Publikationsserver der Universitätsbibliothek Marburg

Titel:Targeting p53 and its domains for cancer gene therapy
Autor:Karina Julia Matissek
Weitere Beteiligte: Thomas Kissel (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0226
URN: urn:nbn:de:hebis:04-z2014-02265
DOI: https://doi.org/10.17192/z2014.0226
DDC: Biowissenschaften, Biologie
Titel (trans.):Targeting von p53 und seinen Domänen zur Krebsgentherapie
Publikationsdatum:2014-04-30
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Bak, Bcl-XL, mitochondria, Mitochondrium, Krebs, cancer, Protein p53, Bak, Bcl-XL

Summary:
Der Tumorsuppressor p53 ist eines der am häufigsten mutierten Proteine in humanen Krebsarten und wird daher umfassend für seinen Nutzen in der Krebstherapie erforscht. Dies führte in China zur Markteinführung von Wildtyp-p53 zur Therapie von Kopf-Hals-Karzinomen. p53 fungiert in der Zelle hauptsächlich als Transkriptionsfaktor und stimuliert eine Vielzahl von Genen, die im intrinsischen und extrinsischen Apoptosemechanismus involviert sind. In Krebszellen treten Mutationen normalerweise in der DNA-Bindungsdomäne von p53 auf, wohingegen die Tetramerizationsdomäne (TD) des Tumorsuppressors intakt bleibt. Dies führt intrazellular zur Bildung von Heterotetrameren von Wildtyp-p53 und seiner mutierten Form, was die Transkriptionsaktivität erheblich beeinträchtigt und einen dominant negativen Effekt ergibt. Während transkriptionell aktives p53 als Gentherapeutikum genutzt wird, ist das therapeutische Potential für den Einsatz von mitochondrialem p53 noch nicht vollständig ermittelt. Wenn p53 zum Mitochondrium getargeted wird, interagiert es mit pro- und anti-apoptotischen Proteinen, die sich in der mitochondrialen Auβenmembran befinden. Für diese Interaktion reicht die monomere Form von p53 aus, was bedeutet, dass es nicht durch mutiertes p53 inaktiviert werden kann. In dieser Arbeit wurde die Funktion von mitochondrialem p53 charakterisiert, indem es zu verschiedenen mitochondrialen Kompartimenten getargeted wurde: der mitochondrialen Auβenmembran, der Innenmembran und der Matrix. Es konnte nachgewiesen werden, dass mitochondriale Targeting Sequenzen (MTS) in der mitochondrialen Auβenmembran optimal für eine p53-spezifische Aktivierung geeignet sind. Auch konnte gezeigt werden, dass als minimalste Domäne von p53 die DNA-Bindungsdomäne (DBD) ausreicht, um Apoptose zu induzieren. Weitere Untersuchungen haben ergeben, dass das Vereinigen von p53 oder nur seiner DBD mit der MTS von Bcl-XL, eine Bcl-XL spezifische Apoptose hervorruft, während eine Vereinigung der Segmente mit Bak auf p53/Bak spezifische Apoptose zurückzuführen ist. Dies hebt hervor, dass mitochondriales Targeting von p53 stark von der benutzten MTS abhängig ist. Auβerdem haben in vitro-Studien gezeigt, dass die Bindung von p53 oder DBD an die MTS von Bcl-XL eine dominant negative Inhibition überwinden kann, aber auβerstande ist dominant negative MDA-MB-468 Tumore in einem orthotopischen Maus-Tumor-Model für das gewählte Dosisschema zu reduzieren. Die Thematik dieser Dissertation war die Entwicklung Apoptose-induzierender Proteine basierend auf p53 und seinen Bindungsdomänen, um eine modifizierte Version von p53 zu generieren. Der Schwerpunkt lag sowohl auf der Optimierung eines mitochondrial getargeten p53 für mögliche Krebstherapien als auch in der Neugestaltung der TD von p53, um den dominant negativen Effekt der Transkriptionsaktivität zu überwinden. Dafür wurde die Oligomerizationsdomäne von p53 mit der Coiled-Coil (CC) Domäne von BCR ersetzt, damit der dominant negative Effekt von mutiertem p53 ausgeschaltet wird. Experimente zeigen, dass das chimäre p53 (p53-CC) in den Nukleus transloziert, Gene transaktiviert und Apoptose in ähnlicher Form wie Wildtyp-p53 auslöst. In vitro- und in vivo-Studien haben gezeigt, dass im Gegensatz zu Wildtyp-p53, das neu generierte p53-CC nicht mit endogen mutiertem p53 interagiert und seine apoptotische Aktivität in Krebszellen, die dominant negatives mutiertes p53 enthalten, beibehält. Zusammenfassend liegt der Forschungsschwerpunkt dieser Dissertation in der Entwicklung neuartiger p53-Gentherapeutika, die das Potential haben derzeitige Einschränkungen einer Wildtyp-p53 Therapie zu überwinden.

Bibliographie / References

  1. Cao, A., and R. Galanello. 2010. Beta-thalassemia. Genet Med 12 (2):61-76.
  2. Brunelle, J. K.; Letai, A. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci. 2009, 122 (Pt 4), 437−41.
  3. Chiuve, S. E., M. L. McCullough, F. M. Sacks, and E. B. Rimm. 2006. Healthy lifestyle factors in the primary prevention of coronary heart disease among men: benefits among users and nonusers of lipid-lowering and antihypertensive medications. Circulation 114 (2):160-7.
  4. Sawyers, C. L. 1999. Chronic myeloid leukemia. N Engl J Med 340 (17):1330-40.
  5. Knowlton, R. G., O. Cohen-Haguenauer, N. Van Cong, J. Frezal, V. A. Brown, D. Barker, J. C. Braman, J. W. Schumm, L. C. Tsui, M. Buchwald, and et al. 1985. A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature 318 (6044):380-2.
  6. Silverman, G. A., P. I. Bird, R. W. Carrell, F. C. Church, P. B. Coughlin, P. G. Gettins, J. A. Irving, D. A. Lomas, C. J. Luke, R. W. Moyer, P. A. Pemberton, E. Remold- O'Donnell, G. S. Salvesen, J. Travis, and J. C. Whisstock. 2001. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276 (36):33293-6.
  7. Hacein-Bey-Abina, S., F. Le Deist, F. Carlier, C. Bouneaud, C. Hue, J. P. De Villartay, A. J. Thrasher, N. Wulffraat, R. Sorensen, S. Dupuis-Girod, A. Fischer, E. G. Davies, W. Kuis, L. Leiva, and M. Cavazzana-Calvo. 2002. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346 (16):1185-93.
  8. Thrasher, A. J., S. Hacein-Bey-Abina, H. B. Gaspar, S. Blanche, E. G. Davies, K. Parsley, K. Gilmour, D. King, S. Howe, J. Sinclair, C. Hue, F. Carlier, C. von Kalle, G. de Saint Basile, F. le Deist, A. Fischer, and M. Cavazzana-Calvo. 2005. Failure of SCID-X1 gene therapy in older patients. Blood 105 (11):4255-7.
  9. Antoine, C., S. Muller, A. Cant, M. Cavazzana-Calvo, P. Veys, J. Vossen, A. Fasth, C. Heilmann, N. Wulffraat, R. Seger, S. Blanche, W. Friedrich, M. Abinun, G. Davies, R. Bredius, A. Schulz, P. Landais, and A. Fischer. 2003. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968-99. Lancet 361 (9357):553-60.
  10. ■ REFERENCES (1) Goh, A. M.; Coffill, C. R.; Lane, D. P. The role of mutant p53 in human cancer. J. Pathol. 2011, 223, 116−126, DOI: 10.1002/ path.2784.
  11. Res. Commun. 2006, 341, 938−944, DOI: 10.1016/j.bbrc.2005.12.227. (18) Mossalam, M.; Matissek, K. J.; Okal, A.; Constance, J. E.; Lim, C. S. Direct induction of apoptosis using an optimal mitochondrially targeted p53. Mol. Pharmaceutics 2012, 9, 1449−1458, DOI: 10.1021/ mp3000259.
  12. Martins, C. P.; Brown-Swigart, L.; Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 2006, 127, 1323−1334, DOI: 10.1016/j.cell.2006.12.007.
  13. Sherr, C. J. Principles of tumor suppression. Cell 2004, 116, 235− 246, DOI: 10.1016/S0092-8674(03)01075-4.
  14. Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 2003, 4, 371−381, DOI: 10.1016/S1535-6108(03)00272-1.
  15. Constance, J. E.; Woessner, D. W.; Matissek, K. J.; Mossalam, M.; Lim, C. S. Enhanced and selective killing of chronic myelogenous leukemia cells with an engineered BCR-ABL binding protein and imatinib. Mol. Pharmaceutics 2012, 9, 3318−3329, DOI: 10.1021/ mp3003539. (25) Costes, S. V.; et al. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 2004, 86, 3993− 4003, DOI: 10.1529/biophysj.103.038422.
  16. Ha, J. H.; et al. Molecular mimicry-based repositioning of nutlin- 3 to anti-apoptotic Bcl-2 family proteins. J. Am. Chem. Soc. 2011, 133, 1244−1247, DOI: 10.1021/ja109521f. (17) Xu, H.; Tai, J.; Ye, H.; Kang, C. B.; Yoon, H. S. The N-terminal domain of tumor suppressor p53 is involved in the molecular interaction with the anti-apoptotic protein Bcl-Xl. Biochem. Biophys.
  17. Dixon, A. S.; et al. Improved coiled-coil design enhances interaction with Bcr-Abl and induces apoptosis. Mol. Pharmaceutics 2012, 9, 187−195, DOI: 10.1021/mp200461s.
  18. Davis, J. R.; Mossalam, M.; Lim, C. S. Controlled access of p53 to the nucleus regulates its proteasomal degradation by MDM2. Mol. Pharmaceutics 2013, 10, 1340−1349, DOI: 10.1021/mp300543t. (28) Jaskolski, F.; Mulle, C.; Manzoni, O. J. An automated method to quantify and visualize colocalized fluorescent signals. J. Neurosci. Methods 2005, 146, 42−49, DOI: 10.1016/j.jneumeth.2005.01.012.
  19. Perfettini, J. L.; Kroemer, R. T.; Kroemer, G. Fatal liaisons of p53 with Bax and Bak. Nat. Cell Biol. 2004, 6, 386−388, DOI: 10.1038/ ncb0504-386ncb0504-386.
  20. Tomita, Y.; et al. WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J. Biol. Chem. 2006, 281, 8600−8606, DOI: 10.1074/ jbc.M507611200. (14) Bharatham, N.; Chi, S. W.; Yoon, H. S. Molecular basis of Bcl- X(L)-p53 interaction: insights from molecular dynamics simulations. PLoS One 2011, 6, e26014 DOI: 10.1371/journal.pone.0026014- PONE-D-11-15062. (15) Chipuk, J. E.; Maurer, U.; Green, D. R.; Schuler, M.
  21. Hagn, F.; et al. BclxL changes conformation upon binding to wild-type but not mutant p53 DNA binding domain. J. Biol. Chem. 2010, 285, 3439−3450, DOI: 10.1074/jbc.M109.065391. (12) Petros, A. M.; Gunasekera, A.; Xu, N.; Olejniczak, E. T.; Fesik, S. W. Defining the p53 DNA-binding domain/Bcl-x(L)-binding interface using NMR. FEBS Lett. 2004, 559, 171−174, DOI: 10.1016/S0014-5793(04)00059-6.
  22. Dixon, A. S.; et al. Disruption of Bcr-Abl coiled coil oligomerization by design. J. Biol. Chem. 2011, 286, 27751−27760, DOI: 10.1074/jbc.M111.264903.
  23. Peng, Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum. Gene Ther. 2005, 16, 1016−1027, DOI: 10.1089/hum.2005.16.1016.
  24. Joerger, A. C.; Fersht, A. R. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harbor Perspect. Biol. 2010, 2, a000919 DOI: 10.1101/cshperspect.a000919.
  25. Bolte, S.; Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224, 213− 232, DOI: 10.1111/j.1365-2818.2006.01706.x. (23) Constance, J. E.; Despres, S. D.; Nishida, A.; Lim, C. S. Selective targeting of c-Abl via a cryptic mitochondrial targeting signal activated by cellular redox status in leukemic and breast cancer cells. Pharm. Res. 2012, 29, 2317−2328, DOI: 10.1007/s11095-012-0758-9.
  26. Palacios, G.; Crawford, H. C.; Vaseva, A.; Moll, U. M. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model. Cell Cycle 2008, 7, 2584−2590, DOI: 6070.
  27. Henderson, B. R. 2005. Regulation of BRCA1, BRCA2 and BARD1 intracellular trafficking. Bioessays 27 (9):884-93.
  28. Wurzer, G., W. Mosgoeller, M. Chabicovsky, C. Cerni, and J. Wesierska-Gadek. 2001. Nuclear Ras: unexpected subcellular distribution of oncogenic forms. J Cell Biochem Suppl Suppl 36:1-11.
  29. Goh, A. M., C. R. Coffill, and D. P. Lane. 2010. The role of mutant p53 in human cancer. J Pathol.
  30. Ryser, O., A. Morell, and W. H. Hitzig. 1988. Primary immunodeficiencies in Switzerland: first report of the national registry in adults and children. J Clin Immunol 8 (6):479- 85.
  31. Dixon, A. S.; Constance, J. E.; Tanaka, T.; Rabbitts, T. H.; Lim, C. S. Changing the Subcellular Location of the Oncoprotein Bcr-Abl Using Rationally Designed Capture Motifs. Pharm. Res. 2011, 29 (4), 1098−109.
  32. Symonds, G. P., H. A. Johnstone, M. L. Millington, M. P. Boyd, B. P. Burke, and L. R. Breton. 2010. The use of cell-delivered gene therapy for the treatment of HIV/AIDS. Immunol Res 48 (1-3):84-98.
  33. Kass, R. W., M. N. Kotler, and S. Yazdanfar. 1992. Stimulation of coronary collateral growth: current developments in angiogenesis and future clinical applications. Am Heart J 123 (2):486-96.
  34. Terlecky, S. R., and J. I. Koepke. 2007. Drug delivery to peroxisomes: employing unique trafficking mechanisms to target protein therapeutics. Adv Drug Deliv Rev 59 (8):739-47.
  35. Bareford, L. M., and P. W. Swaan. 2007. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59 (8):748-58.
  36. Gong, G., Y. Qin, W. Huang, S. Zhou, X. Wu, X. Yang, Y. Zhao, and D. Li. 2010. Protective effects of diosgenin in the hyperlipidemic rat model and in human vascular endothelial cells against hydrogen peroxide-induced apoptosis. Chem Biol Interact 184 (3):366-75.
  37. Microsc. Microanal. 2010, 16 (6), 710−24. (22) Jaskolski, F.; Mulle, C.; Manzoni, O. J. An automated method to quantify and visualize colocalized fluorescent signals. J. Neurosci. Methods 2005, 146 (1), 42−9.
  38. Keskin, O., and R. Nussinov. 2007. Similar binding sites and different partners: implications to shared proteins in cellular pathways. Structure 15 (3):341-54.
  39. Grabarek, J.; Darzynkiewicz, Z. In situ activation of caspases and serine proteases during apoptosis detected by affinity labeling their enzyme active centers with fluorochrome-tagged inhibitors. Exp.
  40. S. Direct induction of apoptosis using an optimal mitochondrially targeted p53. Mol. Pharmaceutics 2012, 9 (5), 1449−58.
  41. Shigematsu, H., K. Yasuda, T. Iwai, T. Sasajima, S. Ishimaru, Y. Ohashi, T. Yamaguchi, T. Ogihara, and R. Morishita. 2010. Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther 17 (9):1152-61.
  42. Xue, W., L. Zender, C. Miething, R. A. Dickins, E. Hernando, V. Krizhanovsky, C. Cordon- Cardo, and S. W. Lowe. 2007. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445 (7128):656-60.
  43. Melo, J. V.; Barnes, D. J. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat. Rev. Cancer 2007, 7 (6), 441−53.
  44. Willis, A.; Jung, E. J.; Wakefield, T.; Chen, X. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 2004, 23 (13), 2330−2338.
  45. Kawaguchi, T.; Kato, S.; Otsuka, K.; Watanabe, G.; Kumabe, T.; Tominaga, T.; Yoshimoto, T.; Ishioka, C. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene 2005, 24 (46), 6976−81.
  46. Keeshan, K., T. G. Cotter, and S. L. McKenna. 2003. Bcr-Abl upregulates cytosolic p21WAF- 1/CIP-1 by a phosphoinositide-3-kinase (PI3K)-independent pathway. Br J Haematol 123 (1):34-44.
  47. Tomita, Y.; Marchenko, N.; Erster, S.; Nemajerova, A.; Dehner, A.; Klein, C.; Pan, H.; Kessler, H.; Pancoska, P.; Moll, U. M. WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J. Biol. Chem. 2006, 281 (13), 8600−6.
  48. Tembe, V., and B. R. Henderson. 2007. BARD1 translocation to mitochondria correlates with Bax oligomerization, loss of mitochondrial membrane potential, and apoptosis. J Biol Chem 282 (28):20513-22.
  49. Srivastava, S., and C. T. Moraes. 2001. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10 (26):3093-9.
  50. Garber, K. 2006. China approves world's first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst 98 (5):298-300.
  51. Krishna, S. S., I. Majumdar, and N. V. Grishin. 2003. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31 (2):532-50.
  52. Galea, C.; Bowman, P.; Kriwacki, R. W. Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils. Protein Sci. 2005, 14 (12), 2993−3003.
  53. Mancini, M.; Veljkovic, N.; Corradi, V.; Zuffa, E.; Corrado, P.; Pagnotta, E.; Martinelli, G.; Barbieri, E.; Santucci, M. A. 14−3-3 ligand prevents nuclear import of c-ABL protein in chronic myeloid leukemia. Traffic 2009, 10 (6), 637−47.
  54. Schwarz, K., G. H. Gauss, L. Ludwig, U. Pannicke, Z. Li, D. Lindner, W. Friedrich, R. A. Seger, T. E. Hansen-Hagge, S. Desiderio, M. R. Lieber, and C. R. Bartram. 1996. RAG mutations in human B cell-negative SCID. Science 274 (5284):97-9.
  55. Arnett, D. K., A. E. Baird, R. A. Barkley, C. T. Basson, E. Boerwinkle, S. K. Ganesh, D. M. Herrington, Y. Hong, C. Jaquish, D. A. McDermott, and C. J. O'Donnell. 2007. Relevance of genetics and genomics for prevention and treatment of cardiovascular disease: a scientific statement from the American Heart Association Council on Epidemiology and Prevention, the Stroke Council, and the Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation 115 (22):2878-901.
  56. Powell, R. J., M. Simons, F. O. Mendelsohn, G. Daniel, T. D. Henry, M. Koga, R. Morishita, and B. H. Annex. 2008. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 118 (1):58-65.
  57. Qi, X.; Mochly-Rosen, D. The PKCdelta -Abl complex communicates ER stress to the mitochondria -an essential step in subsequent apoptosis. J. Cell Sci. 2008, 121 (Part 6), 804−13.
  58. Aridor, M., A. K. Guzik, A. Bielli, and K. N. Fish. 2004. Endoplasmic reticulum export site formation and function in dendrites. J Neurosci 24 (15):3770-6.
  59. Raty, J. K., J. T. Pikkarainen, T. Wirth, and S. Yla-Herttuala. 2008. Gene therapy: the first approved gene-based medicines, molecular mechanisms and clinical indications. Curr Mol Pharmacol 1 (1):13-23.
  60. van Putten, E. H., C. M. Dirven, M. J. van den Bent, and M. L. Lamfers. 2010. Sitimagene ceradenovec: a gene-based drug for the treatment of operable high-grade glioma. Future Oncol 6 (11):1691-710.
  61. L.; Mikes, Z.; Dehne, J.; Gorlich, D.; Sattler, M.; Superti-Furga, G. Structural basis for the cytoskeletal association of Bcr-Abl/c-Abl. Mol. Cell 2005, 19 (4), 461−73.
  62. Duggan, D. J., M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent. 1999. Expression profiling using cDNA microarrays. Nat Genet 21 (1 Suppl):10-4.
  63. M.; Gazdar, A. F.; et al. Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene 1992, 7 (4), 743−9.
  64. Lacroix, M.; Toillon, R. A.; Leclercq, G. p53 and breast cancer, an update. Endocr. Relat. Cancer 2006, 13 (2), 293−325.
  65. Kerem, B., J. M. Rommens, J. A. Buchanan, D. Markiewicz, T. K. Cox, A. Chakravarti, M. Buchwald, and L. C. Tsui. 1989. Identification of the cystic fibrosis gene: genetic analysis. Science 245 (4922):1073-80.
  66. Davis, J. R., M. Kakar, and C. S. Lim. 2007. Controlling protein compartmentalization to overcome disease. Pharm Res 24 (1):17-27.
  67. De Ravin, S. S., and H. L. Malech. 2009. Partially corrected X-linked severe combined immunodeficiency: long-term problems and treatment options. Immunol Res 43 (1- 3):223-42.
  68. ± 0.1, for cMTS and Bcr-Abl and Figure 7A, first row, PCC =
  69. Natl. Acad. Sci. U.S.A. 2002, 99 (5), 2948−53. (12) Soussi, T. p53 alterations in human cancer: more questions than answers. Oncogene 2007, 26 (15), 2145−56.
  70. Molecular Pharmaceutics Article dx.doi.org/10.1021/mp3003539 | Mol. Pharmaceutics 2012, 9, 3318−3329 flask with 7 mL of prewarmed complete RPMI. Transient transfection of 1471.1 and Cos-7 was carried out in two-well live- cell chambers (Lab-Tek chamber slide system, Nalge NUNC International, Naperville, IL) or sterile 6-well tissue culture plates (Greiner CellStar, Greiner Bio-one GmbH) using Lipofectamine LTX as per manufacturers' instructions between passages 3 and 15 in antibiotic free media. Cell Proliferation. Trypan blue exclusion was used to determine cell proliferation (cell viability) 16 in K562 cells 48 h post-transfection of EGFP-C1, cMTS, ccmut3, cMTS, and iCE, with and without the presence of imatinib (10 μM).
  71. Molecular Pharmaceutics Article dx.doi.org/10.1021/mp400379c | Mol. Pharmaceutics 2013, 10, 3922−3933 ■ EXPERIMENTAL SECTION Subcloning and Construction of Plasmids. pEGFP-Bcr- Abl was constructed as previously described. 3 Bcr-Abl DNA was also cloned into pmCherry-C1 (Clonetech, Mountain View, CA, USA) and pTagBFP-C (Evrogen, Moscow, Russia) at the EcoR1 site on both vectors creating pmCherry-Bcr-Abl and pBFP-Bcr-
  72. The pRIN-cMTS construct was made by PCR amplifying the binding domain of the human RIN1 gene (NM_004292, OriGene, Rockville, MD, USA) with the primers 5′-GCGCGCGCGATCT- ATGGAAAGCCCTGGAGAGTCAGGCGCG-3′ and 5′-GCG- CGCGAATTCCCGTACCCCACTGAGCTCTCCCTCCGTA- GCAGCTGGC-3′ and inserted into pEGFP-cMTS using the BglII and EcoR1 sites. The murine glutathione S-transferase A4-4 [Swiss- Prot: P24472.3] cMTS (N-terminal residues, 172−222) 15 was constructed by annealing four oligonucleotides encoding the cMTS (1, (5′-phosphorylated) 5′-AATTCCGCCCCCGTGCTGAGCG- ACTTCCCCCTGCTGCAGGCCTTCAAGACCAGAATCA- GCAACATCCCCACCATCAAGAAGTTCCTGCAGCCC-3′; 2, 5′-CTGCCGGGCTGCAGGAACTTCTTGATGGTGGGGA- TGTTGCTGATTCTGGTCTTGAAGGCCTGCAGCAGGG- GGAAGTCGCTCAGCACGGGGGCGG-3′; 3, 5′-GGCAGC- CAGAGAAAGCCCCCCCCCGACGGCCCCTACGTGGAG- GTGGTGAGAACCGTGCTGAAGTTCGGCGCCGGCTGC- TGCCCCGGCTGCTGCTGA-3′; 4, (5′ phosphorylated) 5′- AATTTCAGCAGCAGCCGGGGCAGCAGCCGGCGCCGA- ACTTCAGCACGGTTCTCACCACCTCCACGTAGGGGC- CGTCGGGGGGGGGCTTTCTCTGG-3′) simultaneously and then inserting the annealed product into the multiple cloning site (MCS) of EGFP-C1 vector (Promega Biotech, Madison, WI), with or without the ccmut3 sequence present, at the EcoRI site creating pEGFP-cMTS 6 (cMTS) and pEGFP-ccmut3-cMTS (iCE), respectively. The pEGFP-ccmut3-cMTS null (S189A and T193A) was created using site-directed mutagenesis using primers, 5′-GACCAGAATCGCCAACATCCCCGCCATCAAGAAGT- TCCTGCAGCCCGGCAGCCAGAGAA-3′ and its reverse compliment. All constructs were verified by sequence analysis. Materials. RPMI-1640 medium, MitoTracker Red CM-
  73. Bcr-Abl, pIMS-EGFP, and pIMS-EGFP-ccmut3 were made by annealing and ligating four oligonucleotides encoding the Kozak sequence and IMS signal (1, (5′-phosphorylated) 5′-CCGGTG- CCACCATGAGAAGCGTGTGCAGCCTGTTCAGATACA- GACAGAGATTCCCCGTGCTGGCCAACAGCAA-3′; 2, 5′- GAAGAGATGCTTCAGCGAGCTGATCAAGCCCTGGCA- CAAGACCGTGCTGACCGGCTTCGGCATGACCCTGTG- CGCCGTGCCCATCGGA-3′; 3, 5′-TGCCACCATGAGAA- GCGTGTGCAGCCTGTTCAGATACAGACAGAGATTCC- CCGTGCTGGCCAACAGCAAGAAGAG-3′; 4, (5′ phosp- horylated) 5′-ATGCTTCAGCGAGCTGATCAAGCCCTGG- CACAAGACCGTGCTGACCGGCTTCGGCATGACCCTG- TGCGCCGTGCCCATCAGGACCGG-3′) followed by insertion into the AgeI site of pEGFP-Bcr-Abl, pEGFP, or pEGFP-ccmut3, 12 respectively. The inner mitochondrial membrane targeting sequence (IMM) was incorporated into the pIMM-EGFP-Bcr-Abl and pIMM-EGFP by annealing the 5′ phosphorylated oligonucleotide encoding the Kozak sequence and IMM signal, 5′-CCGGTCGC- CACCATGTCCGTCCTGACGCCGCTGCTGCTGCGGGG- CTTGACAGGCTCGGCCCGGCGGCTCCCAGTGCCGCG- CGCCAAGATCCATTCGTTGA-3′, with its reverse compliment followed by ligation into the AgeI site of pEGFP-Bcr-Abl and pEGFP-C1, respectively. The kinase dead mutant of pIMM-EGFP-
  74. Galan-Moya, E. M.; Hernandez-Losa, J.; Aceves Luquero, C. I.; de la Cruz-Morcillo, M. A.; Ramirez-Castillejo, C.; Callejas-Valera, J.
  75. Figure 9. Domain substitution of either the ccmut3 or the cMTS in the iCE. (A) Flow cytometric analysis for 7-AAD was measured 48 h post-transfection and/or treatment. IM, iCE, iCE + IM, ccmut3, and cMTS values are also in Figure 4A. Imatinib is 10 μM. Statistical differences were determined using one-way ANOVA with Tukey's post hoc test (error bars are SEM, N ≥ 3). (B) Representative images of the subcellular localization of the mock iCE constructs (first column), IMS-ccmut3 (top) and RIN-cMTS (bottom), in K562 cells stained with MitoTracker (second column). Scale bars are 5 μm.
  76. Flynn, A., and T. O'Brien. 2008. Alferminogene tadenovec, an angiogenic FGF4 gene therapy for coronary artery disease. IDrugs 11 (4):283-93.
  77. Ozawa, T.; Natori, Y.; Sako, Y.; Kuroiwa, H.; Kuroiwa, T.; Umezawa, Y. A minimal peptide sequence that targets fluorescent and functional proteins into the mitochondrial intermembrane space. ACS Chem. Biol. 2007, 2 (3), 176−86.
  78. Molecular Pharmaceutics Article dx.doi.org/10.1021/mp400379c | Mol. Pharmaceutics 2013, 10, 3922−3933 (39) Koopman, G.; Reutelingsperger, C. P.; Kuijten, G. A.; Keehnen, R. M.; Pals, S. T.; van Oers, M. H. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994, 84 (5), 1415−20. (40) Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immun. Methods 1995, 184 (1), 39−51.
  79. The Toxic Effect of the iCE on K562 Cells Is Lost upon Substitution of the cMTS or the ccmut3 with Another Canonical MTS or Bcr-Abl Binding Domain. When the ccmut3 is substituted for another Bcr-Abl binding domain (i.e., RIN-BD) 14 to create a mock iCE (Figure 3, RIN-cMTS), the cytotoxic effect remains equivalent to the cMTS alone, and the concomitant use of imatinib does not potentiate toxicity beyond that of imatinib alone (Figure 9A, RIN-cMTS and RIN- cMTS + IM columns). Furthermore, substituting the cMTS with a canonical IMS MTS, 11 (Figure 3, IMS-ccmut3) diminished toxicity to that of the ccmut3 alone, or upon the addition of imatinib, no more toxicity than imatinib alone (Figure 9A, IMS-ccmut3 and IMS-ccmut3 + IM columns). The mock iCEs localize to different subcellular compartments (Figure 9B, compare top (IMS-ccmut3) and bottom (RIN- cMTS) rows). The IMS-ccmut3 localizes to the mitochondria (Figure 9B, top row, compare " IMS-ccmut3 " to " MitoTracker " columns) while the RIN-cMTS remains cytoplasmic (Figure 9B, bottom row, compare " RIN-cMTS " to " MitoTracker " column).
  80. Shi, J., and D. Zheng. 2009. An update on gene therapy in China. Curr Opin Mol Ther 11 (5):547-53.
  81. Haupt, S., M. Berger, Z. Goldberg, and Y. Haupt. 2003. Apoptosis -the p53 network. J Cell Sci 116 (Pt 20):4077-85.
  82. Western Blotting. As previously described, 17 cell lysates were prepared in lysis buffer (62.5 mM Tris-HCl, 2% w/v SDS, 10% glycerol, 50 mM DTT, 0.01% w/v bromophenol blue) followed by standard blotting using antibodies to detect p-Bcr-
  83. Cell Lines and Culture Conditions. As previously described, 6 K562 cells (nonadherent human chronic myelog- enous leukemia cell line), gift from Dr. K. Elenitoba-Johnson, University of Michigan, and Cos-7 (monkey kidney fibroblast adherent cell line; ATCC) were cultured in RPMI 1640 supplemented with 10% FBS, 1% P-S-G, and 0.1% gentamycin.
  84. Costes, S. V.; Daelemans, D.; Cho, E. H.; Dobbin, Z.; Pavlakis, G.; Lockett, S. Automatic and quantitative measurement of protein- protein colocalization in live cells. Biophys. J. 2004, 86 (6), 3993− 4003. (21) Barlow, A. L.; Macleod, A.; Noppen, S.; Sanderson, J.; Guerin, C. J. Colocalization analysis in fluorescence micrographs: verification of a more accurate calculation of pearson's correlation coefficient.
  85. Zhang, X.; Ren, R. Bcr-Abl efficiently induces a myeloprolifer- ative disease and production of excess interleukin-3 and granulocyte- macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998, 92 (10), 3829−40.
  86. Bcr kinase activation by angiotensin II inhibits peroxisome- proliferator-activated receptor gamma transcriptional activity in vascular smooth muscle cells. Circ. Res. 2009, 104 (1), 69−78. (55) Woessner, D. W.; Lim, C. S.; Deininger, M. W. Development of an effective therapy for chronic myelogenous leukemia. Cancer J. 2011, 17 (6), 477−86.
  87. L.; Arriaga, A.; Aranburo, A. F.; Ramon y Cajal, S.; Silvio Gutkind, J.; Sanchez-Prieto, R. c-Abl activates p38 MAPK independently of its tyrosine kinase activity: Implications in cisplatin-based therapy. Int. J. Cancer 2008, 122 (2), 289−97. (31) Ralph, S. J.; Rodriguez-Enriquez, S.; Neuzil, J.; Saavedra, E.; Moreno-Sanchez, R. The causes of cancer revisited: " mitochondrial malignancy " and ROS-induced oncogenic transformation -why mitochondria are targets for cancer therapy. Mol. Aspects Med. 2010, 31 (2), 145−70.
  88. Kamada, R., T. Nomura, C. W. Anderson, and K. Sakaguchi. 2011. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem 286 (1):252-8.
  89. Abcam) were detected with (#7074, Cell Signaling Technology) secondary antibody prior to the addition of ChemiGlo (AlphaInnotech, Cell Biosciences, Santa Clara, CA, USA) chemiluminescent substrate and detection using a FluorChem FC2 imager (AlphaInnotech).
  90. Mitochondrial Staining. As previously described, 6 aliquots of transfected K562 suspension cells (400 μL) were plated into poly-L-lysine coated 4-well live-cell chambers at least four hours in advance of microscopy. Cells were incubated with MitoTracker Red CM-H 2 XRos (K562, 100 nM; Cos-7 and 1471.1, 325 nM) for 45 min at 37 °C and protected from light prior to imaging. Microscopy. Fluorescent images of K562, Cos-7, and 1471.1 live cells were acquired on an Olympus IX81 FV1000- XY spectral confocal microscope (Imaging Core Facility, University of Utah) equipped with 405 nm diode, 488 nm argon, and 543 nm HeNe lasers using a 60× PlanApo oil immersion objective (NA 1.45) using Olympus FluoView software, as previously described. 6 Excitation and emission filters were as follows: EGFP, 488 nm excitation, emission filter 500−530 nm; MitoTracker Red CM-H 2 XRos, 543 nm excitation, emission filter 555−655 nm. Images were collected in sequential line mode with exposure and gain of laser kept constant and below detected pixel saturation for each group of cells. No channel crosstalk was observed. Pixel resolution was kept at 1024 × 1024 (0−2.5-fold digital zoom) with a pixel dwell time of 12.5 μs. Imaging of K562 cells for the analysis of DNA segmentation was acquired on an Olympus IX71F fluorescence microscope (Scientific Instrument Company, Aurora, CO) with a 60× PlanApo oil immersion objective (NA 1.4) on an F-view monochrome CCD camera. K562 cells were stained with the nuclear dye Hoechst 33342 (Invitrogen, Carlsbad, CA) at a concentration of 4 μM. Image Analysis. Images were analyzed as previously The cMTS and EGFP, as expected, do not colocalize with Bcr-Abl in Cos-7 cells (Cos-7: Figure 7A, third row, PCC =
  91. Q.; Sabapathy, K. Cell-type, Dose, and Mutation-type Specificity Dictate Mutant p53 Functions In Vivo. Cancer Cell 2012, 22 (6), 751− 764. (21) Waterman, M. J.; Waterman, J. L.; Halazonetis, T. D. An engineered four-stranded coiled coil substitutes for the tetramerization domain of wild-type p53 and alleviates transdominant inhibition by tumor-derived p53 mutants. Cancer Res. 1996, 56 (1), 158−63.
  92. Xin, H. 2006. Chinese gene therapy. Gendicine's efficacy: hard to translate. Science 314 (5803):1233.
  93. Guo, J., and H. Xin. 2006. Chinese gene therapy. Splicing out the West? Science 314 (5803):1232-5.
  94. Fuster, J. J.; Sanz-Gonzalez, S. M.; Moll, U. M.; Andres, V. Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol.
  95. Acadesine kills chronic myelogenous leukemia (CML) cells through PKC-dependent induction of autophagic cell death. PLoS One 2009, 4 (11), e7889. (39) Wertheim, J. A.; Forsythe, K.; Druker, B. J.; Hammer, D.; Boettiger, D.; Pear, W. S. BCR-ABL-induced adhesion defects are tyrosine kinase-independent. Blood 2002, 99 (11), 4122−30.
  96. Fibroblast, and 1471.1 Breast Cancer Cells. Constructs were transiently transfected into K562 cells using the Amaxa Nucleofector II, as described previously. 3 Briefly, 1 × 10 6 K562 cells (initially seeded at a density of 0.5 × 10 5 cells/mL) between passages 5 and 10, were pelleted and resuspended in 100 μL of Amaxa Solution V, combined with 2 μg of DNA, and transfected in an Amaxa cuvette under program T-013.
  97. Jeffrey, P. D., S. Gorina, and N. P. Pavletich. 1995. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267 (5203):1498-502.
  98. V. Dead cell discrimination with 7-amino-actinomycin D in Molecular Pharmaceutics Article dx.doi.org/10.1021/mp400380s | Mol. Pharmaceutics 2013, 10, 3592−3602 (1) Haupt, S.; Berger, M.; Goldberg, Z.; Haupt, Y. Apoptosis the p53 network. J. Cell Sci. 2003, 116 (Pt 20), 4077−85.
  99. Marchenko, N. D.; Zaika, A.; Moll, U. M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 2000, 275 (21), 16202−12.
  100. Castino, R., M. Demoz, and C. Isidoro. 2003. Destination 'lysosome': a target organelle for tumour cell killing? J Mol Recognit 16 (5):337-48.
  101. Molecular Pharmaceutics Article dx.doi.org/10.1021/mp3003539 | Mol. Pharmaceutics 2012, 9, 3318−3329 (25) Kyrylkova, K.; Kyryachenko, S.; Leid, M.; Kioussi, C. Detection of Apoptosis by TUNEL Assay. Methods Mol. Biol. 2012, 887, 41−7. (26) van Engeland, M.; Nieland, L. J.; Ramaekers, F. C.; Schutte, B.; Reutelingsperger, C. P. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 1998, 31 (1), 1−9.
  102. V. Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry 1992, 13 (2), 204−8. (42) Serrano, M. J.; Sanchez-Rovira, P.; Algarra, I.; Jaen, A.; Lozano, A.; Gaforio, J. J. Evaluation of a gemcitabine-doxorubicin-paclitaxel combination schedule through flow cytometry assessment of apoptosis extent induced in human breast cancer cell lines. Jpn. J. Cancer Res. 2002, 93 (5), 559−66. (43) Goodrum, F. D.; Ornelles, D. A. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J.
  103. XRos (MitoTracker CMXros), Hoechst 33342 (cell permeable nuclear stain), 7-aminoactinomycin D (7-AAD; DNA intercalating dye permeable to dying or dead cells), annexin−APC (annexin-V conjugated to allophycocyanin), staurosporine, Lipofectamine LTX with Plus Reagent, trypan blue 0.4%, phosphate-buffered saline (PBS), fetal bovine serum (FBS), and gentamycin were purchased from Invitrogen (Carlsbad, CA). Penicillin−streptomy- cin−L-glutamine (P-S-G; 100U/mL), DMEM media, and trypsin were purchased from Gibco BRL (Grand Island, NY). The poly- L-lysine (0.01% solution) was purchased from Sigma-Aldrich (St. Louis, MO). Imatinib (CT-IM001) was purchased from ChemieTek (Indianapolis, IN). QuikChange II XL Site-Directed Mutagenesis Kit was purchased from Agilent Technologies (Santa Clara, CA). Cell Line Nucleofector Kit V was purchased from Lonza Group (Basel, Switzerland). Restriction enzymes (EcoRI, AgeI, and BglII) were purchased from New England Biolabs (Ipswich, MA).
  104. Wolfe, S. A., L. Nekludova, and C. O. Pabo. 2000. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183-212.
  105. Taha, T. A., W. Osta, L. Kozhaya, J. Bielawski, K. R. Johnson, W. E. Gillanders, G. S. Dbaibo, Y. A. Hannun, and L. M. Obeid. 2004. Down-regulation of sphingosine kinase-1 by DNA damage: dependence on proteases and p53. J Biol Chem 279 (19):20546-54.
  106. Grossman, D., and D. C. Altieri. 2001. Drug resistance in melanoma: mechanisms, apoptosis, and new potential therapeutic targets. Cancer Metastasis Rev 20 (1-2):3-11.
  107. Cloutier, M. M., L. Guernsey, P. Mattes, and B. Koeppen. 1990. Duramycin enhances chloride secretion in airway epithelium. Am J Physiol 259 (3 Pt 1):C450-4.
  108. Cerepro, EMEA recommendation on. 2009. European Medicines Agency recommendation on Cerepro.
  109. Akavia, U. D., O. Litvin, J. Kim, F. Sanchez-Garcia, D. Kotliar, H. C. Causton, P. Pochanard, E. Mozes, L. A. Garraway, and D. Pe'er. 2010. An integrated approach to uncover drivers of cancer. Cell 143 (6):1005-17.
  110. Cavazzana-Calvo, M., S. Hacein-Bey, G. de Saint Basile, F. Gross, E. Yvon, P. Nusbaum, F. Selz, C. Hue, S. Certain, J. L. Casanova, P. Bousso, F. L. Deist, and A. Fischer. 2000. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288 (5466):669-72.
  111. Bartek, J.; Iggo, R.; Gannon, J.; Lane, D. P. Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene 1990, 5 (6), 893−9. (45) Mooney, L. M.; Al-Sakkaf, K. A.; Brown, B. L.; Dobson, P. R.
  112. Hirschhorn, J. N., and M. J. Daly. 2005. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6 (2):95-108.
  113. Buckley, R. H., R. I. Schiff, S. E. Schiff, M. L. Markert, L. W. Williams, T. O. Harville, J. L. Roberts, and J. M. Puck. 1997. Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr 130 (3):378-87.
  114. Dixon, A. S.; Miller, G. D.; Bruno, B. J.; Constance, J. E.; Woessner, D. W.; Fidler, T. P.; Robertson, J. C.; Cheatham, T. E.; Lim, C. S. Improved coiled-coil design enhances interaction with Bcr-Abl and induces apoptosis. Mol. Pharmaceutics 2012, 9 (1), 187−95.
  115. Incorporating S189A and T193A mutations (i.e., iCE-Null, see Figure 3) led to a qualitative distribution difference between the iCE (punctate looking) and the diffuse iCE Null (Figure 8, compare " iCE " in the first row with " iCE Null " in the bottom row).
  116. Vigneri, P.; Wang, J. Y. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat. Med. 2001, 7 (2), 228−34.
  117. Erster, S., M. Mihara, R. H. Kim, O. Petrenko, and U. M. Moll. 2004. In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24 (15):6728-41.
  118. Crick, F. H. 1952. Is alpha-keratin a coiled coil? Nature 170 (4334):882-3.
  119. Shiraishi, K., S. Kato, S. Y. Han, W. Liu, K. Otsuka, M. Sakayori, T. Ishida, M. Takeda, R. Kanamaru, N. Ohuchi, and C. Ishioka. 2004. Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library. J Biol Chem 279 (1):348- 55.
  120. Edwards, S. W., C. M. Tan, and L. E. Limbird. 2000. Localization of G-protein-coupled receptors in health and disease. Trends Pharmacol Sci 21 (8):304-8.
  121. Soussi, T.; Ishioka, C.; Claustres, M.; Beroud, C. Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat. Rev. Cancer 2006, 6 (1), 83−90. (14) Soussi, T.; Wiman, K. G. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 2007, 12 (4), 303−12. (15) Goh, A. M.; Coffill, C. R.; Lane, D. P. The role of mutant p53 in human cancer. J. Pathol. 2011, 223 (2), 116−26. (16) Weinberg, R. L.; Freund, S. M.; Veprintsev, D. B.; Bycroft, M.; Fersht, A. R. Regulation of DNA binding of p53 by its C-terminal domain. J. Mol. Biol. 2004, 342 (3), 801−11. (17) Milner, J.; Medcalf, E. A. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 1991, 65 (5), 765−74. (18) Srivastava, S.; Wang, S.; Tong, Y. A.; Hao, Z. M.; Chang, E. H. Dominant negative effect of a germ-line mutant p53: a step fostering tumorigenesis. Canc. Res. 1993, 53 (19), 4452−5.
  122. Flume, P. A., P. J. Mogayzel Jr, K. A. Robinson, R. L. Rosenblatt, L. Quittell, B. C. Marshall, and Committee Clinical Practice Guidelines For Pulmonary Therapies. 2010. Cystic Fibrosis Pulmonary Guidelines: Pulmonary Complications: Hemoptysis and Pneumothorax. Am J Respir Crit Care Med.
  123. Krohn, A. J.; Wahlbrink, T.; Prehn, J. H. Mitochondrial depolarization is not required for neuronal apoptosis. J. Neurosci. 1999, 19, 7394−7404. (30) Grabarek, J.; Amstad, P.; Darzynkiewicz, Z. Use of fluorescently labeled caspase inhibitors as affinity labels to detect activated caspases.
  124. Isaya, G.; Fenton, W. A.; Hendrick, J. P.; Furtak, K.; Kalousek, F.; Rosenberg, L. E. Mitochondrial import and processing of mutant human ornithine transcarbamylase precursors in cultured cells. Mol. Cell. Biol. 1988, 8 (12), 5150−8. (10) Rizzuto, R.; Simpson, A. W.; Brini, M.; Pozzan, T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 1992, 358 (6384), 325−7.
  125. Lecoeur, H.; de Oliveira-Pinto, L. M.; Gougeon, M. L. Multiparametric flow cytometric analysis of biochemical and functional events associated with apoptosis and oncosis using the 7-amino- actinomycin D assay. J. Immunol. Methods 2002, 265 (1−2), 81−96. (24) Mossalam, M.; Matissek, K. J.; Okal, A.; Constance, J. E.; Lim, C. S. Direct Induction of Apoptosis Using an Optimal Mitochondrially Targeted p53. Mol. Pharmaceutics 2012, 9 (5), 1449−58.
  126. Wang, W.; Cheng, B.; Miao, L.; Mei, Y.; Wu, M. Mutant p53- R273H gains new function in sustained activation of EGFR signaling via suppressing miR-27a expression. Cell Death Dis. 2013, 4, e574. (51) Lim, L. Y.; Vidnovic, N.; Ellisen, L. W.; Leong, C. O. Mutant p53 mediates survival of breast cancer cells. Br. J. Cancer 2009, 101 (9), 1606−12.
  127. M.; Karlsson, C.; Swolin, B.; Bergo, M. O. Nf1 deficiency cooperates with oncogenic K-RAS to induce acute myeloid leukemia in mice. Blood 2009, 114 (17), 3629−32. (32) Brockschmidt, C.; Hirner, H.; Huber, N.; Eismann, T.; Hillenbrand, A.; Giamas, G.; Radunsky, B.; Ammerpohl, O.; Bohm, B.; Henne-Bruns, D.; Kalthoff, H.; Leithauser, F.; Trauzold, A.; Knippschild, U. Anti-apoptotic and growth-stimulatory functions of CK1 delta and epsilon in ductal adenocarcinoma of the pancreas are inhibited by IC261 in vitro and in vivo. Gut 2008, 57 (6), 799−806. (33) Reaz, S.; Mossalam, M.; Okal, A.; Lim, C. S. A Single Mutant, A276S of p53, Turns the Switch to Apoptosis. Mol. Pharmaceutics 2013, 10, 1350−9. (34) el-Deiry, W. S.; Tokino, T.; Velculescu, V. E.; Levy, D. B.; Parsons, R.; Trent, J. M.; Lin, D.; Mercer, W. E.; Kinzler, K. W.; Vogelstein, B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993, 75 (4), 817−25.
  128. Murine mammary adenocarcinoma 1471.1 cells, (gift from Gordon Hager, PhD, NCI, NIH) were grown as monolayers in DMEM supplemented with 10% FBS, 1% P-S-G, and 0.1% gentamycin. K562 cells were passaged at a density of 0.5 × 10 5 / mL every other day, for ten passages. Cos-7 and 1471.1 cells were passaged at 80% confluency, split 1:10 in fresh media, and discontinued after passage 15. All cells were maintained in a 5% CO 2 incubator at 37 °C. Expression of Constructs in K562 Leukemia, Cos-7
  129. Kobayashi, N., K. Agematsu, K. Sugita, M. Sako, S. Nonoyama, A. Yachie, S. Kumaki, S. Tsuchiya, H. D. Ochs, Y. Fukushima, and A. Komiyama. 2003. Novel Artemis gene mutations of radiosensitive severe combined immunodeficiency in Japanese families. Hum Genet 112 (4):348-52.
  130. Rodriguez, J. A., S. Schuchner, W. W. Au, M. Fabbro, and B. R. Henderson. 2004. Nuclear- cytoplasmic shuttling of BARD1 contributes to its proapoptotic activity and is regulated by dimerization with BRCA1. Oncogene 23 (10):1809-20.
  131. Shaulsky, G.; Goldfinger, N.; Tosky, M. S.; Levine, A. J.; Rotter, V. Nuclear localization is essential for the activity of p53 protein. Oncogene 1991, 6 (11), 2055−65.
  132. Kau, T. R., J. C. Way, and P. A. Silver. 2004. Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4 (2):106-17.
  133. Kern, S. E.; Pietenpol, J. A.; Thiagalingam, S.; Seymour, A.; Kinzler, K. W.; Vogelstein, B. Oncogenic forms of p53 inhibit p53- regulated gene expression. Science 1992, 256 (5058), 827−30. (20) Lee, M. K.; Teoh, W. W.; Phang, B. H.; Tong, W. M.; Wang, Z.
  134. Baptiste, N.; Prives, C. p53 in the cytoplasm: a question of overkill? Cell 2004, 116 (4), 487−9. (10) Peng, Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Human Gene Ther. 2005, 16 (9), 1016−27. (11) de Vries, A.; Flores, E. R.; Miranda, B.; Hsieh, H. M.; van Oostrom, C. T.; Sage, J.; Jacks, T. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc.
  135. Bcr-Abl (i.e., pIMM-EGFP-Bcr-Abl-KD) was made using site directed mutagenesis with the primer 5′-CTGACGGTGGCCGT- GGCGACCTTGAAGGAGGAC-3′ and its reverse compliment.
  136. Abl, p-Crk-L, p-STAT5, and elF4E as the protein loading control. Primary antibody labels (anti-pAbl (Y245), anti-pCrk-L (Y207), and anti-elF4E, Cell Signaling Technology; anti-pSTAT5 (Y694),
  137. Di Como, C. J.; Gaiddon, C.; Prives, C. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol. Cell. Biol. 1999, 19 (2), 1438−49.
  138. Yu, J.; Zhang, L.; Hwang, P. M.; Kinzler, K. W.; Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 2001, 7 (3), 673−82.
  139. Beaupre, D. M., and R. Kurzrock. 1999. RAS and leukemia: from basic mechanisms to gene- directed therapy. J Clin Oncol 17 (3):1071-9.
  140. Afar, D. E.; Han, L.; McLaughlin, J.; Wong, S.; Dhaka, A.; Parmar, K.; Rosenberg, N.; Witte, O. N.; Colicelli, J. Regulation of the oncogenic activity of BCR-ABL by a tightly bound substrate protein RIN1. Immunity 1997, 6 (6), 773−82. (15) Robin, M. A.; Prabu, S. K.; Raza, H.; Anandatheerthavarada, H.
  141. Kim, P. M., L. J. Lu, Y. Xia, and M. B. Gerstein. 2006. Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314 (5807):1938-41.
  142. Figure 8. Representative images of the subcellular localization of the iCE (or iCE Null, see Figure 3) in K562, Cos-7, and 1471.1 cells and compared to MitoTracker. The iCE did not localize to the mitochondria of K562, Cos-7 or 1471.1 cells. Scale bars are 5 μm.
  143. Ventura, A., D. G. Kirsch, M. E. McLaughlin, D. A. Tuveson, J. Grimm, L. Lintault, J. Newman, E. E. Reczek, R. Weissleder, and T. Jacks. 2007. Restoration of p53 function leads to tumour regression in vivo. Nature 445 (7128):661-5.
  144. Dong, P.; Tada, M.; Hamada, J.; Nakamura, A.; Moriuchi, T.; Sakuragi, N. p53 dominant-negative mutant R273H promotes invasion and migration of human endometrial cancer HHUA cells. Clin. Exp. Metastasis 2007, 24 (6), 471−83.
  145. Lee, W.; Harvey, T. S.; Yin, Y.; Yau, P.; Litchfield, D.; Arrowsmith, C. H. Solution structure of the tetrameric minimum transforming domain of p53. Nat. Struct. Biol. 1994, 1 (12), 877−90. (24) Wichmann, C.; Becker, Y.; Chen-Wichmann, L.; Vogel, V.; Vojtkova, A.; Herglotz, J.; Moore, S.; Koch, J.; Lausen, J.; Mantele, W.; Gohlke, H.; Grez, M. Dimer-tetramer transition controls RUNX1/ ETO leukemogenic activity. Blood 2010, 116 (4), 603−13.
  146. Ryan, B. M., N. O'Donovan, and M. J. Duffy. 2009. Survivin: a new target for anti-cancer therapy. Cancer Treat Rev 35 (7):553-62.
  147. Altieri, D. C. 2008. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8 (1):61-70.
  148. Kumar, S.; Bharti, A.; Mishra, N. C.; Raina, D.; Kharbanda, S.; Saxena, S.; Kufe, D. Targeting of the c-Abl tyrosine kinase to mitochondria in the necrotic cell death response to oxidative stress. J. Biol. Chem. 2001, 276 (20), 17281−5. (6) Constance, J. E.; Despres, S. D.; Nishida, A.; Lim, C. S. Selective Targeting of c-Abl via a Cryptic Mitochondrial Targeting Signal Activated by Cellular Redox Status in Leukemic and Breast Cancer Cells. Pharm. Res. 2012, 29 (8), 2317−28.
  149. Sattler, M.; Verma, S.; Shrikhande, G.; Byrne, C. H.; Pride, Y. B.; Winkler, T.; Greenfield, E. A.; Salgia, R.; Griffin, J. D. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J. Biol. Chem. 2000, 275 (32), 24273−8.
  150. Maru, Y.; Witte, O. N. The BCR gene encodes a novel serine/ threonine kinase activity within a single exon. Cell 1991, 67 (3), 459− 68.
  151. The cellular distribution of IMS-ccmut3 (mitochondrial) and RIN-cMTS (cytoplasmic) remained the same in the presence of 10 μM imatinib (data not shown).
  152. ± 0.03, for EGFP and Bcr-Abl). The cMTS alone localized to the mitochondria (Figure 7C, cMTS in K562 (top) and 1471.1 (bottom) compared to MitoTracker) in K562 and 1471.1 cells with higher oxidative backgrounds but not in the " low ROS " Cos-7 (Figure 7A, third row from top). 6
  153. The difference between the iCE and the iCE Null are the S189A and T193A mutations preventing phosphorylation at these sites in the cMTS domain of the iCE Null (Figure 3).
  154. The iCE Did Not Associate with the Mitochondria.
  155. Altieri, D. C. 2001. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med 7 (12):542-7.
  156. Vita, M., and M. Henriksson. 2006. The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16 (4):318-30.
  157. Abl, respectively. The pOTC-EGFP-Bcr-Abl was created using an oligonucleotide encoding the MTS from OTC (incorporating the Kozak sequence), 5′-CCGGTCGCCACCATGCTGTTT- AATCTGAGGATCCTGTTAAACAATGCAGCTTTTAGA- AATGGTCACAACTTCATGGTTCGAAATTTTCGGTGT- GGACAACCACTACAAAATAAAGTGCAGCGA-3′, which was annealed to its complementary strand and subsequently cloned into the AgeI site of EGFP-Bcr-Abl. The pIMS-EGFP-
  158. Abo-Auda, W., and R. L. Benza. 2003. Therapeutic angiogenesis: review of current concepts and future directions. J Heart Lung Transplant 22 (4):370-82.
  159. Chene, P. 2001. The role of tetramerization in p53 function. Oncogene 20 (21):2611-7.
  160. Preyer, M.; Vigneri, P.; Wang, J. Y. Interplay between kinase domain autophosphorylation and F-actin binding domain in regulating imatinib sensitivity and nuclear import of BCR-ABL. PLoS One 2011, 6 (2), e17020. (34) Warmuth, M.; Bergmann, M.; Priess, A.; Hauslmann, K.; Emmerich, B.; Hallek, M. The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr. J. Biol. Chem. 1997, 272 (52), 33260−70. (35) Vigil, D.; Cherfils, J.; Rossman, K. L.; Der, C. J. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat. Rev. Cancer 2010, 10 (12), 842−57. (36) Vichalkovski, A.; Kotevic, I.; Gebhardt, N.; Kaderli, R.; Porzig, H. Tyrosine kinase modulation of protein kinase C activity regulates G protein-linked Ca2+ signaling in leukemic hematopoietic cells. Cell Calcium 2006, 39 (6), 517−28. (37) Pellicano, F.; Copland, M.; Jorgensen, H. G.; Mountford, J.; Leber, B.; Holyoake, T. L. BMS-214662 induces mitochondrial apoptosis in chronic myeloid leukemia (CML) stem/progenitor cells, including CD34 + 38-cells, through activation of protein kinase Cbeta. Blood 2009, 114 (19), 4186−96. (38) Robert, G.; Ben Sahra, I.; Puissant, A.; Colosetti, P.; Belhacene, N.; Gounon, P.; Hofman, P.; Bost, F.; Cassuto, J. P.; Auberger, P.
  161. The Toxic Effect of the iCE Is Dependent upon the Key Phospho Residues in the cMTS Domain. Incorporat- ing S189A and T193A mutations (i.e., iCE-Null, see Figure 3) into the cMTS domain of the iCE leads to a significant reduction in cell death (i.e., 7-AAD) and apoptosis (e.g., annexin−APC) in K562 cells at 48 h (Figures 10A and C, compare iCE to iCE Null columns). However, this effect is
  162. Zhao, J., T. Tenev, L. M. Martins, J. Downward, and N. R. Lemoine. 2000. The ubiquitin- proteasome pathway regulates survivin degradation in a cell cycle-dependent manner. J Cell Sci 113 Pt 23:4363-71
  163. Transfected cells were immediately transferred to a 25 cm 2
  164. Cavazzana-Calvo, M., E. Payen, O. Negre, G. Wang, K. Hehir, F. Fusil, J. Down, M. Denaro, T. Brady, K. Westerman, R. Cavallesco, B. Gillet-Legrand, L. Caccavelli, R. Sgarra, L. Maouche-Chretien, F. Bernaudin, R. Girot, R. Dorazio, G. J. Mulder, A. Polack, A. Bank, J. Soulier, J. Larghero, N. Kabbara, B. Dalle, B. Gourmel, G. Socie, S. Chretien, N. Cartier, P. Aubourg, A. Fischer, K. Cornetta, F. Galacteros, Y. Beuzard, E. Gluckman, F. Bushman, S. Hacein-Bey-Abina, and P. Leboulch. 2010. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 467 (7313):318-22.
  165. Unlike the cMTS alone which colocalized with the mitochon- dria in both K562 and 1471.1 cells 6 (Figure 7C), the iCE remained cytoplasmic in its distribution across all three cell types (Figure 8, compare " iCE " column to " MitoTracker " column, first through third rows). In K562 cells the ccmut3 alone colocalized with Bcr-Abl and the cMTS alone colocalized with the mitochondria (Figure 7C, top), but the iCE did not localize to the mitochondria (Figure 8, first row).
  166. Altieri, D. C. 2003. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3 (1):46- 54.
  167. Waldman, T.; Kinzler, K. W.; Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995, 55 (22), 5187−90. (38) Loo, D. T.; Rillema, J. R. Measurement of cell death. Methods Cell Biol. 1998, 57, 251−64.
  168. Abrogation of the cell death response to oxidative stress by the c-Abl tyrosine kinase inhibitor STI571. Mol. Pharmacol. 2003, 63 (2), 276− 82.
  169. Siegmund, K. H., U. E. Steiner, and C. Richert. 2003. ChipCheck--a program predicting total hybridization equilibria for DNA binding to small oligonucleotide microarrays. J Chem Inf Comput Sci 43 (6):2153-62.
  170. Kato, J., Y. Kuwabara, M. Mitani, N. Shinoda, A. Sato, T. Toyama, A. Mitsui, T. Nishiwaki, S. Moriyama, J. Kudo, and Y. Fujii. 2001. Expression of survivin in esophageal cancer: correlation with the prognosis and response to chemotherapy. Int J Cancer 95 (2): 92-5.
  171. Edelstein, M. L., M. R. Abedi, and J. Wixon. 2007. Gene therapy clinical trials worldwide to 2007--an update. J Gene Med 9 (10):833-42.
  172. Wood, B. P. 1997. Cystic fibrosis: 1997. Radiology 204 (1):1-10.
  173. Gorner, K., E. Holtorf, J. Waak, T. T. Pham, D. M. Vogt-Weisenhorn, W. Wurst, C. Haass, and P. J. Kahle. 2007. Structural determinants of the C-terminal helix-kink-helix motif essential for protein stability and survival promoting activity of DJ-1. J Biol Chem 282 (18):13680-91.
  174. Consortium, International HapMap. 2003. The International HapMap Project. Nature 426 (6968):789-96.
  175. Foundation, Cystic Fibrosis. 2011. Cystic Fibrosis Foundation 2011 [cited 01/18/2011 2011]. Available from http://www.cff.org/.
  176. CardioVascular BioTherapeutics, Inc. 2011. Fibroblast Growth Factor-1 (FGF-1) for the Treatment of Coronary Heart Disease (ACORD) [cited 03/2011 2011]. Available from http://www.clinicaltrials.gov/ct2/show/NCT00117936?term=henry+FGF&rank=1.
  177. Yu, W., and H. Fang. 2007. Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 7 (2):141-8.
  178. K.; Avadhani, N. G. Phosphorylation enhances mitochondrial targeting of GSTA4−4 through increased affinity for binding to cytoplasmic Hsp70. J. Biol. Chem. 2003, 278 (21), 18960−70. (16) Strober, W. Trypan blue exclusion test of cell viability. Curr.
  179. Ohashi, K.; Gotoda, T.; Nagai, R.; Kimura, S.; Ishibashi, S.; Osuga, J.; Yamada, N. p53 Activation in adipocytes of obese mice. J. Biol. Chem. 2003, 278 (28), 25395−400.
  180. Sun, H. X., H. W. He, S. H. Zhang, T. G. Liu, K. H. Ren, Q. Y. He, and R. G. Shao. 2009. Suppression of N-Ras by shRNA-expressing plasmid increases sensitivity of HepG2 cells to vincristine-induced growth inhibition. Cancer Gene Ther 16 (9):693- 702.
  181. Tehrani, A. M., S. K. Hwang, T. H. Kim, C. S. Cho, J. Hua, W. S. Nah, J. T. Kwon, J. S. Kim, S. H. Chang, K. N. Yu, S. J. Park, D. R. Bhandari, K. H. Lee, G. H. An, G. R. Beck, Jr., and M. H. Cho. 2007. Aerosol delivery of Akt controls protein translation in the lungs of dual luciferase reporter mice. Gene Ther 14 (5):451-8.
  182. Glover, J. N., and S. C. Harrison. 1995. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature 373 (6511):257-61.
  183. Vogelstein, B., D. Lane, and A. J. Levine. 2000. Surfing the p53 network. Nature 408 (6810):307-10.
  184. S. Structure of the Bcr-Abl oncoprotein oligomerization domain. Nat.
  185. Weatherall, D. J. 1976. Molecular pathology of the thalassemia disorders. West J Med 124 (5):388-402.
  186. McLure, K. G.; Lee, P. W. How p53 binds DNA as a tetramer.
  187. Boucher, R. C., C. U. Cotton, J. T. Gatzy, M. R. Knowles, and J. R. Yankaskas. 1988. Evidence for reduced Cl-and increased Na+ permeability in cystic fibrosis human primary cell cultures. J Physiol 405:77-103.
  188. Chinen, J., J. Davis, S. S. De Ravin, B. N. Hay, A. P. Hsu, G. F. Linton, N. Naumann, E. Y. Nomicos, C. Silvin, J. Ulrick, N. L. Whiting-Theobald, H. L. Malech, and J. M. Puck. 2007. Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency. Blood 110 (1):67-73.
  189. Kakar, M., J. R. Davis, S. E. Kern, and C. S. Lim. 2007. Optimizing the protein switch: altering nuclear import and export signals, and ligand binding domain. J Control Release 120 (3):220-32.
  190. Apoptotic mechanisms in T47D and MCF-7 human breast cancer cells. Br. J. Cancer 2002, 87 (8), 909−17.
  191. Taylor, C. M.; Keating, A. E. Orientation and oligomerization specificity of the Bcr coiled-coil oligomerization domain. Biochemistry 2005, 44 (49), 16246−56.
  192. J. Controlled Release 2009, 140 (3), 245−9. (30) Barkic, M.; Crnomarkovic, S.; Grabusic, K.; Bogetic, I.; Panic, L.; Tamarut, S.; Cokaric, M.; Jeric, I.; Vidak, S.; Volarevic, S. The p53 tumor suppressor causes congenital malformations in Rpl24-deficient mice and promotes their survival. Mol. Cell. Biol. 2009, 29 (10), 2489− 504. (31) Cutts, B. A.; Sjogren, A. K.; Andersson, K. M.; Wahlstrom, A.
  193. Dixon, A. S., M. Kakar, K. M. Schneider, J. E. Constance, B. C. Paullin, and C. S. Lim. 2009. Controlling subcellular localization to alter function: Sending oncogenic Bcr-Abl to the nucleus causes apoptosis. J Control Release 140 (3):245-9.
  194. Vaseva, A. V.; Moll, U. M. The mitochondrial p53 pathway.
  195. Vaseva, A. V., N. D. Marchenko, and U. M. Moll. 2009. The transcription-independent mitochondrial p53 program is a major contributor to nutlin-induced apoptosis in tumor cells. Cell Cycle 8 (11):1711-9.
  196. Baumgartner, I., N. Chronos, A. Comerota, T. Henry, J. P. Pasquet, F. Finiels, A. Caron, J. F. Dedieu, R. Pilsudski, and P. Delaere. 2009. Local gene transfer and expression following intramuscular administration of FGF-1 plasmid DNA in patients with critical limb ischemia. Mol Ther 17 (5):914-21.
  197. Guo, Z. S., S. H. Thorne, and D. L. Bartlett. 2008. Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta 1785 (2):217-31.
  198. Kitchen, S. G., S. Shimizu, and D. S. An. 2011. Stem cell-based anti-HIV gene therapy. Virology 411 (2):260-72.
  199. Dixon, A. S.; Pendley, S. S.; Bruno, B. J.; Woessner, D. W.; Shimpi, A. A.; Cheatham, T. E., 3rd; Lim, C. S. Disruption of Bcr-Abl coiled coil oligomerization by design. J. Biol. Chem. 2011, 286 (31), 27751−60.
  200. Harvey, B. G., P. L. Leopold, N. R. Hackett, T. M. Grasso, P. M. Williams, A. L. Tucker, R. J. Kaner, B. Ferris, I. Gonda, T. D. Sweeney, R. Ramalingam, I. Kovesdi, S. Shak, and R. G. Crystal. 1999. Airway epithelial CFTR mRNA expression in cystic fibrosis patients after repetitive administration of a recombinant adenovirus. J Clin Invest 104 (9):1245-55.
  201. Testa, J. R., and A. Bellacosa. 2001. AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 98 (20):10983-5.
  202. Project, The International HapMap. 426. The International HapMap Project (2003/12/20), Dec 18 2003 [cited 6968 426]. Available from http://www.ncbi.nlm.nih.gov/pubmed/14685227.
  203. Gupta, M.; Milani, L.; Hermansson, M.; Simonsson, B.; Markevarn, B.; Syvanen, A. C.; Barbany, G. Expression of BCR- ABL1 oncogene relative to ABL1 gene changes overtime in chronic myeloid leukemia. Biochem. Biophys. Res. Commun. 2008, 366 (3), 848−51.
  204. Dahlmann, B. 2007. Role of proteasomes in disease. BMC Biochem 8 Suppl 1:S3.
  205. Bolte, S.; Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224 (Part 3), 213−32.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten