectrometers, Rev. Sci. Instrum. 58(12), 2298-2305 (1987).
  20. Itakura, K. Yamanouchi, T. Tanabe, T. Okamoto, and F. Kannari, Dissociative ionization of ethanol in chirped intense laser fields, J. Chem. Phys. 119(8), 4179-4186 (2003).
  21. M. Kraus, M. C. Schwarzer, N. Schirmel, G. Urbasch, G. Frenking, K.-M. Weitzel, Unusual mechanism for H 3 + formation from ethane as obtained by femtosecond laser pulse ionization and quantum chemical calculations, J. Chem. Phys. 134, 114302-1-6 (2011).
  22. J. Tannor, S. A. Rice, Control of selectivity of chemical reaction via control of wave packet evolution, J. Chem. Phys. 83(10). 5013-5018 (1985).
  23. Kanya, T. Kudou, N. Schirmel, S. Miura, K. Hoshina, K. Yamanouchi, K.-M. Weitzel, Hydrogen scrambling in ethane induced by intense laser fields: Statistical analysis of coincidence events, J. Chem. Phys. 136, 204309-1-9 (2012).
  24. K. Jain, J. P. Heritage, Generation of synchronized CW rains of picosecond pulses at 2 independently tunable wavelength, Appl. Phys. Lett. 32(1), 41-44 (1978).
  25. V. Korolkov, K.-M. Weitzel, Carrier Envelope Phase Effects in Photofragmentation: Orientation Versus Alignment, Optics and Spectroscopy 111(4), 606–617 (2011).
  26. Cohen, D. Lee, V. Chauhan, P. Vaughan, R. Trebino, Highly simplified device for measuring the intensity and phase of picosecond pulses, Optics express 18(16), 17484-17497 (2010).
  27. B. Milošević, G. G. Paulus, W. Becker, High-order above-threshold ionization with few- cycle pulse: a meter of the absolute phase, Optics Express 11(12), 1418-1429 (2003).
  28. Znakovskaya, P. von den Hoff, N. Schirmel, G. Urbasch, S. Zherebtsov, B. Bergues, R. de Vivie-Riedle, K.-M. Weitzel, M. F. Kling, Waveform control of orientation-dependent ionization of DCl in few-cycle laser fields, Phys. Chem. Chem. Phys. 13, 8653-8658 (2011)
  29. von den Hoff, I. Znakovskaya, M.F. Kling, R. de Vivie-Riedle, Attosecond control of the dissociative ionization via electron localization: A comparison between D 2 and CO, Chemical Physics 366, 139–147 (2009).
  30. Chen, T. Wittmann, B. Horvath, C. D. Lin, Complete real-time temporal waveform characterization of single-shot few-cycle laser pulses, Phys. Rev. A 80, 061402-1-4 (2009).
  31. Wittmann, B. Horvath, W. Helml, M. G. Schätzel, X. Gu, A. L. Cavalieri, G. G. Paulus, R. Kienberger, Single-shot carrier–envelope phase measurement of few-cycle laser pulses, Nat. Phys. 5, 357-362 (2009).
  32. Ghafur, W. Siu, P. Johnsson, M. F. Kling, M. Drescher, M. J. J. Vrakking, A velocity map imaging detector with an integrated gas injection system, Rev. Sci. Instrum. 80, 033110‑1‑6 (2009).
  33. G. Muller, M. J. J. Vrakking, Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields, New Journal of Physics 10, 025024-1-17 (2008).
  34. Lezius, M.J.J. Vrakking, Strong-field control of electron localisation during molecular dissociation, Molecular Physics 106(2–4), 455–465 (2008).
  35. -J. Verhoef, A. Fernández, M. Lezius, K. O'Keeffe, M. Uiberacker, F. Krausz, Few-cycle carrier envelope phase-dependent stereo detection of electrons, Opt. Lett. 31(23), 3520-3522 (2006).
  36. F. Kling, C. Siedschlag, A. J. Verhoef, J. I. Khan, M. Schultze, T. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, M. J. J. Vrakking, Control of Electron Localization in Molecular Dissociation, Science 312, 246-248 (2006).
  37. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, F. Krausz, Measurement of the Phase of Few-Cycle Laser Pulses, Phys. Rev. Lett. 91(25), 253004-1-4 (2003).
  38. Kremer, B. Fischer, B. Feuerstein, V. L. B. de Jesus, V. Sharma, C. Hofrichter, A. Rudenko, U. Thumm, C. D. Schröter, R. Moshammer, J. Ullrich, Electron Localization in Molecular Fragmentation of H 2 by Carrier-Envelope Phase Stabilized Laser Pulses, Phys Rev. Lett. 103, 213003-1-4 (2009).
  39. L. Franklin, P. M. Hierl, D. A. Whan, Measurement of the Translational Energy of Ions with a Time-of-Flight Mass Spectrometer, J Chem Phys. 47(9), 3148-3153 (1967).
  40. E. Anderson, A. Monmayrant, S.-P. Gorza, P. Wasylczyk, I. A. Walmsley, SPIDER: A decade of measuring ultrashort pulses, Laser Phys. Lett. 5(4), 259-266 (2008).
  41. Okino, Y. Furukawa, P. Liu, T. Ichikawa, R. Itakura, K. Hoshina, K. Yamanouchi, H. Nakano, Ejection dynamics of hydrogen molecular ions from methanol in intense laser fields, J. Phys. B: At. Mol. Opt. Phys. 39, S515–S521 (2006).
  42. B. Milošević, G. G. Paulus, D. Bauer, W. Becker, Above-threshold ionization by few- cycle pulses, J. Phys. B: At. Mol. Opt. Phys. 39, R203-R262 (2006).
  43. Bederson, H. Walther (Editoren) Advances in atomar, molecular an optical Physics 48, Academic Press, San Diego (2002).
  44. Verluise, V. Laude, J.-. Huignard, P. Tournois, A. Migus, Arbitrary dispersion control of ultrashort optical pulses with acoustic waves, J. Opt. Soc. Am. B 17(1), 138-145 (2000).
  45. Atkins, J. de Paula, Atkins' Physical Chemistry 7th edition, Oxford University Press, New York (2002).
  46. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, Carrier- envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation, Appl. Phys. B 69, 327-332 (1999).
  47. 101 J. Rauschenberger, T. Fuji, M. Hantschel, A.-J. Verhoef, T. Udem, C. Gohle, T. W. Hänsch, F. Krausz, Carrier-envelope phase stabilized amplifer system, Laser Phys. Lett. 3(1), 37-42 (2006).
  48. Horsch, Chiralitätsanalyse mittels Femtosekunden Laserionisation Massenspektrometrie, Dissertation, Philipps-Universität Marburg (2013).
  49. V. Lozovoy, X. Zhu, T. C. Gunaratne, D. A. Harris, J. C. Shane, M. Dantus, Control of Molecular Fragmentation Using Shaped Femtosecond Pulses, J. Phys. Chem. A 112(17), 3789-3812 (2008).
  50. P. Brumer, M. Shapiro, Control of Unimolecular Reactions Using Coherent Light, Chem. Phys. Lett 126(6), 541-546 (1986).
  51. A. Mokhtari, P. Cong, J. L. Herek, A. H. Zewail, Direct femtosecond mapping of trajectories in a chemical bond, Nature 348, 225-227 (1990).
  52. Baumert, T. Brixner, V. Seyfried, M. Strehle, G. Gerber, Femtosecond pulse shaping by an evolutionary algorithm with feedback, Appl. Phys. B 65, 779-782 (1997).
  53. M. Weiner, Femtosecond pulse shaping using spatial light modulators, Rev. Sci. Instrum. 71(5), 1929-1960 (2000).
  54. Schirmel, N. Reusch, P. Horsch and K.-M. Weitzel, Formation of fragment ions (H + , H 3 + , CH 3 + ) from ethane in intense femtosecond laser fields–from understanding to control, Faraday Discuss. 163, 461–474 (2013).
  55. P. Agostini, F. Fabre, G. Mainfray, G. Petite, N. K. Rahman, Free-Free Transi-tions Following Six-Photon Ionization of Xenon Atoms, Phys. Rev. Lett. 42(17), 1127–1130 (1979).
  56. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, Generation of ultrahigh peak power pulses by chirped pulse amplification, IEEE J. Quantum Electron. QE-24.398-403 (1988).
  57. E. Goldberg, Genetic algorithms in Search, Optimization, and Machine Learning Addison-Wesley, Reading UK (1993).
  58. E. Christoffersen, S. Hagstrom, F. Prosser, H 3 + ion. Its structure and Energy. J. Chem.
  59. Schirmel, Interferometrische Studien zur dissoziven Femtosekunden-Laserionisation von Molekülen mit Methylgruppen, Diplomarbeit, Philipps-Universität Marburg (2009).
  60. Keldysh, Ionization in the field of a strong electromagnetic wave, Sov. Phys. JETP 20, 1307–1314 (1965).
  61. Güthe, R. Locht, B. Leyh, H. Baumgärtel, K.-M. Weizel, Kinetic Energy Release Distribution in the Dissociation of Energy-Selected Fluoroethene and 1,1-Difluoroethene Ions, J. Chem. Phys. A 103, 8404-8412 (1999).
  62. H. Gross, Mass Spectrometry A Textbook 2nd Edition, Springer Verlag, Berlin Heidelberg (2011).
  63. 99 A. I. Chichinin, T. S. Einfeld, K.-H. Gericke, C. Maul, 3-D Imaging technique - observation of the three-dimensional product momentum distribution, S.138-164 in Benjamin Whitaker (Editor), Imaging in Molecular Dynamics -Technology and Applications, Cambridge University Press (2003).
  64. N. R. Ashfold, J. D. Howe, Multiphoton Spectroscopy of Molecular Species, Annual Review of Physical Chemistry 45, 57–82 (1994).
  65. P. Agrawal, Nonlinear Fiber Optics 2nd edition, Academic Press, San Diego (1995).
  66. B. Corkum, Plasma Perspective on Strong-Field Multiphoton Ionization, Phys. Rev. Lett. 71(13), 1994-1997 (1993).
  67. G. Paulus W. Nicklich, H. Xu, P. Lambropoulos, H. Walter, Plateau in Above Threshold Ionization Spectra, Phys Rev Lett 72(18), 2851-2854 (1994).
  68. Conroy, Potential Energy surface for the H 3 + molecule-ion, J. Chem. Phys. 40, 603-604 (1964).
  69. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator, Opt. Lett. 15, 326-328 (1990).
  70. J. Thomson, Rays of Positive Electricity, Phil. Mag. 21(122), 225-249 (1911).
  71. H. Bucksbaum, A. Zavriyev, H. G. Muller, D. W. Schumacher, Softening of the H 2 + Molecular Bond in Intense Laser Field, Phys. Rev. Lett. 64(16), 1883-1886 (1990).
  72. Iaconis, I. A. Walmsley, Spectral phase interferometry for direct electric-field reconstruction of ultra short optical pulses, Opt. Lett 23(10), 792-794 (1998).
  73. Träger (Editor), Springer Handbook of Lasers and Optics, Springer-Verlag, Berlin/Heidelberg (2012).
  74. A. Coulson, The electronic structure of H 3 + , Proc. Camb. Phil. Soc. 31, 244-259 (1935).
  75. Herbst, W. Klemperer, The formation and depletivo of molecole in dense interstellar clouds, Astrophys. J. 185, 505-533 (1973).
  76. C. Wiley, I. H. McLaren, Time-of-Flight Mass Spectrometer with Improved Resolution, Rev. of Scientific Instruments 26(12), 1150-1157 (1955).
  77. S. Popov, Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory), Physics -Uspekhi 47(9), 855-885 (2004).
  78. B. Delone, V. P. Krainov, Tunneling and barrier-suppression ionization of atoms and ions in a laser radiation field, Physics -Uspekhi 41(5), 469-485 (1998).
  79. Corkum, Laser Tunnel Ionization from Multiple Orbitals in HCl, Science 325, 1364-1367 (2009).
  80. 30 J. H. D. Eland, The Origin of Primary H 3 + Ions in Mass Spectra, Rapid Commun. Mass Spectrom. 10, 1560-1562 (1996).
  81. 13 G. Urbasch, H. G.Breunig, K.-M. Weitzel, Distinction of ortho-and para-Xylene by Femtosecond-Laser Mass Spectrometry, ChemPhysChem 8, 2185-2188 (2007).
  82. Moon,H. Wang, S. Gilbertson, H. Mashiko, M. Chini, Z. Chang, Advances in carrier- envelope phase stabilization of grating-based chirped-pulse amplifiers, Laser & Photon. Rev., 1–18 (2009).
  83. Koch, G. Frenking, J. Gauss, D. Cremer, Donor-Acceptor Interaction and the Peculiar Structures of Dications, J. Am. Chem. Soc. 108(19), 5809-5817 (1986).
  84. Mathur, F. A. Rajgara, Dissociative ionization of methane by chirped pulses of intense laser light, J. Chem. Phys. 120(12), 5616-5623 (2004).
  85. P. Heritage, R. K. Jain, Subpicosecond pulses from a tunable CW mode-locked dye-laser, Appl. Phys. Lett. 32(2), 101-103 (1978).
  86. Hoshina, Y. Furukawa, T. Okino, K. Yamanouchi, Efficient ejection of H 3 + from hydrocarbon molecules induced by ultrashort intense laser fields, J. Chem. Phys. 129, 104302-1-6 (2008).
  87. Kaziannis, I. Liontos, G. Karras, C. Corsi, M. Bellini, C. Kosmidis, The ejection of triatomic molecular hydrogen ions H 3 + produced by the interaction of benzene molecules with ultrafast laser pulses, J. Chem. Phys. 131, 144308-1-9 (2009).
  88. J. R .Heck, D. W. Chandler, Imaging techniques for the study of chemical reaction dynamics, Annu. Rev. Phys. Chem. 46, 335-372, (1995).
  89. J. Thomson, Further Experiments on Positive Rays, Phil. Mag. 24(140), 209-253 (1912).
  90. E. Spence, P. N. Kean, and W. Sibbett, 60-fsec pulse generation from a self-mode- locked Ti:sapphire laser, Opt. Lett. 16(1), 42-44 (1991).
  91. Furukawa, K. Hoshina, K. Yamanouchi, H. Nakano, Ejection of triatomic hydrogen molecular ion from methanol in intense laser fields, Chemical Physics Letters 414, 117–121 (2005).
  92. Tournois, Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems, Optics Communications 140, 245-249 (1997).
  93. V. Korolkov, K.-M. Weitzel, Laser pulse control of photofragmentation in DCl + : The effect of carrier envelope phase, Chemical Physics 338, 277–284 (2007).
  94. M. Weiner, Ultrafast Optics, John Wiley & Sons, Hoboken New Jersey (2009).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten