Publikationsserver der Universitätsbibliothek Marburg

Titel:Structural and functional analysis of SynCph2(1-2), a non-canonical phytochrome from Synechocystis sp. PCC 6803
Autor:Anders, Katrin
Weitere Beteiligte: Essen, Lars-Oliver (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0239
URN: urn:nbn:de:hebis:04-z2014-02398
DOI: https://doi.org/10.17192/z2014.0239
DDC:540 Chemie
Titel (trans.):Strukturelle und funktionelle Analyse von SynCph2(1-2), einem nicht-kanonischen Phytochrom aus Synechocystis sp. PCC 6803
Publikationsdatum:2014-05-13
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
phytochrome, Phytochrom, Cph2, Synechocystis, Photorezeptor, photoreceptor, Cph2, Synechocystis

Summary:
Phytochrome sind Bilin-bindende Photorezeptoren, die zwischen einer Rotlicht- (Pr) und einer Dunkelrotlicht-absorbierenden Form (Pfr) photokonvertieren können. SynCph2 aus Synechocystis sp. PCC 6803 weist einen GAF1-GAF2-GGDEF1*-EAL-GAF3-GGDEF2 Domänenaufbau auf, was darauf hindeutet, dass es sich um ein Hybrid aus einem GAF-GAF-Bidomänen-Phytochrom und einem Cyanobakteriochrom (GAF3) handelt. Diese Arbeit enthält eine detaillierte Analyse des N-terminalen GAF1-GAF2 Moduls. SynCph2(1-2) weist eine rot/dunkelrote Photochemie auf; somit ist die GAF2 Domäne in der Lage, die kanonische PHY Domäne zu ersetzen. Der Chromophor PCB ist kovalent an Cys-129 in der GAF1 Domäne gebunden. In Kooperation mit der Gruppe von P. Hildebrandt konnten wir zeigen, dass alle vier Pyrrolstickstoffe sowohl in Pr (ZZZssa) als auch in Pfr (ZZEssa) protoniert sind. In der Fern-UV CD Spektroskopie konnte ein 3%iger Anstieg des α-Helix Gehaltes in der Pr → Pfr Phototransformation festgestellt werden. Desweiteren erhöht sich in Pfr der hydrodynamische Durchmesser von SynCph2(1-2). Die Kristallstruktur von SynCph2(1-2) in der Pr Konformation konnte bei einer Auflösung von 2,6 Å gelöst werden. Das Protein kristallisiert als antiparalleles Dimer, wobei die GAF1 und GAF2 Domänen durch einen α-helikalen Linker verbunden sind. Die GAF2 Domäne ahmt den strukturellen Aufbau der kanonischen PHY Domäne nach, indem sie mit einem Zungen-ähnlichen Vorsprung die Chromophorbindungstasche in GAF2 abdeckt. Der Chromophor PCB in seiner ZZZssa Konformation ist nicht planar, sondern zeigt eine Verkippung der B-/C- sowie der C-/D-Ringe gegeneinander. Basierend auf der Kristallstruktur führten wir eine Mutagenesestudie durch, die die D-Ringumgebung und Propionatinteraktionen des Chromophors sowie die Zungenregion umfasste. Dabei unterscheiden sich die B-Ringpropionatinteraktionen von kanonischen Phytochromen und scheinen vom Typ der Effektordomäne abzuhängen. Die Analyse konservierter Motive in der Zungenregion führte zu einem Modell, das die strukturellen Änderungen während der Photokonversion beschreibt. Dabei wird die Zungenregion durch einen Trp-Positionstausch in den W(G/A)G und WxE Motiven verdreht, die als Anker die Pfr Struktur stabilisieren. Desweiteren bricht die Asp-Arg Salzbrücke, das PRxSF Motiv wird reorientiert und wahrscheinlich α-helikal, wodurch sich die neue Asp-Ser Interaktion ausbilden kann. Eine nähere Untersuchung des Photozyklus’ von SynCph2(1-2) ergab vier Intermediate in der Pr → Pfr und drei in der Pfr → Pr Photokonversion. Trotz ihrer Distanz von ~13 Å und ~15 Å zum D-Ring des Chromophors, beeinflussen Ser-385 aus dem PRxSF und Trp-389 aus dem WxE Motiv die Bildung des Pfr Zustandes. Die S385A Mutation wirkt sich auf das letzte Intermediat der Pr → Pfr Photokonversion und das erste der Rückreaktion aus. Die W389A Mutation beeinflusst schon das dritte Intermediat, das direkt in einen degenerierten Rotlicht-adaptierten Zustand zerfällt. Die drei PDeg → Pr Intermediate unterscheiden sich alle von SynCph2(1-2). Ein Austausch von Trp-389 mit Phenylalanin stellt das Wildtyp-ähnliche Verhalten wieder her. Wir schlussfolgern, dass in den ersten zwei Intermediaten nur der Chromophor und seine nächste Umgebung von Veränderungen betroffen sind. Während der Bildung von Intermediat R2 treten die strukturellen Änderungen in der Zungenregion auf, die den oben postulierten Tryptophanwechsel beinhalten. Die Bildung des letzten Intermediates leitet die Reorientierung von Ser-385 und die Ausbildung des Wasserstoffbrückennetzwerkes ein, das das Aspartat der GAF1 Domäne sowie Ser-385 einschließt. Im Rahmen einer Arbeit, die mit P. Savakis, S. De Causmaecker und V. Angerer in Kooperation mit der Gruppe von A. Wilde ausgeführt wurde, konnten wir die Rolle des C-terminalen GAF3-GGDEF2 Moduls beleuchten. SynCph2(5-6) photokonvertiert zwischen einer Blau- (Pb) und Grünlicht-absorbierenden (Pg) Form. PCB ist kovalent an Cys-1022 und Cys-994 gebunden und wird zu PVB autoisomerisiert. Das Modul ist in der Lage, lichtabhängig c-di-GMP in der GGDEF2 Domäne herzustellen, wobei der Signalzustand Pg auch in in vivo Studien in Synechocystis sp. bestätigt wurde. Unter Blaulichtbedingungen führt die c-di-GMP Herstellung von SynCph2(5-6) zu einer Inhibierung der Phototaxis. Durch Koproduktion von SynCph2(5-6) und SynCph2(1-4) konnte der Wildtypphenotyp unter Weisslicht wiederhergestellt werden, was zeigt, dass SynCph2(1-4) eine enzymatische Aktivität aufweist, die durch die c-di-GMP-abbauende EAL Domäne verursacht wird. Die hier dargelegten Studien von SynCph2 zeigen das Zusammenspiel von photochemischen und strukturellen Eigenschaften in den Pr / Pfr und Pb / Pg interkonvertierenden Modulen sowie ihre Bedeutung in vivo. Zukünftige Studien profitieren von den Einblicken in die Signaltransduktion in Phytochromen und insbesondere von der Trp-Schalterhypothese.

Bibliographie / References

  1. Alvey, R. M., Biswas, A., Schluchter, W. M., and Bryant, D. A. (2011) Effects of modified phycobilin biosynthesis in the cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 193, 1663–1671.
  2. Baker, N. A., Sept, D., Joseph, S., Holst, M. J., and McCammon, J. A. (2001) Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. 98, 10037–10041.
  3. Dow, J. M., Fouhy, Y., Lucey, J. F., and Ryan, R. P. (2006) The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol. Plant Microbe In. 19, 1378–1384.
  4. Jones, D. T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202.
  5. Schroeder, C., Werner, K., Otten, H., Krätzig, S., Schwalbe, H., and Essen, L. O. (2008) Influence of a joining helix on the BLUF domain of the YcgF photoreceptor from Escherichia coli. ChemBioChem 9, 2463–2473.
  6. Tan, L. T. (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68, 954–979.
  7. Göller, A. H., Strehlow, D., and Hermann, G. (2005) The excited-state chemistry of phycocyanobilin: a semiempirical study. Chem. Phys. Chem. 6, 1259–1268.
  8. Vernotte, C., Picaud, M., Kirilovsky, D., Olive, J., Ajlani, G., and Astier, C. (1992) Changes in the photosynthetic apparatus in the cyanobacterium Synechocystis sp. PCC 6714 following light-to-dark and dark-to-light transitions. Photosynth. Res. 32, 45–57.
  9. Sharda, S., Shah, R., and Gärtner, W. (2007) Domain interaction in cyanobacterial phytochromes as a prerequisite for spectral integrity. Eur. Biophys. J. 36, 815–821.
  10. Purschwitz, J., Müller, S., and Fischer, R. (2009) Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. Mol. Genet. Genomics 281, 35–42.
  11. Olson, J. M. (2006) Photosynthesis in the archean era. Photosynth. Res. 88, 109–117.
  12. Sineshchekov, V. A. (1995) Photobiophysics and photobiochemistry of the heteroge- neous phytochrome system. Biochim. Biophys. Acta 1228, 125–164.
  13. Neuhaus, G., Bowler, C., Kern, R., and Chua, N.-H. (1993) Calcium/calmodulin- dependent and -independent phytochrome signal transduction pathways. Cell 73, 937–952.
  14. Lamparter, T. (2004) Evolution of cyanobacterial and plant phytochromes. FEBS Lett. 573, 1–5.
  15. Moon, Y.-J., Kim, S. Y., Jung, K.-H., Choi, J.-S., Park, Y. M., and Chung, Y.-H. (2011) Cyanobacterial phytochrome Cph2 is a negative regulator in phototaxis toward UV-A. FEBS Lett. 585, 335–340.
  16. Narikawa, R., Fukushima, Y., Ishizuka, T., Itoh, S., and Ikeuchi, M. (2008) A novel photoactive GAF domain of cyanobacteriochrome AnPixJ that shows reversible green/red photoconversion. J. Mol. Biol. 380, 844–855.
  17. Kreslavski, V. D., Carpentier, R., Klimov, V. V., and Allakhverdiev, S. I. (2009) Transduction mechanisms of photoreceptor signals in plant cells. J. Photochem. Photobiol. C: Photochem. Rev. 10, 63–80.
  18. Purcell, E. B., and Crosson, S. (2008) Photoregulation in prokaryotes. Curr. Opin. Microbiol. 11, 168–178.
  19. Bellini, D., and Papiz, M. Z. (2012) Structure of a bacteriophytochrome and light- stimulated protomer swapping with a gene repressor. Structure 20, 1436–46.
  20. Mroginski, M. A., Murgida, D. H., and Hildebrandt, P. (2007) The chromophore structural changes during the photocycle of phytochrome: a combined resonance raman and quantum chemical approach. Acc. Chem. Res. 40, 258–266.
  21. Kelly, J. M., and Lagarias, J. C. (1985) Photochemistry of 124-kilodalton Avena phytochrome under constant illumination in vitro. Biochemistry 24, 6003–6010.
  22. Harper, S. M., Christie, J. M., and Gardner, K. H. (2004) Disruption of the LOV- Jalpha helix interaction activates phototropin kinase activity. Biochemistry 43, 16184– 16192.
  23. Ishizuka, T., Kamiya, A., Suzuki, H., Narikawa, R., Noguchi, T., Kohchi, T., Ino- mata, K., and Ikeuchi, M. (2011) The cyanobacteriochrome, TePixJ, isomerizes its own chromophore by converting phycocyanobilin to phycoviolobilin. Biochemistry 50, 953–961.
  24. Rockwell, N. C., Martin, S. S., Gulevich, A. G., and Lagarias, J. C. (2012) Phycovio- lobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Biochemistry 51, 1449–1463.
  25. Enomoto, G., Hirose, Y., Narikawa, R., and Ikeuchi, M. (2012) Thiol-based photocycle of the blue and teal light-sensing cyanobacteriochrome Tlr1999. Biochemistry 51, 3050–3058.
  26. Rockwell, N. C., Martin, S. S., and Lagarias, J. C. (2012) Red/green cyanobacteri- ochromes: sensors of color and power. Biochemistry 51, 9667–9677.
  27. Margulies, L., and Stockburger, M. (1979) Spectroscopic studies on model compounds of the phytochrome chromophore. Protonation and deprotonation of biliverdin dime- thyl ester. J. Am. Chem. Soc. 101, 743–744.
  28. Rohmer, T., Lang, C., Bongards, C., Gupta, K. B. S. S., Neugebauer, J., Hughes, J., Gärtner, W., and Matysik, J. (2010) Phytochrome as molecular machine: revealing chromophore action during the Pfr –> Pr photoconversion by magic-angle spinning NMR spectroscopy. J. Am. Chem. Soc. 132, 4431–4437.
  29. Kopp, G., and Lean, J. L. (2011) A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 38, 1–7.
  30. Hughes, J., Lamparter, T., Mittmann, F., Hartmann, E., Gärtner, W., Wilde, A., and Börner, T. (1997) A prokaryotic phytochrome. Nature 386, 663.
  31. Ulijasz, A. T., Cornilescu, G., Cornilescu, C. C., Zhang, J., Rivera, M., Markley, J. L., and Vierstra, R. D. (2010) Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature 463, 250–254.
  32. Bahn, Y. S., Xue, C., A., I., Rutherford, J. C., Heitman, J., and Cardenas, M. E. (2007) Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 1, 57–69.
  33. Narikawa, R., Kohchi, T., and Ikeuchi, M. (2008) Characterization of the photoac- tive GAF domain of the CikA homolog (SyCikA, Slr1969) of the cyanobacterium Synechocystis sp. PCC 6803. Photochem. Photobiol. Sci. 7, 1253–1259.
  34. Hughes, J. (2010) Phytochrome three-dimensional structures and functions. Biochem. Soc. Trans. 38, 710–716.
  35. Wilde, A., Fiedler, B., and Börner, T. (2002) The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light. Mol. Microbiol. 44, 981–988.
  36. Quail, P. H. (1997) An emerging molecular map of the phytochromes. Plant Cell Environ. 20, 657–665.
  37. Lamparter, T., Esteban, B., and Hughes, J. (2001) Phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803. FEBS J. 268, 4720–4730.
  38. Pandit, J., Forman, M. D., Fennell, K. F., Dillman, K. S., and Menniti, F. S. (2009) Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X- ray structure of a near full-length construct. Proc. Natl. Acad. Sci. 106, 18225–18230.
  39. Hirose, Y., Narikawa, R., Katayama, M., and Ikeuchi, M. (2010) Cyanobacteriochro- 8 References me CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter. Proc. Natl. Acad. Sci. 107, 8854–8859.
  40. Song, C., Psakis, G., Lang, C., Mailliet, J., Gärtner, W., Hughes, J., and Matysik, J. (2011) Two ground state isoforms and a chromophore D-ring photoflip triggering 8 References extensive intramolecular changes in a canonical phytochrome. Proc. Natl. Acad. Sci.
  41. Wu, S.-H., McDowell, M. T., and Lagarias, J. C. (1997) Phycocyanobilin is the natural precursor of the phytochrome chromophore in the green alga Mesotaenium caldariorum. J. Biol. Chem. 272, 25700–25705.
  42. Auldridge, M. E., Satyshur, K. A., Anstrom, D. M., and Forest, K. T. (2012) Structure- guided engineering enhances a phytochrome-based infrared fluorescent protein. J. Biol. Chem. 287, 7000–7009.
  43. Giraud, E., Zappa, S., Vuillet, L., Adriano, J.-M., Hannibal, L., Fardoux, J., Bert- homieu, C., Bouyer, P., Pignol, D., and Verméglio, A. (2005) A new type of bacte- riophytochrome acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in Rhodopseudomonas palustris. J. Biol. Chem. 280, 32389–32397.
  44. Von Stetten, D., Seibeck, S., Michael, N., Scheerer, P., Mroginski, M. A., Murgi- da, D. H., Krauss, N., Heyn, M. P., Hildebrandt, P., Borucki, B., and Lamparter, T. (2007) Highly conserved residues Asp-197 and His-250 in Agp1 phytochrome con- trol the proton affinity of the chromophore and Pfr formation. J. Biol. Chem. 282, 2116–2123.
  45. Jaubert, M., Lavergne, J., Fardoux, J., Hannibal, L., Vuillet, L., Adriano, J.-M., Bouyer, P., Pignol, D., Giraud, E., and Verméglio, A. (2007) A singular bacteriophy- tochrome acquired by lateral gene transfer. J. Biol. Chem. 282, 7320–7328.
  46. Wagner, J. R., Zhang, J., Brunzelle, J. S., Vierstra, R. D., and Forest, K. T. (2007) High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J. Biol. Chem. 282, 12298–12309.
  47. Ohmori, M. et al. (2001) Characterization of genes encoding multi-domain proteins in the genome of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 8, 271–284.
  48. Hu, W., Su, Y.-S., and Lagarias, J. C. (2009) A light-independent allele of phyto- chrome B faithfully recapitulates photomorphogenic transcriptional networks. Mol. Plant 2, 166–182.
  49. Yoshihara, S., Suzuki, F., Fujita, H., Geng, X. X., and Ikeuchi, M. (2000) Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 41, 1299–1304.
  50. Yoshihara, S., Katayama, M., Geng, X., and Ikeuchi, M. (2004) Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue-and green-absorbing forms. Plant Cell Physiol. 45, 1729–1737.
  51. Ishizuka, T., Narikawa, R., Kohchi, T., Katayama, M., and Ikeuchi, M. (2007) Cya- nobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore. Plant Cell Physiol. 48, 1385–1390.
  52. Zhang, J., Stankey, R. J., and Vierstra, R. D. (2013) Structure-guided engineering of plant phytochrome B with altered photochemistry and light signaling. Plant Physiol. 161, 1445–1457.
  53. Savakis, P., De Causmaecker, S., Angerer, V., Ruppert, U., Anders, K., Essen, L.-O., and Wilde, A. (2012) Light-induced alteration of c-di-GMP level controls motility of Synechocystis sp. PCC 6803. Mol. Microbiol. 85, 239–251.
  54. Hahn, J., Strauss, H. M., Landgraf, F. T., Gimenez, H. F., Lochnit, G., Schmieder, P., and Hughes, J. (2006) Probing protein-chromophore interactions in Cph1 phytochrome by mutagenesis. FEBS J. 273, 1415–1429.
  55. Quest, B., Hübschmann, T., Sharda, S., Tandeau de Marsac, N., and Gärtner, W. (2007) Homologous expression of a bacterial phytochrome. FEBS J. 274, 2088–2098.
  56. Chen, Y., Zhang, J., Luo, J., Tu, J.-M., Zeng, X.-L., Xie, J., Zhou, M., Zhao, J.-Q., Scheer, H., and Zhao, K.-H. (2012) Photophysical diversity of two novel cyanobacte- riochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics. FEBS J. 279, 40–54.
  57. Okamoto, S., Kasahara, M., Kamlya, A., Nakahira, Y., and Ohmori, M. (2004) A phytochrome-like protein AphC triggers the cAMP signaling induced by far-red light in the cyanobacterium Anabaena sp. strain PCC7120. Photochem. Photobiol. 80, 429–433.
  58. Anders, K., von Stetten, D., Mailliet, J., Kiontke, S., Sineshchekov, V. A., Hilde- brandt, P., Hughes, J., and Essen, L.-O. (2011) Spectroscopic and photochemical characterization of the red-light sensitive photosensory module of Cph2 from Syn- echocystis PCC 6803. Photochem. Photobiol. 87, 160–173.
  59. Song, C., Rohmer, T., Tiersch, M., Zaamen, J., Hughes, J., and Matysik, J. (2013) Solid-state NMR spectroscopy to probe photoactivation in canonical phytochromes. Photochem. Photobiol. 89, 259–273.
  60. Jiang, Z., Swem, L. R., Rushing, B. G., Devanathan, S., Tollin, G., and Bauer, C. E. (1999) Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science 285, 406–409.
  61. Casal, J. J. (2013) Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 64, 403–427.
  62. Kehoe, D. M., and Gutu, A. (2006) Responding to color: the regulation of comple- mentary chromatic adaptation. Annu. Rev. Plant Biol. 57, 127–150.
  63. Fiedler, B., Börner, T., and Wilde, A. (2005) Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: role of different photoreceptors. Photochem. Photobiol. 81, 1481–1488.
  64. Fiedler, B., Broc, D., Schubert, H., Rediger, A., Börner, T., and Wilde, A. (2004) Involvement of cyanobacterial phytochromes in growth under different light qualities and quantities. Photochem. Photobiol. 79, 551–555.
  65. Schirmer, T., and Jenal, U. (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat. Rev. Microbiol. 7, 724–735.
  66. Christen, B., Christen, M., Paul, R., Schmid, F., Folcher, M., Jenoe, P., Meuwly, M., and Jenal, U. (2006) Allosteric control of cyclic di-GMP signaling. J. Biol. Chem. 281, 32015–32024.
  67. Mailliet, J., Psakis, G., Feilke, K., Sineshchekov, V., Essen, L. O., and Hughes, J. (2011) Spectroscopy and a high-resolution crystal structure of Tyr263 mutants of cyanobacterial phytochrome Cph1. J. Mol. Biol. 413, 115–127.
  68. Psakis, G., Mailliet, J., Lang, C., Teufel, L., Essen, L.-O., and Hughes, J. (2011) Signaling kinetics of cyanobacterial phytochrome Cph1, a light regulated histidine kinase. Biochemistry 50, 6178–6188.
  69. Tews, I., Findeisen, F., Sinning, I., Schultz, A., Schultz, J. E., and Linder, J. U. (2005) The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308, 1020–1023.
  70. Marshall, J., Cronin, T. W., and Kleinlogel, S. (2007) Stomatopod eye structure and function: a review. Arth. Struct. & Dev. 36, 420 – 448.
  71. Veitia, R. (2002) Rosetta Stone proteins: "chance and necessity"? Genome Biol. 3, 1001.1–1001.3.
  72. Bae, G., and Choi, G. (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu. Rev. Plant Biol. 59, 281–311.
  73. Schultz, J. E., and Natarajan, J. (2013) Regulated unfolding: a basic principle of intraprotein signaling in modular proteins. Trends Biochem. Sci. 38, 538–545.
  74. Ferris, H. U., Dunin-Horkawicz, S., Hornig, N., Hulko, M., Martin, J., Schultz, J. E., Zeth, K., Lupas, A. N., and Coles, M. (2012) Mechanism of regulation of receptor histidine kinases. Structure 20, 56–66.
  75. Quest, B., and Gärtner, W. (2004) Chromophore selectivity in bacterial phytochromes. Eur. J. Biochem. 271, 1117–1126.
  76. Jorissen, H., Quest, B., Remberg, A., Coursin, T., Braslavsky, S. E., Schaffner, K., Tandeau de Marsac, N., and Gärtner, W. (2002) Two independent, light-sensing two-component systems in a filamentous cyanobacterium. Eur. J. Biochem. 269, 2662–2671.
  77. Casal, J. J., Davis, S. J., Kirchenbauer, D., Viczian, A., Yanovsky, M. J., Clough, R. C., Kircher, S., Jordan-Beebe, E. T., Schäfer, E., Nagy, F., and Vierstra, R. D. (2002) The serine-rich N-terminal domain of oat phytochrome A helps regulate light responses and subnuclear localization of the photoreceptor. Plant Physiol. 129, 1127–1137.
  78. Barends, T. R. M., Hartmann, E., Griese, J. J., Beitlich, T., Kirienko, N. V., Ryjen- kov, D. A., Reinstein, J., Shoeman, R. L., Gomelsky, M., and Schlichting, I. (2009) Structure and mechanism of a bacterial light-regulated cyclic nucleotide phospho- diesterase. Nature 459, 1015–1018.
  79. Giraud, E., and Verméglio, A. (2008) Bacteriophytochromes in anoxygenic photosyn- thetic bacteria. Photosynth. Res. 97, 141–153.
  80. Filonov, G., and Verkhusha, V. (2013) A near-infrared BiFC reporter for in vivo imaging of protein-protein interactions. Chem. Biol. 20, 1078–1086.
  81. Tarutina, M., Ryjenkov, D. A., and Gomelsky, M. (2006) An unorthodox bacteriophy- tochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. J. Biol. Chem. 281, 34751–34758.
  82. Burgie, E. S., Walker, J. M., Philipps, G. N. J., and Vierstra, R. D. (2013) A photo- labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Structure 21, 88–97.
  83. Chai, Y. G., Song, P. S., Cordonnier, M. M., and Pratt, L. H. (1987) A photoreversible circular dichroism spectral change in oat phytochrome is suppressed by a mono- clonal antibody that binds near its N-terminus and by chromophore modification. Biochemistry 26, 4947–4952.
  84. Jaedicke, K., Lichtenthäler, A. L., Meyberg, R., Zeidler, M., and Hughes, J. (2012) A phytochrome -phototropin light signaling complex at the plasma membrane. Proc. Natl. Acad. Sci. 109, 12231–12236.
  85. Ma, Q., Hua, H.-H., Chen, Y., Liu, B.-B., Krämer, A. L., Scheer, H., Zhao, K.-H., and Zhou, M. (2012) A rising tide of blue-absorbing biliprotein photoreceptors - characterization of seven such bilin-binding GAF domains in Nostoc sp. PCC7120.
  86. Park, C. M., Kim, J. I., Yang, S. S., Kang, J. G., Kang, J. H., Shim, J. Y., Chung, Y. H., Park, Y. M., and Song, P. S. (2000) A second photochromic bacteriophytochrome from Synechocystis sp. PCC 6803: spectral analysis and down-regulation by light. Biochemistry 39, 10840–10847.
  87. Scott, J. W., Hawley, S. A., Green, K. A., Anis, M., Stewart, G., Scullion, G. A., Norman, D. G., and Hardie, D. G. (2004) CBS domains form energy-sensing modules 8 References whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113, 274–284.
  88. Römling, U., Gomelsky, M., and Galperin, M. Y. (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol. 57, 629–639.
  89. Song, P.-S., C., Park, M. H., and Furuya, M. (1997) Chromophore: apoprotein interactions in phytochrome A. Plant Cell Environ. 20, 707–712.
  90. Dixit, R., and Suseela, M. (2013) Cyanobacteria: potential candidates for drug discovery. A. van Leeuw. J. Microb. 103, 947–961.
  91. Wu, S. H., and Lagarias, J. C. (2000) Defining the bilin lyase domain: lessons from the extended phytochrome superfamily. Biochemistry 39, 13487–13495.
  92. Butler, W. L., Norris, K. H., Siegelman, H. W., and Hendricks, S. B. (1959) Detecti- on, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc. Natl. Acad. Sci. U.S.A. 45, 1703–1708.
  93. [197] Gu, Z., Zhao, M., Sheng, Y., Bentolila, L. A., and Tang, Y. (2011) Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal.
  94. Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B., Lavery, L. A., Levy, M., Davidson, E. A., Scouras, A., Ellington, A. D., Marcotte, E. M., and Voigt, C. A. (2005) Engineering Escherichia coli to see light. Nature 438, 441–442.
  95. Christen, M., Christen, B., Folcher, M., Schauerte, A., and Jenal, U. (2005) Identifi- cation and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem. 280, 30829–30837.
  96. Wada, M., and Skimazaki, K. In Light sensing in plants; Iino, M., Ed.; The Botanical Society of Japan, Springer-Verlag, 2005.
  97. Gärtner, W., and Braslavski, S. E. In Photoreceptors and light signaling; Batschau- er, A., Ed.; Royal Society of Chemistry, Cambridge, UK, 2004; Chapter The phyto- chromes: spectroscopy and function, pp 137–180.
  98. Holzwarth, A. R. In The light reactions; Barber, J., Ed.; Elsevier, Amsterdam, 1987; Chapter Picosecond fluorescence spectroscopy and energy transfer in photosynthetic antenna pigments, pp 95–157.
  99. Gärtner, W. (2012) Kurt Schaffner: from organic photochemistry to photobiology. Photochem. Photobiol. Sci. 11, 872–880.
  100. Anders, K., Gutt, A., Gärtner, W., and Essen, L.-O. (2014) Late intermediates of the red-light sensor Cph2 from Synechocystis sp. show role of tongue motifs in photoconversion. J. Biol. Chem. submitted on 03.03.2014, unpublished.
  101. Yoshihara, S., Geng, X., Okamoto, S., Yura, K., Murata, T., Go, M., Ohmori, M., and Ikeuchi, M. (2001) Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol. 42, 63–73.
  102. Gong, W., Hao, B., and Chan, M. K. (2000) New mechanistic insights from struc- tural studies of the oxygen-sensing domain of Bradyrhizobium japonicum FixL. Biochemistry 39, 3955–3962.
  103. Vreede, J., van der Horst, M. A., Hellingwerf, K. J., Crielaard, W., and van Aalten, D. M. F. (2003) PAS domains: common structure and common flexibility. J. Biol. Chem. 278, 18434–18439.
  104. Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., and Baker, N. A. (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667.
  105. Cornejo, J., and Beale, S. (1997) Phycobilin biosynthetic reactions in extracts of cyanobacteria. Photosynth. Res. 51, 223–230.
  106. Sekar, S., and Chandramohan, M. (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol. 20, 113–136.
  107. Montgomery, B. L., and Lagarias, J. C. (2002) Phytochrome ancestry: sensors of bilins and light. TPS 7, 357–366.
  108. Fankhauser, C., Yeh, K.-C., Lagarias, J. C., Zhang, H., Elich, T. D., and Chory, J. (1999) PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284, 1539–1541.
  109. Stanek, M., and Grubmayr, K. (1998) Protonated 2,3-dihydrobilindiones-models for the chromophores of phycocyanin and the red-absorbing form of phytochrome. Chem. Eur. J. 4, 1653–1659.
  110. Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., De Vroom, E., Van Der Marel, G. A., Van Boom, J. H., and Benziman, M. (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279–281.
  111. Martinez-Argudo, I., Little, R., and Dixon, R. (2004) Role of the amino-terminal GAF domain of the NifA activator in controlling the response to the antiactivator protein NifL. Mol. Microbiol. 52, 1731–1744.
  112. (2008) Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state. J. Mol. Biol. 383, 403–413.
  113. Savakis, P. Spektroskopische und funktionelle Charakterisierung einer lichtgeschal- teten Diguanylatzyklase aus Synechocystis sp. M.Sc. thesis, Philipps-University Marburg, 2010.
  114. Anders, K., Daminelli-Widany, G., Mroginski, M. A., von Stetten, D., and Essen, L.- O. (2013) Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling. J. Biol. Chem. 288, 35714–35725.
  115. Anders, K. Strukturelle und funktionelle Analyse von Phytochromen des Cph2-Typs. M.Sc. thesis, Philipps-University Marburg, 2008.
  116. Brücker, G., Mittmann, F., Hartmann, E., and Lamparter, T. (2005) Targeted site- directed mutagenesis of a heme oxygenase locus by gene replacement in the moss Ceratodon purpureus. Planta 220, 864–874.
  117. Blumenstein, A., Vienken, K., Tasler, R., Purschwitz, J., Veith, D., Frankenberg- Dinkel, N., and Fischer, R. (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15, 1833–1838.
  118. Song, C., Psakis, G., Kopycki, J., Lang, C., Matysik, J., and Hughes, J. (2014) The D-ring, not the A-ring, rotates in Synechococcus OS-B' phytochrome. J. Biol. Chem. 289, 2552–2562.
  119. Aravind, L., and Ponting, C. P. (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem. Sci. 22, 458–459.
  120. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera -a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.
  121. Marshall, J., and Oberwinkler, J. (1999) Ultraviolet vision: The colourful world of the mantis shrimp. Nature 401, 873–874.
  122. Zhang, J., Wu, X.-J., Wang, Z.-B., Chen, Y., Wang, X., Zhou, M., Scheer, H., and Zhao, K.-H. (2010) Fused-gene approach to photoswitchable and fluorescent biliproteins. Angew. Chem. Int. Ed. 49, 5456–5458.
  123. Terauchi, K., Montgomery, B. L., Grossman, A. R., Lagarias, J. C., and Kehoe, D. M. (2004) RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness. Mol. Microbiol. 51, 567–577.
  124. Hefti, M. H., Françoijs, K.-J., de Vries, S. C., Dixon, R., and Vervoort, J. (2004) The PAS fold. Eur. J. Biochem. 271, 1198–1208.
  125. Velazquez Escobar, F., Hildebrandt, T., Utesch, T., Schmitt, F. J., Seuffert, I., Mi- chael, N., Schulz, C., Mroginski, M. A., Friedrich, T., and Hildebrandt, P. (2014) Structural parameters controlling the fluorescence properties of phytochromes. Bio- chemistry 53, 20–29.
  126. Borucki, B. (2006) Proton transfer in the photoreceptors phytochrome and photoactive yellow protein. Photochem. Photobiol. Sci. 5, 553–566.
  127. Ikeuchi, M., and Ishizuka, T. (2008) Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem. Photobiol. Sci. 7, 1159–1167.
  128. Kumar, M., and Chatterji, D. (2008) Cyclic di-GMP: a second messenger required for long-term survival, but not for biofilm formation, in Mycobacterium smegmatis. Microbiology 154, 2942–2955.
  129. Evans, K., Fordham-Skelton, A., Mistry, H., Reynolds, C., Lawless, A., and Pa- piz, M. (2005) A bacteriophytochrome regulates the synthesis of LH4 complexesin Rhodopseudomonas palustris. Photosynth. Res. 85, 169–180.
  130. Eriksen, N. (2008) Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Appl. Microbiol. Biotechnol. 80, 1–14.
  131. Hughes, J. (2013) Phytochrome cytoplasmic signaling. Annu. Rev. Plant Biol. 64, 377–402.
  132. Stock, A. M., Robinson, V. L., and Goudreau, P. N. (2000) Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215.
  133. Rodriguez-Romero, J., Hedtke, M., Kastner, C., Müller, S., and Fischer, R. (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu. Rev. Microbiol. 64, 585–610.
  134. Diensthuber, R., Bommer, M., Gleichmann, T., and Möglich, A. (2013) Full-length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and modulators. Structure 21, 1127–1136.
  135. Litts, J. C., Kelly, J. M., and Lagarias, J. C. (1983) Structure-function studies on phytochrome. Preliminary characterization of highly purified phytochrome from Avena sativa enriched in the 124-kilodalton species. J. Biol. Chem. 258, 11025–31.
  136. Heintzen, C. (2012) Plant and fungal photopigments. WIREs Membr. Transp. Signal. 1, 411–432.
  137. Bhoo, S. H., Davis, S. J., Walker, J., Karniol, B., and Vierstra, R. D. (2001) Bacte- riophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414, 776–779.
  138. Smith, H. (2000) Phytochromes and light signal perception by plants -an emerging synthesis. Nature 407, 585–591.
  139. Giraud, E., Fardoux, J., Fourrier, N., Hannibal, L., Gentry, B., Bouyer, P., Dreyfus, B., and Verméglio, A. (2002) Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature 417, 202–205.
  140. Wagner, J. R., Brunzelle, J. S., Forest, K. T., and Vierstra, R. D. (2005) A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438, 325–331.
  141. Shimizu-Sato, S., Huq, E., Tepperman, J. M., and Quail, P. H. (2002) A light- switchable gene promoter system. Nat. Biotechnol. 20, 1041–1044.
  142. Cornilescu, C. C., Cornilescu, G., Burgie, E. S., Markley, J. L., Ulijasz, A. T., and Vierstra, R. D. (2014) Dynamic structural changes underpin photoconversion of a blue/green cyanobacteriochrome between its dark and photoactivated states. J. Biol.
  143. Kohchi, T., Mukougawa, K., Frankenberg, N., Masuda, M., Yokota, A., and Lagari- as, J. C. (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13, 425–436.
  144. Karniol, B., Wagner, J. R., Walker, J. M., and Vierstra, R. D. (2005) Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem. J. 392, 103–116.
  145. Fischer, A. J., Rockwell, N. C., Jang, A. Y., Ernst, L. A., Waggoner, A. S., Duan, Y., Lei, H., and Lagarias, J. C. (2005) Multiple roles of a conserved GAF domain tyrosine residue in cyanobacterial and plant phytochromes. Biochemistry 44, 15203–15215.
  146. Frankenberg, N., Mukougawa, K., Kohchi, T., and Lagarias, J. C. (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13, 965–978.
  147. Karniol, B., and Vierstra, R. D. (2003) The pair of bacteriophytochromes from Agro- bacterium tumefaciens are histidine kinases with opposing photobiological properties. Proc. Natl. Acad. Sci. 100, 2807–2812.
  148. Krall, L., and Reed, J. W. (2000) The histidine kinase-related domain participates in phytochrome B function but is dispensable. Proc. Natl. Acad. Sci. 97, 8169–8174.
  149. Vuillet, L., Kojakinovic, M., Zappa, S., Jaubert, M., Adriano, J.-M., Fardoux, J., Hannibal, L., Pignol, D., Verméglio, A., and Giraud, E. (2007) Evolution of a bacteriophytochrome from light to redox sensor. EMBO J. 26, 3322–3331.
  150. Yang, X., Stojkovic, E. A., Kuk, J., and Moffat, K. (2007) Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion. Proc. Natl. Acad. Sci. U.S.A. 104, 12571–12576.
  151. Anderson, S. L., and McIntosh, L. (1991) Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J. Bacteriol. 173, 2761–2767.
  152. Scheer, H., and Zhao, K. H. (2008) Biliprotein maturation: the chromophore attach- ment. Mol. Microbiol. 68, 263–276.
  153. Wagner, J. R., Zhang, J., von Stetten, D., Günther, M., Murgida, D. H., Mrog- inski, M. A., Walker, J. M., Forest, K. T., Hildebrandt, P., and Vierstra, R. D. (2008) Mutational analysis of Deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes. J. Biol. Chem. 283, 12212–12226.
  154. Hirose, Y., Shimada, T., Narikawa, R., Katayama, M., and Ikeuchi, M. (2008) Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. Proc. Natl. Acad. Sci. 105, 9528–9533.
  155. Oka, Y., Matsushita, T., Mochizuki, N., Quail, P. H., and Nagatani, A. (2008) Mutant screen distinguishes between residues necessary for light-signal perception and signal transfer by phytochrome B. PLoS Genet. 4, e1000158.
  156. Yeh, K. C., and Lagarias, J. C. (1998) Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl. Acad. Sci. U.S.A. 95, 13976–13981.
  157. Essen, L. O., Mailliet, J., and Hughes, J. (2008) The structure of a complete phyto- chrome sensory module in the Pr ground state. Proc. Natl. Acad. Sci. U.S.A. 105, 14709–14714.
  158. Yang, X., Kuk, J., and Moffat, K. (2008) Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction. Proc. Natl. Acad.
  159. Rockwell, N. C., Njuguna, S. L., Roberts, L., Castillo, E., Parson, V. L., Dwojak, S., Lagarias, J. C., and Spiller, S. C. (2008) A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Biochemistry 47, 7304–7316.
  160. Hickman, J. W., and Harwood, C. S. (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69, 376–389.
  161. Rockwell, N. C., Su, Y. S., and Lagarias, J. C. (2006) Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57, 837–858.
  162. Rockwell, N. C., Shang, L., Martin, S. S., and Lagarias, J. C. (2009) Distinct classes of red/far-red photochemistry within the phytochrome superfamily. Proc. Natl. Acad.
  163. [173] Navarro, M. V. A. S., De, N., Bae, N., Wang, Q., and Sondermann, H. (2009) Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure 17, 1104–1116.
  164. Shu, X., Royant, A., Lin, M. Z., Aguilera, T. A., Lev-Ram, V., Steinbach, P. A., and Tsien, R. Y. (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807.
  165. Wu, Y. I., Frey, D., Lungu, O. I., Jaehrig, A., Schlichting, I., Kuhlman, B., and Hahn, K. M. (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108.
  166. Chung, Y. H., Masuda, M., and Bauer, C. E. (2007) Purification and reconstitution of PYP-phytochrome with biliverdin and 4-hydroxycinnamic acid. Methods Enzymol. 422, 184–189.
  167. Nozue, K., Kanegae, T., Imaizumi, T., Fukuda, S., Okamoto, H., Yeh, K.-C., Lagari- as, J. C., and Wada, M. (1998) A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc. Natl. Acad. Sci. 95, 15826–15830.
  168. Chen, M., Schwab, R., and Chory, J. (2003) Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proc. Natl. Acad. Sci. 100, 14493–14498.
  169. Rockwell, N. C., and Lagarias, J. C. (2010) A brief history of phytochromes. Chem. Phys. Chem. 11, 1172–1180.
  170. Li, H., Zhang, J., Vierstra, R. D., and Li, H. (2010) Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy. Proc. Natl. Acad. Sci.
  171. Shang, L. X., Rockwell, N. C., Martin, S. S., and Lagarias, J. C. (2010) Biliverdin amides reveal roles for propionate side chains in bilin reductase recognition and in holophytochrome assembly and photoconversion. Biochemistry 49, 6070–6082.
  172. Leivar, P., and Quail, P. H. (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci. 16, 19–28.
  173. Möglich, A., Ayers, R. A., and Moffat, K. (2009) Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17, 1282–1294.
  174. Ho, Y.-S. J., Burden, L. M., and Hurley, J. H. (2000) Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J. 19, 5288–5299.
  175. Rockwell, N. C., Martin, S. S., Feoktistova, K., and Lagarias, J. C. (2011) Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Proc. Natl.
  176. Chen, M., and Chory, J. (2011) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol. 21, 664–671.
  177. Ulijasz, A. T., Cornilescu, G., von Stetten, D., Kaminski, S., Mroginski, M. A., Zhang, J., Bhaya, D., Hildebrandt, P., and Vierstra, R. D. (2008) Characterization of two thermostable cyanobacterial phytochromes reveals global movements in the chromophore-binding domain during photoconversion. J. Biol. Chem. 283, 21251– 21266.
  178. Yang, X., Ren, Z., Kuk, J., and Moffat, K. (2011) Temperature-scan cryocrystallo- graphy reveals reaction intermediates in bacteriophytochrome. Nature 479, 428–432.
  179. Chen, Y.-R., Su, Y.-S., and Tu, S.-L. (2012) Distinct phytochrome actions in nonvas- cular plants revealed by targeted inactivation of phytobilin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 109, 8310–8315.
  180. Heyes, D. J., Khara, B., Sakuma, M., Hardman, S. J. O., O'Cualain, R., Rigby, S. E. J., and Scrutton, N. S. (2012) Ultrafast red light activation of Synechocystis phytochrome Cph1 triggers major structural change to form the Pfr signalling-competent state. PLoS ONE 7, 1–13.
  181. Narikawa, R., Ishizuka, T., Muraki, N., Shiba, T., Kurisu, G., and Ikeuchi, M. (2013) Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Proc. Natl. Acad. Sci. U.S.A. 110, 918–923.
  182. Rockwell, N. C., Ohlendorf, R., and Möglich, A. (2013) Cyanobacteriochromes in full color and three dimensions. Proc. Natl. Acad. Sci. 110, 806–807.
  183. Wang, C., Sang, J., Wang, J., Su, M., Downey, J. S., Wu, Q., Wang, S., Cai, Y., Xu, X., Wu, J., Senadheera, D. B., Cvitkovitch, D. G., Chen, L., Goodman, S. D., and Han, A. (2013) Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains. PLoS Biol. 11, e1001493.
  184. Hirose, Y., Rockwell, N. C., Nishiyama, K., Narikawa, R., Ukaji, Y., Inomata, K., Lagarias, J. C., and Ikeuchi, M. (2013) Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Proc. Natl.
  185. Piatkevich, K. D., Subach, F. V., and Verkhusha, V. V. (2013) Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem. Soc. Rev. 42, 3441–3452.
  186. Stanier, R. Y., Kunisawa, R., Mandel, M., and Cohen-Bazire, G. (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171–205.
  187. Oka, Y., Matsushita, T., Mochizuki, N., Suzuki, T., Tokutomi, S., and Nagatani, A. (2004) Functional analysis of a 450-amino acid N-terminal fragment of phytochrome B in arabidopsis. Plant Cell 16, 2104–2116.
  188. Chan, C., Paul, R., Samoray, D., Amiot, N. C., Giese, B., Jenal, U., and Schirmer, T. (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc.
  189. Fischer, A. J., and Lagarias, J. C. (2004) Harnessing phytochrome's glowing potential. Proc. Natl. Acad. Sci. U.S.A. 101, 17334–17339.
  190. Braslavsky, S. E., Gärtner, W., and Schaffner, K. (1997) Phytochrome photoconver- sion. Plant Cell Environ. 20, 700–706.
  191. Yoon, J.-M., Hahn, T.-R., Cho, M.-H., Jeon, J.-S., Bhoo, S. H., and Kwon, Y.-K. (2008) The PHY domain is required for conformational stability and spectral integrity of the bacteriophytochrome from Deinococcus radiodurans. Biochem. Bioph. Res.
  192. Hübschmann, T., Yamamoto, H., Gieler, T., Murata, N., and Börner, T. (2005) Red and far-red light alter the transcript profile in the cyanobacterium Synechocystis sp. PCC 6803: impact of cyanobacterial phytochromes. FEBS Lett. 579, 1613–1618.
  193. Vierstra, R. D., and Zhang, J. J. (2011) Phytochrome signaling: solving the Gordian knot with microbial relatives. TPS 16, 417–426.
  194. Chen, M. (2008) Phytochrome nuclear body: an emerging model to study interphase nuclear dynamics and signaling. Curr. Opin. Plant Biol. 11, 503–508.
  195. Davis, S. J., Vener, A. V., and Vierstra, R. D. (1999) Bacteriophytochromes: Phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286, 2517–2520.
  196. Harper, S. M., Neil, L. C., and Gardner, K. H. (2003) Structural basis of a phototropin light switch. Science 301, 1541–1544.
  197. Brandt, S., von Stetten, D., Günther, M., Hildebrandt, P., and Frankenberg-Dinkel, N. (2008) The fungal phytochrome FphA from Aspergillus nidulans. J. Biol. Chem. 283, 34605–34614.
  198. Dammeyer, T., Bagby, S. C., Sullivan, M. B., Chisholm, S. W., and Frankenberg- Dinkel, N. (2008) Efficient phage-mediated pigment biosynthesis in oceanic cyanob- acteria. Curr. Biol. 18, 442–448.
  199. Dammeyer, T., and Frankenberg-Dinkel, N. (2008) Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms. Photochem. Photobiol. Sci. 7, 1121–1130.
  200. Tasler, R., Moises, T., and Frankenberg-Dinkel, N. (2005) Biochemical and spec- troscopic characterization of the bacterial phytochrome of Pseudomonas aeruginosa.
  201. Berla, B. M., Saha, R., Immethun, C. M., Maranas, C. D., Moon, T. S., and Pakrasi, H. (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front. Microbiol. 4, 1–14.
  202. Möglich, A., and Moffat, K. (2010) Engineered photoreceptors as novel optogenetic tools. Photochem. Photobiol. Sci. 9, 1286–1300.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten