Publikationsserver der Universitätsbibliothek Marburg

Titel:Genomics and Transcriptomics of the sebacinoid fungi Piriformospora indica and Sebacina vermifera
Autor:Lahrmann, Urs
Weitere Beteiligte: Zuccaro, Alga (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0106
DOI: https://doi.org/10.17192/z2014.0106
URN: urn:nbn:de:hebis:04-z2014-01064
DDC: Biowissenschaften, Biologie
Titel (trans.):Genom und Transkriptomanalysen der sebacinoiden Pilze Piriformospora indica and Sebacina vermifera
Publikationsdatum:2014-03-11
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Piriformospora indica, Bioinformatik, Sebacina vermifera, Arabidopsis thaliana, Genomics, Hordeum vulgare, Genom, Transkriptom, Microarray, Transcriptomics

Summary:
The root endophyte Piriformospora indica and the orchid mycorrhiza Sebacina vermifera (Sebacinales, Basidiomycota) are able to establish a mutualistic symbiosis with plants. Both fungi colonize the root cortex of a wide range of vascular plants, including the monocot barley (Hordeum vulgare) and the dicot Arabidopsis thaliana. Colonization by the fungi results in growth promotion and induced resistance against abiotic and biotic stresses. Fungal development in roots combines biotrophic growth in living plant cells and cell-death associated colonization of dead cortex cells. These features together with the possibility to cultivate the fungi on synthetic media reveal substantial phenotypic plasticity which is reflected in their genomic traits. In this study, the genomes of Piriformospora indica and Sebacina vermifera were characterized. It could be shown that certain gene and functional protein domain expansions occurred in both species. These included proteins predicted to be involved in intra- and extracellular transport (Transporters), proteolysis (Peptidases), degradation of carbohydrates (Hydrolases) and non-destructive carbohydrate binding (Lectins). Additionally, a novel family of small secreted proteins was identified in P. indica which is characterized by regular distributed histidine and alanine residues and a conserved seven amino acid motif ("RSIDELD") at the C-terminus. On the other side, the number proteins involved in secondary metabolism, in particular polyketide and nonribosomal peptide synthetases, were shown to be strongly reduced in both fungi which is indicative of the non pathogenic character of P. indica and S. vermifera. By using microarrays and RNA-sequencing, a time- and host-specific expression of genes could be shown in P. indica during colonization of barley- or Arabidopsis roots. A first comparative analyses of genes expressed in S. vermifera and P. indica during colonization of Arabidopsis suggests that defined differences exist during the colonization of this host by both analysed fungi.

Bibliographie / References

  1. Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., and Ton, J. (2011). Callose Deposition: A Multifaceted Plant Defense Response. Molecular Plant-Microbe Interactions 24, 183–193.
  2. Sherameti, I., Tripathi, S., Varma, A., and Oelmüller, R. (2008). The Root-Colonizing Endophyte Pirifomospora indica Confers Drought Tolerance in Arabidopsis by Stimulating the Expression of Drought Stress–Related Genes in Leaves. Molecular Plant-Microbe Interactions 21, 799–807.
  3. Nadal, M., Garcia-Pedrajas, M.D., and Gold, S.E. (2010). The snf1 Gene of Ustilago maydis Acts as a Dual Regulator of Cell Wall Degrading Enzymes. Phytopathology 100, 1364–1372.
  4. Metzker, M.L. (2010). Sequencing technologies — the next generation. Nat Rev Genet 11, 31–46.
  5. Usadel, B., Nagel, A., Thimm, O., Redestig, H., Blaesing, O.E., Palacios-Rojas, N., Selbig, J., Hannemann, J., Piques, M.C., Steinhauser, D., et al. (2005). Extension of the Visualization Tool MapMan to Allow Statistical Analysis of Arrays, Display of Coresponding Genes, and Comparison with Known Responses. Plant Physiol 138, 1195–1204.
  6. Cokol, M., Nair, R., and Rost, B. (2000). Finding nuclear localization signals. EMBO Reports 1, 411–415.
  7. Li, J., Yu, L., Tian, Y., and Zhang, K.-Q. (2012). Molecular Evolution of the Deuterolysin (M35) Family Genes in Coccidioides. PLoS ONE 7, e31536.
  8. Galagan, J.E., Calvo, S.E., Borkovich, K.A., Selker, E.U., Read, N.D., Jaffe, D., FitzHugh, W., Ma, L.-J., Smirnov, S., Purcell, S., et al. (2003). The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868.
  9. D'Andrea, L.D., and Regan, L. (2003). TPR proteins: the versatile helix. Trends in Biochemical Sciences 28, 655–662.
  10. Van Esse, H.P., Klooster, J.W. van't, Bolton, M.D., Yadeta, K.A., Baarlen, P. van, Boeren, S., Vervoort, J., Wit, P.J.G.M. de, and Thomma, B.P.H.J. (2008). The Cladosporium fulvum
  11. Varma, A., Kost, G., and Oelmüller, R. (2013). Piriformospora indica (Springer).
  12. Grigoriev, I.V., Cullen, D., Goodwin, S.B., Hibbett, D., Jeffries, T.W., Kubicek, C.P., Kuske, C., Magnuson, J.K., Martin, F., Spatafora, J.W., et al. (2011). Fueling the future with fungal genomics. Mycology: An International Journal on Fungal Biology 2, 192–209.
  13. Dai, Y., Wang, H., Li, B., Huang, J., Liu, X., Zhou, Y., Mou, Z., and Li, J. (2006). Increased Expression of MAP KINASE KINASE7 Causes Deficiency in Polar Auxin Transport and Leads to Plant Architectural Abnormality in Arabidopsis. Plant Cell 18, 308–320.
  14. Sonnhammer, E.L., von Heijne, G., and Krogh, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6, 175–182.
  15. Parra, M.E., Evans, C.B., and Taylor, D.W. (1991). Identification of Plasmodium falciparum histidine-rich protein 2 in the plasma of humans with malaria. J Clin Microbiol 29, 1629– 1634.
  16. Miao, Y., Jiang, J., Ren, Y., and Zhao, Z. (2013). The single-stranded DNA binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis thaliana. Plant Physiol. pp.113.223412.
  17. Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genetics and Biology 46, 427–435.
  18. Stefanato, F.L., Abou-Mansour, E., Buchala, A., Kretschmer, M., Mosbach, A., Hahn, M., Bochet, C.G., Métraux, J.-P., and Schoonbeek, H. (2009). The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. The Plant Journal 58, 499–510.
  19. Schlaeppi, K., Abou-Mansour, E., Buchala, A., and Mauch, F. (2010). Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. The Plant Journal 62, 840–851.
  20. Medema, M.H., Blin, K., Cimermancic, P., Jager, V. de, Zakrzewski, P., Fischbach, M.A., Weber, T., Takano, E., and Breitling, R. (2011). antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucl. Acids Res. 39, W339–W346.
  21. Rawlings, N.D., Barrett, A.J., and Bateman, A. (2011). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research 40, D343–D350.
  22. Van Loon, L., and Van Strien, E. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology 55, 85–97.
  23. Van der Ent, S., Van Wees, S.C.M., and Pieterse, C.M.J. (2009). Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70, 1581–1588.
  24. Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Körbes, A.P., Memelink, J., Pieterse, C.M.J., and Ritsema, T. (2010). Ethylene Signaling Renders the Jasmonate Response of Arabidopsis Insensitive to Future Suppression by Salicylic Acid. Molecular Plant-Microbe Interactions 23, 187–197.
  25. Kikot, G.E., Hours, R.A., and Alconada, T.M. (2009). Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review. Journal of Basic Microbiology 49, 231–241.
  26. Pham, G.H., Kumari, R., Singh, A., Malla, R., Prasad, R., Sachdev, M., Kaldorf, M., Buscot, F., Oelmüller, R., Hampp, R., et al. (2008). Axenic Culture of Symbiotic Fungus Piriformospora indica. In Plant Surface Microbiology, A. Varma, L. Abbott, D. Werner, and R. Hampp, eds. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 593–613.
  27. Kohorn, B.D., and Kohorn, S.L. (2012). The Cell Wall-Associated Kinases, WAKs, Regulate Cell Expansion and the Stress Response. In Receptor-like Kinases in Plants, F. Tax, and B.
  28. Pozo, M.J., Jung, S.C., López-Ráez, J.A., and Azcón-Aguilar, C. (2010). Impact of Arbuscular Mycorrhizal Symbiosis on Plant Response to Biotic Stress: The Role of Plant Defence Mechanisms. In Arbuscular Mycorrhizas: Physiology and Function, H. Koltai, and Y. Kapulnik, eds. (Springer Netherlands), pp. 193–207.
  29. Henry, C.M., and Deacon, J.W. (1981). Natural (non-pathogenic) death of the cortex of wheat and barley seminal roots, as evidenced by nuclear staining with acridine orange. Plant and Soil v. 60(2) p. 255-274.
  30. Ghimire, S.R., Charlton, N.D., and Craven, K.D. (2009). The Mycorrhizal Fungus, Sebacina vermifera, Enhances Seed Germination and Biomass Production in Switchgrass (Panicum virgatum L). Bioenerg. Res. 2, 51–58.
  31. Kloppholz, S., Kuhn, H., and Requena, N. (2011). A Secreted Fungal Effector of Glomus intraradices Promotes Symbiotic Biotrophy. Current Biology 21, 1204–1209.
  32. Lackner, G., Misiek, M., Braesel, J., and Hoffmeister, D. (2012). Genome mining reveals the evolutionary origin and biosynthetic potential of basidiomycete polyketide synthases. Fungal Genetics and Biology 49, 996–1003.
  33. Sterflinger, K., Tesei, D., and Zakharova, K. (2012). Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecology 5, 453–462.
  34. Zhu, Q., Zhang, J., Gao, X., Tong, J., Xiao, L., Li, W., and Zhang, H. (2010). The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457, 1–12.
  35. Møldrup, M.E., Salomonsen, B., Geu-Flores, F., Olsen, C.E., and Halkier, B.A. (2013). De novo genetic engineering of the camalexin biosynthetic pathway. Journal of Biotechnology 167, 296–301.
  36. Stassen, J.H., and Van den Ackerveken, G. (2011). How do oomycete effectors interfere with plant life? Current Opinion in Plant Biology 14, 407–414.
  37. Galagan, J.E., and Selker, E.U. (2004). RIP: the evolutionary cost of genome defense. Trends in Genetics 20, 417–423.
  38. Selker, E.U. (2002). Repeat-induced gene silencing in fungi. In Advances in Genetics, Jay C. Dunlap and C.-ting Wu, ed. (Academic Press), pp. 439–450.
  39. Koiwa, H., Bressan, R.A., and Hasegawa, P.M. (1997). Regulation of protease inhibitors and plant defense. Trends in Plant Science 2, 379–384.
  40. Weiß, M., and Oberwinkler, F. (2001). Phylogenetic relationships in Auriculariales and related groups—hypotheses derived from nuclear ribosomal DNA sequences. Mycological Research 105, 403–415.
  41. Urban, A., Weib, M., and Bauer, R. (2003). Ectomycorrhizas involving sebacinoid mycobionts. Mycological Research 107, 3–14.
  42. Liu, Y.-W., Han, C.-H., Lee, M.-H., Hsu, F.-L., and Hou, W.-C. (2003). Patatin, the Tuber Storage Protein of Potato (Solanum tuberosum L.), Exhibits Antioxidant Activity in Vitro. J. Agric. Food Chem. 51, 4389–4393.
  43. Liu, F., Jiang, H., Ye, S., Chen, W.-P., Liang, W., Xu, Y., Sun, B., Sun, J., Wang, Q., Cohen, J.D., et al. (2010). The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res 20, 539–552.
  44. Spoel, S.H., and Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12, 89–100.
  45. Keller, N.P., Turner, G., and Bennett, J.W. (2005). Fungal secondary metabolism -from biochemistry to genomics. Nat. Rev. Microbiol. 3, 937–947.
  46. Selosse, M.-A., Weiß, M., Jany, J.-L., and Tillier, A. (2002b). Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Molecular Ecology 11, 1831–1844.
  47. Wright, D.P., Scholes, J.D., and Read, D.J. (1998). Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant, Cell & Environment 21, 209–216.
  48. Matsushima, R., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2003). A novel ER- derived compartment, the ER body, selectively accumulates a β-glucosidase with an ER- retention signal in Arabidopsis. The Plant Journal 33, 493–502.
  49. Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate- containing plant species. New Phytologist 146, 343–352.
  50. Selosse, M.-A., Bauer, R., and Moyersoen, B. (2002a). Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytologist 155, 183–195.
  51. Serrano, R., Martín, H., Casamayor, A., and Ariño, J. (2006). Signaling Alkaline pH Stress in the Yeast Saccharomyces cerevisiae through the Wsc1 Cell Surface Sensor and the Slt2 MAPK Pathway. J. Biol. Chem. 281, 39785–39795.
  52. Regvar, M., Vogel, K., Irgel, N., Wraber, T., Hildebrandt, U., Wilde, P., and Bothe, H. (2003). Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. Journal of Plant Physiology 160, 615–626.
  53. Saavedra, M.J., Dias, C.S.P., Martinez-Murcia, A., Bennett, R.N., Aires, A., and Rosa, E.A.S. (2012). Antibacterial Effects of Glucosinolate-Derived Hydrolysis Products Against Enterobacteriaceae and Enterococci Isolated from Pig Ileum Segments. Foodborne Pathogens and Disease 9, 338–345.
  54. Stanke, M., and Waack, S. (2003). Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225.
  55. Price, A.L., Jones, N.C., and Pevzner, P.A. (2005). De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358.
  56. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676.
  57. Park, J., Park, J., Jang, S., Kim, S., Kong, S., Choi, J., Ahn, K., Kim, J., Lee, S., Kim, S., et al. (2008). FTFD: an informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Bioinformatics 24, 1024–1025.
  58. Li, H., Dai, X., and Zhao, X. (2008). A nearest neighbor approach for automated transporter prediction and categorization from protein sequences. Bioinformatics 24, 1129–1136.
  59. Murphy, C., Powlowski, J., Wu, M., Butler, G., and Tsang, A. (2011). Curation of characterized glycoside hydrolases of Fungal origin. Database 2011, bar020–bar020.
  60. Schützendübel, A., and Polle, A. (2002). Plant responses to abiotic stresses: heavy metal‐induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53, 1351–1365.
  61. Lopez-Raez, J.A., Verhage, A., Fernandez, I., Garcia, J.M., Azcon-Aguilar, C., Flors, V., and Pozo, M.J. (2010). Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61, 2589–2601.
  62. Rudolph, M., Schlereth, A., Körner, M., Feussner, K., Berndt, E., Melzer, M., Hornung, E., and Feussner, I. (2011). The lipoxygenase-dependent oxygenation of lipid body membranes is promoted by a patatin-type phospholipase in cucumber cotyledons. J. Exp. Bot. 62, 749–760.
  63. Pel, M.J.C., and Pieterse, C.M.J. (2012). Microbial recognition and evasion of host immunity. J. Exp. Bot.
  64. Le, S.Q., and Gascuel, O. (2008). An Improved General Amino Acid Replacement Matrix.
  65. Gouy, M., Guindon, S., and Gascuel, O. (2010). SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Mol Biol Evol 27, 221–224.
  66. Stress-and Pathogen-Induced Arabidopsis WRKY48 is a Transcriptional Activator that Represses Plant Basal Defense. Mol. Plant 1, 459–470.
  67. Jiang, Y., Liang, G., and Yu, D. (2012). Activated Expression of WRKY57 Confers Drought Tolerance in Arabidopsis. Mol. Plant 5, 1375–1388.
  68. Lowe, T.M., and Eddy, S.R. (1997). tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucl. Acids Res. 25, 0955–0964.
  69. Lukashin, A.V., and Borodovsky, M. (1998). GeneMark.hmm: New solutions for gene finding. Nucl. Acids Res. 26, 1107–1115.
  70. Laslett, D., and Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucl. Acids Res. 32, 11–16.
  71. Pruitt, K.D., Tatusova, T., and Maglott, D.R. (2007). NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35, D61–D65.
  72. Winnenburg, R., Urban, M., Beacham, A., Baldwin, T.K., Holland, S., Lindeberg, M., Hansen, H., Rawlings, C., Hammond-Kosack, K.E., and Köhler, J. (2008). PHI-base update: additions to the pathogen–host interaction database. Nucl. Acids Res. 36, D572–D576.
  73. Walter, M.C., Rattei, T., Arnold, R., Güldener, U., Münsterkötter, M., Nenova, K., Kastenmüller, G., Tischler, P., Wölling, A., Volz, A., et al. (2009). PEDANT covers all complete RefSeq genomes. Nucl. Acids Res. 37, D408–D411.
  74. Letunic, I., Doerks, T., and Bork, P. (2009). SMART 6: recent updates and new developments. Nucl. Acids Res. 37, D229–D232.
  75. Parra, G., Bradnam, K., Ning, Z., Keane, T., and Korf, I. (2009). Assessing the gene space in draft genomes. Nucl. Acids Res. 37, 289–297.
  76. Markowitz, V.M., Chen, I.-M.A., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Jacob, B., Huang, J., Williams, P., et al. (2011). IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Research 40, D115–D122.
  77. Grigoriev, I.V., Nordberg, H., Shabalov, I., Aerts, A., Cantor, M., Goodstein, D., Kuo, A., Minovitsky, S., Nikitin, R., Ohm, R.A., et al. (2012). The Genome Portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40, D26–D32.
  78. Stein, E., Molitor, A., Kogel, K.-H., and Waller, F. (2008). Systemic Resistance in Arabidopsis Conferred by the Mycorrhizal Fungus Piriformospora indica Requires Jasmonic Acid Signaling and the Cytoplasmic Function of NPR1. Plant Cell Physiol 49, 1747–1751.
  79. Nielsen, H., Engelbrecht, J., Brunak, S., and Heijne, G. von (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6.
  80. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol 59, 307–321.
  81. Coleman, J.J., White, G.J., Rodriguez-Carres, M., and VanEtten, H.D. (2011). An ABC Transporter and a Cytochrome P450 of Nectria haematococca MPVI Are Virulence Factors on Pea and Are the Major Tolerance Mechanisms to the Phytoalexin Pisatin. Molecular Plant- Microbe Interactions 24, 368–376.
  82. Lahrmann, U., and Zuccaro, A. (2012). Opprimo ergo sum -Evasion and Suppression in the Root Endophytic Fungus Piriformospora indica. Molecular Plant-Microbe Interactions 25, 727–737.
  83. Solano, R., Stepanova, A., Chao, Q., and Ecker, J.R. (1998). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12, 3703–3714.
  84. Popescu, S.C., Popescu, G.V., Bachan, S., Zhang, Z., Gerstein, M., Snyder, M., and Dinesh- Kumar, S.P. (2009). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev. 23, 80–92.
  85. Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y.O., and Borodovsky, M. (2008). Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training.
  86. Salamov, A.A., and Solovyev, V.V. (2000). Ab initio Gene Finding in Drosophila Genomic DNA. Genome Res. 10, 516–522.
  87. Soderlund, C., Nelson, W., Shoemaker, A., and Paterson, A. (2006). SyMAP: A system for discovering and viewing syntenic regions of FPC maps. Genome Res. 16, 1159–1168.
  88. Crooks, G.E., Hon, G., Chandonia, J.-M., and Brenner, S.E. (2004). WebLogo: A Sequence Logo Generator. Genome Res. 14, 1188–1190.
  89. Kesarwani, M., Yoo, J., and Dong, X. (2007). Genetic Interactions of TGA Transcription Factors in the Regulation of Pathogenesis-Related Genes and Disease Resistance in Arabidopsis. Plant Physiol. 144, 336–346.
  90. Vaughan-Nichols, S.J. (2003). The battle over the universal Java IDE. Computer 36, 21 – 23.
  91. Naumann, T.A., and Price, N.P.J. (2012). Truncation of class IV chitinases from Arabidopsis by secreted fungal proteases. Molecular Plant Pathology 13, 1135–1139.
  92. Nakayashiki, H. (2011). The Trickster in the genome: contribution and control of transposable elements. Genes to Cells 16, 827–841.
  93. Hayakawa, Y., Ishikawa, E., Shoji, J., Nakano, H., and Kitamoto, K. (2011). Septum-directed secretion in the filamentous fungus Aspergillus oryzae. Molecular Microbiology 81, 40–55.
  94. Nguyen, Q.B., Itoh, K., Van Vu, B., Tosa, Y., and Nakayashiki, H. (2011). Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae. Molecular Microbiology 81, 1008–1019.
  95. Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. The Plant Journal 52, 1066–1079.
  96. He, P., Shan, L., and Sheen, J. (2007). Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant–microbe interactions. Cellular Microbiology 9, 1385–1396.
  97. Warcup, J.H. (1988). Mycorrhizal associations of isolates of Sebacina vermifera. New Phytologist 110, 227–231.
  98. Moyersoen, B. (2006). Pakaraimaea dipterocarpacea is ectomycorrhizal, indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytologist 172, 753–762.
  99. Rasmussen, H.N., and Rasmussen, F.N. (2009). Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118, 334–345.
  100. Wang, Y., Lim, L., DiGuistini, S., Robertson, G., Bohlmann, J., and Breuil, C. (2013a). A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees. New Phytologist 197, 886–898.
  101. Shim, J.S., Jung, C., Lee, S., Min, K., Lee, Y.-W., Choi, Y., Lee, J.S., Song, J.T., Kim, J.-K., and Choi, Y.D. (2013). AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. The Plant Journal 73, 483– 495.
  102. Eastwood, D.C., Floudas, D., Binder, M., Majcherczyk, A., Schneider, P., Aerts, A., Asiegbu, F.O., Baker, S.E., Barry, K., Bendiksby, M., et al. (2011). The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi. Science 333, 762–765.
  103. Kliebenstein, D.J. (2012). Plant Defense Compounds: Systems Approaches to Metabolic Analysis. Annual Review of Phytopathology 50, 155–173.
  104. Spanu, P.D. (2012). The Genomics of Obligate (and Nonobligate) Biotrophs. Annual Review of Phytopathology 50, 91–109.
  105. The CBEL glycoprotein of Phytophthora parasitica var-nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J Cell Sci 115, 4565–4575.
  106. Doi, Y., Lee, B.R., Ikeguchi, M., Ohoba, Y., Ikoma, T., Tero-Kubota, S., Yamauchi, S., Takahashi, K., and Ichishima, E. (2003). Substrate Specificities of Deuterolysin from Aspergillus oryzae and Electron Paramagnetic Resonance Measurement of Cobalt-substituted Deuterolysin. Bioscience, Biotechnology, and Biochemistry 67, 264–270.
  107. Antimicrobial Activity of Phenolics and Glucosinolate Hydrolysis Products and their Synergy with Streptomycin against Pathogenic Bacteria. Medicinal Chemistry 6, 174–183.
  108. Nishida, H., Nagatsuka, Y., and Sugiyama, J. (2011). Draft genome sequencing of the enigmatic basidiomycete Mixia osmundae. The Journal of General and Applied Microbiology 57, 63–67.
  109. Protease Inhibitors from Plants with Antimicrobial Activity. Int J Mol Sci 10, 2860–2872.
  110. Wolfe, B.E., Kuo, M., and Pringle, A. (2012). Amanita thiersii is a saprotrophic fungus expanding its range in the United States. Mycologia 104, 22–33.
  111. De Jonge, R., Peter van Esse, H., Kombrink, A., Shinya, T., Desaki, Y., Bours, R., van der Krol, S., Shibuya, N., Joosten, M.H.A.J., and Thomma, B.P.H.J. (2010). Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants. Science 329, 953–955.
  112. Ruijter, G.J., and Visser, J. (1997). Carbon repression in Aspergilli. FEMS Microbiol. Lett. 151, 103–114.
  113. Marshall, R., Kombrink, A., Motteram, J., Loza-Reyes, E., Lucas, J., Hammond-Kosack, K.E., Thomma, B.P.H.J., and Rudd, J.J. (2011). Analysis of Two in Planta Expressed LysM Effector Homologs from the Fungus Mycosphaerella graminicola Reveals Novel Functional Properties and Varying Contributions to Virulence on Wheat. Plant Physiol. 156, 756–769.
  114. De Jonge, R., Bolton, M.D., and Thomma, B.P. (2011). How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Current Opinion in Plant Biology 14, 400–406.
  115. Van Esse, H.P., Bolton, M.D., Stergiopoulos, I., de Wit, P.J.G.M., and Thomma, B.P.H.J. (2007). The Chitin-Binding Cladosporium fulvum Effector Protein Avr4 Is a Virulence Factor. Molecular Plant-Microbe Interactions 20, 1092–1101.
  116. De Waard, M.A., Andrade, A.C., Hayashi, K., Schoonbeek, H., Stergiopoulos, I., and Zwiers, L.-H. (2006). Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Management Science 62, 195–207.
  117. Schouten, A., Maksimova, O., Cuesta-Arenas, Y., Van Den Berg, G., and Raaijmakers, J.M. (2008). Involvement of the ABC transporter BcAtrB and the laccase BcLCC2 in defence of Botrytis cinerea against the broad-spectrum antibiotic 2,4-diacetylphloroglucinol. Environmental Microbiology 10, 1145–1157.
  118. De Wit, P.J.G.M., Mehrabi, R., Van Den Burg, H.A., and Stergiopoulos, I. (2009). Fungal effector proteins: past, present and future. Molecular Plant Pathology 10, 735–747.
  119. Muszewska, A., Hoffman-Sommer, M., and Grynberg, M. (2011). LTR Retrotransposons in Fungi. PLoS ONE 6, e29425.
  120. Xu, Z.-Y., Zhang, X., Schläppi, M., and Xu, Z.-Q. (2011). Cold-inducible expression of AZI1 and its function in improvement of freezing tolerance of Arabidopsis thaliana and Saccharomyces cerevisiae. Journal of Plant Physiology 168, 1576–1587.
  121. Spanu, P.D., Abbott, J.C., Amselem, J., Burgis, T.A., Soanes, D.M., Stüber, K., Themaat, E.V.L. van, Brown, J.K.M., Butcher, S.A., Gurr, S.J., et al. (2010). Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. Science 330, 1543–1546.
  122. Weber, S.S., Kovalchuk, A., Bovenberg, R.A.L., and Driessen, A.J.M. (2012). The ABC transporter ABC40 encodes a phenylacetic acid export system in Penicillium chrysogenum. Fungal Genetics and Biology 49, 915–921.
  123. Phillippy, A.M., Schatz, M.C., and Pop, M. (2008). Genome assembly forensics: finding the elusive mis-assembly. Genome Biol 9, R55.
  124. Plett, J.M., and Martin, F. (2011). Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends in Genetics 27, 14–22.
  125. Plett, J.M., Kemppainen, M., Kale, S.D., Kohler, A., Legué, V., Brun, A., Tyler, B.M., Pardo, A.G., and Martin, F. (2011). A Secreted Effector Protein of Laccaria bicolor Is Required for Symbiosis Development. Current Biology 21, 1197–1203.
  126. Kelley, L.A., and Sternberg, M.J.E. (2009). Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protocols 4, 363–371.
  127. Naumann, T.A. (2011). Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins. Molecular Plant Pathology 12, 365–372.
  128. Hibbett, D.S., Gilbert, L.-B., and Donoghue, M.J. (2000). Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407, 506–508.
  129. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology 167, 1009–1017.
  130. Stuttmann, J., Hubberten, H.-M., Rietz, S., Kaur, J., Muskett, P., Guerois, R., Bednarek, P., Hoefgen, R., and Parker, J.E. (2011). Perturbation of Arabidopsis Amino Acid Metabolism Causes Incompatibility with the Adapted Biotrophic Pathogen Hyaloperonospora arabidopsidis. Plant Cell 23, 2788–2803.
  131. Schulze-Lefert, P., and Panstruga, R. (2011). A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends in Plant Science 16, 117–125.
  132. Biogenesis of a specialized plant–fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cellular Microbiology 13, 210–226.
  133. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. The Plant Journal 64, 912–923.
  134. Gershenzon, J., and Dudareva, N. (2007). The function of terpene natural products in the natural world. Nat Chem Biol 3, 408–414.
  135. Shahollari, B., Vadassery, J., Varma, A., and Oelmüller, R. (2007). A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. The Plant Journal 50, 1– 13.
  136. Peškan-Berghöfer, T., Shahollari, B., Giong, P.H., Hehl, S., Markert, C., Blanke, V., Kost, G., Varma, A., and Oelmüller, R. (2004). Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiologia Plantarum 122, 465–477.
  137. Vadassery, J., Ritter, C., Venus, Y., Camehl, I., Varma, A., Shahollari, B., Novák, O., Strnad, M., Ludwig-Müller, J., and Oelmüller, R. (2008). The Role of Auxins and Cytokinins in the Mutualistic Interaction Between Arabidopsis and Piriformospora indica. Molecular Plant- Microbe Interactions 21, 1371–1383.
  138. Djamei, A., Schipper, K., Rabe, F., Ghosh, A., Vincon, V., Kahnt, J., Osorio, S., Tohge, T., Fernie, A.R., Feussner, I., et al. (2011). Metabolic priming by a secreted fungal effector. Nature 478, 395–398.
  139. Lohse, M., Nunes-Nesi, A., Krüger, P., Nagel, A., Hannemann, J., Giorgi, F.M., Childs, L., Osorio, S., Walther, D., Selbig, J., et al. (2010). Robin: An Intuitive Wizard Application for R-Based Expression Microarray Quality Assessment and Analysis. Plant Physiol. 153, 642– 651.
  140. Schön, M., Töller, A., Diezel, C., Roth, C., Westphal, L., Wiermer, M., and Somssich, I.E. (2013). Analyses of wrky18 wrky40 Plants Reveal Critical Roles of SA/EDS1 Signaling and Indole-Glucosinolate Biosynthesis for Golovinomyces orontii Resistance and a Loss-of Resistance Towards Pseudomonas syringae pv. tomato AvrRPS4. Molecular Plant-Microbe Interactions 26, 758–767.
  141. Scarpeci, T.E., Zanor, M.I., Mueller-Roeber, B., and Valle, E.M. (2013). Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Mol Biol 83, 265–277.
  142. Tierens, K.F.M.-J., Thomma, B.P.H.J., Brouwer, M., Schmidt, J., Kistner, K., Porzel, A., Mauch-Mani, B., Cammue, B.P.A., and Broekaert, W.F. (2001). Study of the Role of Antimicrobial Glucosinolate-Derived Isothiocyanates in Resistance of Arabidopsis to Microbial Pathogens. Plant Physiol. 125, 1688–1699.
  143. Duplessis, S., Cuomo, C.A., Lin, Y.-C., Aerts, A., Tisserant, E., Veneault-Fourrey, C., Joly, D.L., Hacquard, S., Amselem, J., Cantarel, B.L., et al. (2011). Obligate biotrophy features unraveled by the genomic analysis of rust fungi. PNAS.
  144. Rossel, J.B., Wilson, I.W., and Pogson, B.J. (2002). Global Changes in Gene Expression in Response to High Light in Arabidopsis. Plant Physiol. 130, 1109–1120.
  145. Stotz, H.U., Sawada, Y., Shimada, Y., Hirai, M.Y., Sasaki, E., Krischke, M., Brown, P.D., Saito, K., and Kamiya, Y. (2011). Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. The Plant Journal 67, 81–93.
  146. Martin, F., Kohler, A., Murat, C., Balestrini, R., Coutinho, P.M., Jaillon, O., Montanini, B., Morin, E., Noel, B., Percudani, R., et al. (2010). Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464, 1033–1038.
  147. Selbmann, L., Egidi, E., Isola, D., Onofri, S., Zucconi, L., De Hoog, G.S., Chinaglia, S., Testa, L., Tosi, S., Balestrazzi, A., et al. (2012). Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosystems -An International Journal Dealing with All Aspects of Plant Biology 0, 1–10.
  148. Perotto, S., Angelini, P., Bianciotto, V., Bonfante, P., Girlanda, M., Kull, T., Mello, A., Pecoraro, L., Perini, C., Persiani, A.M., et al. (2012). Interactions of fungi with other organisms. Plant Biosystems -An International Journal Dealing with All Aspects of Plant Biology 0, 1–11.
  149. Selosse, M.-A., Faccio, A., Scappaticci, G., and Bonfante, P. (2004). Chlorophyllous and Achlorophyllous Specimens of Epipactis microphylla (Neottieae, Orchidaceae) Are Associated with Ectomycorrhizal Septomycetes, including Truffles. Microb Ecol 47, 416– 426.
  150. Emri, T., Molnár, Z., and Pócsi, I. (2005). The appearances of autolytic and apoptotic markers are concomitant but differently regulated in carbon-starving Aspergillus nidulans cultures. FEMS Microbiology Letters 251, 297–303.
  151. Shendure, J., and Ji, H. (2008). Next-generation DNA sequencing. Nat Biotech 26, 1135– 1145.
  152. Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycological Research 107, 957–968.
  153. Vaario, L.-M., Heinonsalo, J., Spetz, P., Pennanen, T., Heinonen, J., Tervahauta, A., and Fritze, H. (2012). The ectomycorrhizal fungus Tricholoma matsutake is a facultative saprotroph in vitro. Mycorrhiza 22, 409–418.
  154. Shirley, B.W., Kubasek, W.L., Storz, G., Bruggemann, E., Koornneef, M., Ausubel, F.M., and Goodman, H.M. (1995). Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. The Plant Journal 8, 659–671.
  155. Di Pietro, A., Roncero, M.I.G., and Roldán, M.C.R. (2009). From Tools of Survival to Weapons of Destruction: The Role of Cell Wall-Degrading Enzymes in Plant Infection. In Plant Relationships, P.D.H.B. Deising, ed. (Springer Berlin Heidelberg), pp. 181–200.
  156. Koch, A.M., Antunes, P.M., Barto, E.K., Cipollini, D., Mummey, D.L., and Klironomos, J.N. (2011). The effects of arbuscular mycorrhizal (AM) fungal and garlic mustard introductions on native AM fungal diversity. Biol Invasions 13, 1627–1639.
  157. Kamoun, S. (2006). A Catalogue of the Effector Secretome of Plant Pathogenic Oomycetes. Annual Review of Phytopathology 44, 41–60.
  158. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402–408.
  159. Enright, A.J., Dongen, S.V., and Ouzounis, C.A. (2002). An efficient algorithm for large- scale detection of protein families. Nucl. Acids Res. 30, 1575–1584.
  160. An expanded family of fungalysin extracellular metallopeptidases of Coprinopsis cinerea. Mycological Research 112, 389–398.
  161. Whisson, S.C., Boevink, P.C., Moleleki, L., Avrova, A.O., Morales, J.G., Gilroy, E.M., Armstrong, M.R., Grouffaud, S., van West, P., Chapman, S., et al. (2007). A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450, 115–118.
  162. Kent, W.J. (2002). BLAT—The BLAST-Like Alignment Tool. Genome Res. 12, 656–664.
  163. Lewis, D.H. (1973). Concepts in Fungal Nutrition and the Origin of Biotrophy. Biological Reviews 48, 261–277.
  164. Naur, P., Petersen, B.L., Mikkelsen, M.D., Bak, S., Rasmussen, H., Olsen, C.E., and Halkier, B.A. (2003). CYP83A1 and CYP83B1, Two Nonredundant Cytochrome P450 Enzymes Metabolizing Oximes in the Biosynthesis of Glucosinolates in Arabidopsis. Plant Physiol. 133, 63–72.
  165. Mikkelsen, M.D., Hansen, C.H., Wittstock, U., and Halkier, B.A. (2000). Cytochrome P450 CYP79B2 from Arabidopsis Catalyzes the Conversion of Tryptophan to Indole-3- acetaldoxime, a Precursor of Indole Glucosinolates and Indole-3-acetic Acid. J. Biol. Chem. 275, 33712–33717.
  166. He, Y., Fukushige, H., Hildebrand, D.F., and Gan, S. (2002). Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence. Plant Physiol. 128, 876–884.
  167. Hamamouch, N., Li, C., Seo, P.J., Park, C.-M., and Davis, E.L. (2011). Expression of Arabidopsis pathogenesis-related genes during nematode infection. Molecular Plant Pathology 12, 355–364.
  168. Dong, J., Chen, C., and Chen, Z. (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51, 21–37.
  169. Schoonbeek, H., Nistelrooy, J.G.M. van, and Waard, M.A. de (2003). Functional Analysis of ABC Transporter Genes From Botrytis cinerea Identifies BcatrB as a Transporter of Eugenol.
  170. Žifčáková, L., and Baldrian, P. (2012). Fungal polysaccharide monooxygenases: new players in the decomposition of cellulose. Fungal Ecology 5, 481–489.
  171. Yike, I. (2011). Fungal Proteases and Their Pathophysiological Effects. Mycopathologia 171, 299–323.
  172. Laurie, J.D., Ali, S., Linning, R., Mannhaupt, G., Wong, P., Güldener, U., Münsterkötter, M., Moore, R., Kahmann, R., Bakkeren, G., et al. (2012). Genome Comparison of Barley and Maize Smut Fungi Reveals Targeted Loss of RNA Silencing Components and Species- Specific Presence of Transposable Elements. Plant Cell 24, 1733–1745.
  173. Morin, E., Kohler, A., Baker, A.R., Foulongne-Oriol, M., Lombard, V., Nagye, L.G., Ohm, R.A., Patyshakuliyeva, A., Brun, A., Aerts, A.L., et al. (2012). Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic- rich ecological niche. PNAS 109, 17501–17506.
  174. Doyle, J., and Doyle, J. (1987). Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochemical Bulletin 19.
  175. Oñate-Sánchez, L., and Singh, K.B. (2002). Identification of Arabidopsis Ethylene- Responsive Element Binding Factors with Distinct Induction Kinetics after Pathogen Infection. Plant Physiol. 128, 1313–1322.
  176. Kämper, J., Kahmann, R., Bölker, M., Ma, L.-J., Brefort, T., Saville, B.J., Banuett, F., Kronstad, J.W., Gold, S.E., Müller, O., et al. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444, 97–101.
  177. Hector, J.M. (1938). Introduction to the botany of field crops. Vol. I Cereals. South African Agric. Ser. Vol. 16 xxxiv + 478 pp.
  178. Seyffert, W. (2003). Lehrbuch der Genetik (Spektrum Akademischer Verlag).
  179. Mignery, G.A., Pikaard, C.S., and Park, W.D. (1988). Molecular characterization of the patatin multigene family of potato. Gene 62, 27–44.
  180. Sambrook, J., Fritsch, E., and Maniatis, T. (1989). Molecular cloning: A laboratory manual+ Cold Spring Harbor (New York: Cold Spring Harbor Laboratory Press).
  181. Smith, S.E., Gianinazzi-Pearson, V., Koide, R., and Cairney, J.W.G. (1994). Nutrient transport in mycorrhizas: structure, physiology and consequences for efficiency of the symbiosis. Plant Soil 159, 103–113.
  182. Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M., and Fritig, B. (1993). Plant " pathogenesis-related " proteins and their role in defense against pathogens. Biochimie 75, 687–706.
  183. Schnell, N., Entian, K.-D., Schneider, U., Götz, F., Zähner, H., Kellner, R., and Jung, G. (1988). Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333, 276–278.
  184. Jung, H.W., Tschaplinski, T.J., Wang, L., Glazebrook, J., and Greenberg, J.T. (2009). Priming in Systemic Plant Immunity. Science 324, 89–91.
  185. R Development Core Team (2011). R: A Language and Environment for Statistical Computing (Vienna, Austria).
  186. Setaro, S., Weiß, M., Oberwinkler, F., and Kottke, I. (2006). Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytologist 169, 355–365.
  187. Kliebenstein, D.J. (2004). Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant, Cell & Environment 27, 675–684.
  188. Swindell, S.R., and Plasterer, T.N. (1997). SEQMAN. Contig assembly. Methods Mol. Biol. 70, 75–89.
  189. Harris, P.V., Welner, D., McFarland, K.C., Re, E., Navarro Poulsen, J.-C., Brown, K., Salbo, R., Ding, H., Vlasenko, E., Merino, S., et al. (2010). Stimulation of Lignocellulosic Biomass Hydrolysis by Proteins of Glycoside Hydrolase Family 61: Structure and Function of a Large, Enigmatic Family. Biochemistry 49, 3305–3316.
  190. Stumpf, P.K., and Conn, E.E. (1988). The Biochemistry of Plants: Carbohydrates (Academic Press).
  191. Jones, J.D.G., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323–329.
  192. Pelham, H.R.B. (1990). The retention signal for soluble proteins of the endoplasmic reticulum. Trends in Biochemical Sciences 15, 483–486.
  193. Rodriguez, R.J., Redman, R.S., and Henson, J.M. (2004). The Role of Fungal Symbioses in the Adaptation of Plants to High Stress Environments. Mitigation and Adaptation Strategies for Global Change 9, 261–272.
  194. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., and Dietrich, R.A. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26, 403–410.
  195. Saier, M.H., Yen, M.R., Noto, K., Tamang, D.G., and Elkan, C. (2009). The Transporter Classification Database: recent advances. Nucl. Acids Res. 37, D274–D278.
  196. Keon, J., Antoniw, J., Carzaniga, R., Deller, S., Ward, J.L., Baker, J.M., Beale, M.H., Hammond-Kosack, K., and Rudd, J.J. (2007). Transcriptional Adaptation of Mycosphaerella graminicola to Programmed Cell Death (PCD) of Its Susceptible Wheat Host. Molecular Plant-Microbe Interactions 20, 178–193.
  197. Paungfoo-Lonhienne, C., Rentsch, D., Robatzek, S., Webb, R.I., Sagulenko, E., Näsholm, T., Schmidt, S., and Lonhienne, T.G.A. (2010b). Turning the Table: Plants Consume Microbes as a Source of Nutrients. PLoS ONE 5, e11915.
  198. Wösten, H.A.B., Moukha, S.M., Sietsma, J.H., and Wessels, J.G.H. (1991). Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137, 2017–2023.
  199. Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32, 1792–1797.
  200. Liljeroth, E., and Bryngelsson, T. (2001). DNA fragmentation in cereal roots indicative of programmed root cortical cell death. Physiologia Plantarum 111, 365–372.
  201. Tikkanen, R., Obermüller, S., Denzer, K., Pungitore, R., Geuze, H.J., Von Figura, K., and Höning, S. (2000). The Dileucine Motif Within the Tail of MPR46 is Required for Sorting of the Receptor in Endosomes. Traffic 1, 631–640.
  202. Gomord, V., Denmat, L.-A., Fitchette-Lainé, A.-C., Satiat-Jeunemaitre, B., Hawes, C., and Faye, L. (1997). The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. The Plant Journal 11, 313–325.
  203. Saloheimo, M., Paloheimo, M., Hakola, S., Pere, J., Swanson, B., Nyyssönen, E., Bhatia, A., Ward, M., and Penttilä, M. (2002). Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. European Journal of Biochemistry 269, 4202–4211.
  204. McKendrick, S.L., Leake, J.R., Taylor, D.L., and Read, D.J. (2002). Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytologist 154, 233–247.
  205. Sebacinales are common mycorrhizal associates of Ericaceae. New Phytologist 174, 864–878.
  206. Nagy, R., Drissner, D., Amrhein, N., Jakobsen, I., and Bucher, M. (2009). Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytologist 181, 950–959.
  207. Emanuelsson, O., Nielsen, H., Brunak, S., and von Heijne, G. (2000). Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence. Journal of Molecular Biology 300, 1005–1016.
  208. Weiß, M., Sýkorová, Z., Garnica, S., Riess, K., Martos, F., Krause, C., Oberwinkler, F., Bauer, R., and Redecker, D. (2011). Sebacinales Everywhere: Previously Overlooked Ubiquitous Fungal Endophytes. PLoS ONE 6, e16793.
  209. O'Connell, R.J., Thon, M.R., Hacquard, S., Amyotte, S.G., Kleemann, J., Torres, M.F., Damm, U., Buiate, E.A., Epstein, L., Alkan, N., et al. (2012). Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44, 1060–1065.
  210. Tyler, B.M., Kale, S.D., Wang, Q., Tao, K., Clark, H.R., Drews, K., Antignani, V., Rumore, A., Hayes, T., Plett, J.M., et al. (2013). Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible. Molecular Plant-Microbe Interactions 130403113643006.
  211. Martin, F., Aerts, A., Ahrén, D., Brun, A., Danchin, E.G.J., Duchaussoy, F., Gibon, J., Kohler, A., Lindquist, E., Pereda, V., et al. (2008). The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452, 88–92.
  212. Kretschmer, M., Leroch, M., Mosbach, A., Walker, A.-S., Fillinger, S., Mernke, D., Schoonbeek, H.-J., Pradier, J.-M., Leroux, P., De Waard, M.A., et al. (2009). Fungicide- Driven Evolution and Molecular Basis of Multidrug Resistance in Field Populations of the Grey Mould Fungus Botrytis cinerea. PLoS Pathog 5, e1000696.
  213. Phillips, C.M., Beeson, W.T., Cate, J.H., and Marletta, M.A. (2011). Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa. ACS Chem. Biol. 6, 1399–1406.
  214. Schirawski, J., Mannhaupt, G., Münch, K., Brefort, T., Schipper, K., Doehlemann, G., Di Stasio, M., Rössel, N., Mendoza-Mendoza, A., Pester, D., et al. (2010). Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330, 1546–1548.
  215. Thornberry, N.A., and Lazebnik, Y. (1998). Caspases: Enemies Within. Science 281, 1312– 1316.
  216. Sriranganadane, D., Reichard, U., Salamin, K., Fratti, M., Jousson, O., Waridel, P., Quadroni, M., Neuhaus, J.-M., and Monod, M. (2011). Secreted glutamic protease rescues aspartic protease Pep deficiency in Aspergillus fumigatus during growth in acidic protein medium. Microbiology 157, 1541–1550.
  217. Quettier, A.-L., and Eastmond, P.J. (2009). Storage oil hydrolysis during early seedling growth. Plant Physiology and Biochemistry 47, 485–490.
  218. Qiang, X., Weiss, M., Kogel, K.-H., and Schäfer, P. (2012a). Piriformospora indica—a mutualistic basidiomycete with an exceptionally large plant host range. Molecular Plant Pathology 13, 508–518.
  219. Qiang, X., Zechmann, B., Reitz, M.U., Kogel, K.-H., and Schäfer, P. (2012b). The Mutualistic Fungus Piriformospora indica Colonizes Arabidopsis Roots by Inducing an Endoplasmic Reticulum Stress–Triggered Caspase-Dependent Cell Death. Plant Cell 24, 794– 809.
  220. Jacobs, S., Zechmann, B., Molitor, A., Trujillo, M., Petutschnig, E., Lipka, V., Kogel, K.-H., and Schäfer, P. (2011). Broad-Spectrum Suppression of Innate Immunity Is Required for Colonization of Arabidopsis Roots by the Fungus Piriformospora indica. Plant Physiol. 156, 726–740.
  221. Schäfer, P., Pfiffi, S., Voll, L.M., Zajic, D., Chandler, P.M., Waller, F., Scholz, U., Pons- Kühnemann, J., Sonnewald, S., Sonnewald, U., et al. (2009). Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. The Plant Journal 59, 461–474.
  222. Sharma, M., Schmid, M., Rothballer, M., Hause, G., Zuccaro, A., Imani, J., Kämpfer, P., Domann, E., Schäfer, P., Hartmann, A., et al. (2008). Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cellular Microbiology 10, 2235– 2246.
  223. Waller, F., Mukherjee, K., Deshmukh, S.D., Achatz, B., Sharma, M., Schäfer, P., and Kogel, K.-H. (2008). Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. Journal of Plant Physiology 165, 60–70.
  224. Taylor, D.L., Bruns, T.D., Szaro, T.M., and Hodges, S.A. (2003). Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am. J. Bot. 90, 1168–1179.
  225. Mardis, E.R. (2008). Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics 9, 387–402.
  226. Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics 12, 124.
  227. Raffaele, S., Win, J., Cano, L.M., and Kamoun, S. (2010). Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics 11, 637.
  228. Nitsche, B.M., Jørgensen, T.R., Akeroyd, M., Meyer, V., and Ram, A.F. (2012). The carbon starvation response of Aspergillus niger during submerged cultivation: Insights from the transcriptome and secretome. BMC Genomics 13, 380.
  229. Mohnen, D., Bar-Peled, M., and Somerville, C. (2008). Biosynthesis of plant cell walls.
  230. Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., Bisen, P., Butehorn, B., and Franken, P. (1998). Piriformospora indica, gen. et sp. nov., a New Root-Colonizing Fungus. Mycologia 90, 896.
  231. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., et al. (1996). Life with 6000 Genes. Science 274, 546– 567.
  232. Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Kulkarni, R., Xu, J.-R., Pan, H., et al. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986.
  233. Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research 110, 462–467.
  234. Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y., and Yao, X. (2009). DOG 1.0: illustrator of protein domain structures. Cell Res 19, 271–273.
  235. Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytologist 200, 457–472.
  236. Damiano, J.S., Oliveira, V., Welsh, K., and Reed, J.C. (2004). Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses. Biochemical Journal 381, 213.
  237. Todd, R.B., Andrianopoulos, A., Davis, M.A., and Hynes, M.J. (1998). FacB, the Aspergillus nidulans activator of acetate utilization genes, binds dissimilar DNA sequences. EMBO J 17, 2042–2054.
  238. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., Wettstein, D. von, et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. PNAS 102, 13386–13391.
  239. Khan, M.A.S., Chock, P.B., and Stadtman, E.R. (2005). Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. PNAS 102, 17326–17331.
  240. Eastmond, P.J. (2006). SUGAR-DEPENDENT1 Encodes a Patatin Domain Triacylglycerol Lipase That Initiates Storage Oil Breakdown in Germinating Arabidopsis Seeds. Plant Cell 18, 665–675.
  241. The Arabidopsis Epithiospecifier Protein Promotes the Hydrolysis of Glucosinolates to Nitriles and Influences Trichoplusia ni Herbivory. Plant Cell 13, 2793–2807.
  242. Tonukari, N.J., Scott-Craig, J.S., and Waltonb, J.D. (2000). The Cochliobolus carbonum SNF1 Gene Is Required for Cell Wall–Degrading Enzyme Expression and Virulence on Maize. Plant Cell 12, 237–247.
  243. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biology 7, R16.
  244. Nawrath, C., and Métraux, J.-P. (1999). Salicylic Acid Induction–Deficient Mutants of Arabidopsis Express PR-2 and PR-5 and Accumulate High Levels of Camalexin after Pathogen Inoculation. Plant Cell 11, 1393–1404.
  245. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.-J., Chen, Z., et al. (2005). Genome Sequencing in Open Microfabricated High Density Picoliter Reactors. Nature 437, 376–380.
  246. Gaulin, E., Dramé, N., Lafitte, C., Torto-Alalibo, T., Martinez, Y., Ameline-Torregrosa, C., Khatib, M., Mazarguil, H., Villalba-Mateos, F., Kamoun, S., et al. (2006). Cellulose Binding Domains of a Phytophthora Cell Wall Protein Are Novel Pathogen-Associated Molecular Patterns. Plant Cell 18, 1766–1777.
  247. Wees, S.C.M. van, Chang, H.-S., Zhu, T., and Glazebrook, J. (2003). Characterization of the Early Response of Arabidopsis to Alternaria brassicicola Infection Using Expression Profiling. Plant Physiol. 132, 606–617.
  248. Deshmukh, S., Hückelhoven, R., Schäfer, P., Imani, J., Sharma, M., Weiss, M., Waller, F., and Kogel, K.-H. (2006). The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. PNAS 103, 18450–18457.
  249. Vellosillo, T., Martínez, M., López, M.A., Vicente, J., Cascón, T., Dolan, L., Hamberg, M., and Castresana, C. (2007). Oxylipins Produced by the 9-Lipoxygenase Pathway in Arabidopsis Regulate Lateral Root Development and Defense Responses through a Specific Signaling Cascade. Plant Cell 19, 831–846.
  250. Nafisi, M., Goregaoker, S., Botanga, C.J., Glawischnig, E., Olsen, C.E., Halkier, B.A., and Glazebrook, J. (2007). Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis. Plant Cell 19, 2039–2052.
  251. Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H., and Shibuya, N. (2007). CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. PNAS 104, 19613–19618.
  252. Ramesh, M.V., and Kolattukudy, P.E. (1996). Disruption of the serine proteinase gene (sep) in Aspergillus flavus leads to a compensatory increase in the expression of a metalloproteinase gene (mep20). J. Bacteriol. 178, 3899–3907.
  253. Garfinkel, D.J., Hedge, A.M., Youngren, S.D., and Copeland, T.D. (1991). Proteolytic processing of pol-TYB proteins from the yeast retrotransposon Ty1. J Virol 65, 4573–4581.
  254. Kim, K.-C., Lai, Z., Fan, B., and Chen, Z. (2008). Arabidopsis WRKY38 and WRKY62 Transcription Factors Interact with Histone Deacetylase 19 in Basal Defense. Plant Cell 20, 2357–2371.
  255. Ogura-Tsujita, Y., Gebauer, G., Hashimoto, T., Umata, H., and Yukawa, T. (2009). Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc Biol Sci 276, 761–767.
  256. Coleman, J.J., and Mylonakis, E. (2009). Efflux in Fungi: La Pièce de Résistance. PLoS Pathog 5, e1000486.
  257. Sacristán, S., Vigouroux, M., Pedersen, C., Skamnioti, P., Thordal-Christensen, H., Micali, C., Brown, J.K.M., and Ridout, C.J. (2009). Coevolution between a Family of Parasite Virulence Effectors and a Class of LINE-1 Retrotransposons. PLoS ONE 4, e7463.
  258. Tsukumo, Y., Tsukahara, S., Saito, S., Tsuruo, T., and Tomida, A. (2009). A Novel Endoplasmic Reticulum Export Signal PROLINE AT THE +2-POSITION FROM THE SIGNAL PEPTIDE CLEAVAGE SITE. J. Biol. Chem. 284, 27500–27510.
  259. Gilbert, H.J. (2010). The Biochemistry and Structural Biology of Plant Cell Wall Deconstruction. Plant Physiol. 153, 444–455.
  260. Heinisch, J.J., Dupres, V., Wilk, S., Jendretzki, A., and Dufrêne, Y.F. (2010). Single- Molecule Atomic Force Microscopy Reveals Clustering of the Yeast Plasma-Membrane Sensor Wsc1. PLoS ONE 5, e11104.
  261. Eitas, T.K., and Dangl, J.L. (2010). NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Current Opinion in Plant Biology 13, 472–477.
  262. Lee, R.E.C., Brunette, S., Puente, L.G., and Megeney, L.A. (2010). Metacaspase Yca1 is required for clearance of insoluble protein aggregates. PNAS 107, 13348–13353.
  263. Yadav, V., Kumar, M., Deep, D.K., Kumar, H., Sharma, R., Tripathi, T., Tuteja, N., Saxena, A.K., and Johri, A.K. (2010). A Phosphate Transporter from the Root Endophytic Fungus Piriformospora indica Plays a Role in Phosphate Transport to the Host Plant. J. Biol. Chem. 285, 26532–26544.
  264. Lévesque, C.A., Brouwer, H., Cano, L., Hamilton, J.P., Holt, C., Huitema, E., Raffaele, S., Robideau, G.P., Thines, M., Win, J., et al. (2010). Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire.
  265. López-Berges, M.S., Rispail, N., Prados-Rosales, R.C., and Pietro, A.D. (2010). A Nitrogen Response Pathway Regulates Virulence Functions in Fusarium oxysporum via the Protein Kinase TOR and the bZIP Protein MeaB. Plant Cell 22, 2459–2475.
  266. Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., and Zhang, S. (2011). Phosphorylation of a WRKY Transcription Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in Arabidopsis. Plant Cell 23, 1639–1653.
  267. Ren, X., Chen, Z., Liu, Y., Zhang, H., Zhang, M., Liu, Q., Hong, X., Zhu, J.-K., and Gong, Z. (2010). ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. The Plant Journal 63, 417–429.
  268. Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., Malinovsky, F.G., Tör, M., Vries, S. de, and Zipfel, C. (2011). The Arabidopsis Leucine-Rich Repeat Receptor–Like Kinases BAK1/SERK3 and BKK1/SERK4 Are Required for Innate Immunity to Hemibiotrophic and Biotrophic Pathogens. Plant Cell 23, 2440–2455.
  269. Jones, R.W., and Ospina-Giraldo, M. (2011). Novel Cellulose-Binding-Domain Protein in Phytophthora Is Cell Wall Localized. PLoS ONE 6, e23555.
  270. Piriformospora indica enhances plant growth by transferring phosphate. Plant Signaling & Behavior 6, 723–725.
  271. Ghimire, S.R., and Craven, K.D. (2011). Enhancement of Switchgrass (Panicum virgatum L.) Biomass Production under Drought Conditions by the Ectomycorrhizal Fungus Sebacina vermifera. Appl. Environ. Microbiol. 77, 7063–7067.
  272. Futagami, T., Nakao, S., Kido, Y., Oka, T., Kajiwara, Y., Takashita, H., Omori, T., Furukawa, K., and Goto, M. (2011). Putative Stress Sensors WscA and WscB Are Involved in Hypo- Osmotic and Acidic pH Stress Tolerance in Aspergillus nidulans. Eukaryotic Cell 10, 1504– 1515.
  273. Khatabi, B., Molitor, A., Lindermayr, C., Pfiffi, S., Durner, J., von Wettstein, D., Kogel, K.- H., and Schäfer, P. (2012). Ethylene Supports Colonization of Plant Roots by the Mutualistic Fungus Piriformospora indica. PLoS ONE 7, e35502.
  274. Wang, H., and van der Donk, W.A. (2012). Biosynthesis of the Class III Lantipeptide Catenulipeptin. ACS Chem. Biol. 7, 1529–1535.
  275. Yoo, S.-D., Cho, Y.-H., Tena, G., Xiong, Y., and Sheen, J. (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451, 789–795.
  276. Eschen-Lippold, L., Bethke, G., Palm-Forster, M.A.T., Pecher, P., Bauer, N., Glazebrook, J., Scheel, D., and Lee, J. (2012). MPK11--a fourth elicitor-responsive mitogen-activated protein kinase in Arabidopsis thaliana. Plant Signal Behav 7, 1203–1205.
  277. Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytologist n/a–n/a.
  278. Wang, Y., Bouwmeester, K., van de Mortel, J.E., Shan, W., and Govers, F. (2013b). Induced expression of defense-related genes in Arabidopsis upon infection with Phytophthora capsici. Plant Signaling & Behavior 8, e24618.
  279. Enkerli, J., Felix, G., and Boller, T. (1999). The Enzymatic Activity of Fungal Xylanase Is Not Necessary for Its Elicitor Activity. Plant Physiol. 121, 391–398.
  280. De Vries, R.P., Broeck, H.C. van den, Dekkers, E., Manzanares, P., Graaff, L.H. de, and Visser, J. (1999). Differential Expression of Three α-Galactosidase Genes and a Single β- Galactosidase Gene from Aspergillus niger. Appl. Environ. Microbiol. 65, 2453–2460.
  281. Tyler, B.M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R.H.Y., Aerts, A., Arredondo, F.D., Baxter, L., Bensasson, D., Beynon, J.L., et al. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313, 1261–1266.
  282. Panchuk, I.I., Volkov, R.A., and Schöffl, F. (2002). Heat Stress-and Heat Shock Transcription Factor-Dependent Expression and Activity of Ascorbate Peroxidase in Arabidopsis. Plant Physiol. 129, 838–853.
  283. Gao, Q.-M., Venugopal, S., Navarre, D., and Kachroo, A. (2011). Low Oleic Acid-Derived Repression of Jasmonic Acid-Inducible Defense Responses Requires the WRKY50 and WRKY51 Proteins. Plant Physiol. 155, 464–476.
  284. Galletti, R., Ferrari, S., and Lorenzo, G.D. (2011). Arabidopsis MPK3 and MPK6 Play Different Roles in Basal and Oligogalacturonide-or Flagellin-Induced Resistance against Botrytis cinerea. Plant Physiol. 157, 804–814.
  285. Rappleye, C.A., Eissenberg, L.G., and Goldman, W.E. (2007). Histoplasma capsulatum α- (1,3)-glucan blocks innate immune recognition by the β-glucan receptor. Proc Natl Acad Sci U S A 104, 1366–1370.
  286. Lahrmann, U., Ding, Y., Banhara, A., Rath, M., Hajirezaei, M.R., Döhlemann, S., Wirén, N. von, Parniske, M., and Zuccaro, A. (2013). Host-related metabolic cues affect colonization strategies of a root endophyte. PNAS 110, 13965–13970.
  287. Sanger, F., Nicklen, S., and Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. PNAS 74, 5463–5467.
  288. Kaschuk, G., Kuyper, T.W., Leffelaar, P.A., Hungria, M., and Giller, K.E. (2009). Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biology and Biochemistry 41, 1233–1244.
  289. Weiss, M., Selosse, M.-A., Rexer, K.-H., Urban, A., and Oberwinkler, F. (2004). Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycological Research 108, 1003–1010.
  290. Stirnimann, C.U., Petsalaki, E., Russell, R.B., and Müller, C.W. (2010). WD40 proteins propel cellular networks. Trends in Biochemical Sciences 35, 565–574.
  291. Sella, L., Gazzetti, K., Faoro, F., Odorizzi, S., D'Ovidio, R., Schäfer, W., and Favaron, F. (2013). A Fusarium graminearum xylanase expressed during wheat infection is a necrotizing factor but is not essential for virulence. Plant Physiology and Biochemistry 64, 1–10.
  292. Oldroyd, G.E., and Downie, J.A. (2006). Nuclear calcium changes at the core of symbiosis signalling. Current Opinion in Plant Biology 9, 351–357.
  293. Pitzschke, A., Schikora, A., and Hirt, H. (2009). MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology 12, 421–426.
  294. Venkateshwaran, M., Volkening, J.D., Sussman, M.R., and Ané, J.-M. (2013). Symbiosis and the social network of higher plants. Current Opinion in Plant Biology 16, 118–127.
  295. Paungfoo-Lonhienne, C., Schmidt, S., and Lonhienne, T.G.A. (2010a). Uptake of non- pathogenic E. coli by Arabidopsis induces down-regulation of heat shock proteins. Plant Signaling & Behavior 5, 1626–1628.
  296. Wu, Y., Zhang, D., Chu, J.Y., Boyle, P., Wang, Y., Brindle, I.D., De Luca, V., and Després, C. (2012). The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid. Cell Reports 1, 639–647.
  297. Lo Leggio, L., Leggio, L.L., Welner, D., and Maria, L.D. (2012). A structural overview of GH61 proteins – fungal cellulose degrading polysaccharide monooxygenases. Comp & Struct Biotech 2.
  298. Koschorreck, M., Fischer, M., Barth, S., and Pleiss, J. (2005). How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli. BMC Genomics 6, 49.
  299. Godfrey, D., Böhlenius, H., Pedersen, C., Zhang, Z., Emmersen, J., and Thordal-Christensen, H. (2010). Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif.
  300. Marthey, S., Aguileta, G., Rodolphe, F., Gendrault, A., Giraud, T., Fournier, E., Lopez- Villavicencio, M., Gautier, A., Lebrun, M.-H., and Chiapello, H. (2008). FUNYBASE: a FUNgal phYlogenomic dataBASE. BMC Bioinformatics 9, 456.
  301. Slater, G.S., and Birney, E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31.
  302. Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytologist 166, 639– 653.
  303. De Coninck, B., Cammue, B.P.A., and Thevissen, K. (2013). Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biology Reviews 26, 109–120.
  304. Manners, J.M., Penninckx, I.A.M.A., Vermaere, K., Kazan, K., Brown, R.L., Morgan, A., Maclean, D.J., Curtis, M.D., Cammue, B.P.A., and Broekaert, W.F. (1998). The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Mol Biol 38, 1071–1080.
  305. Zipfel, C. (2008). Pattern-recognition receptors in plant innate immunity. Current Opinion in Immunology 20, 10–16.
  306. Xu, J., Li, Y., Wang, Y., Liu, H., Lei, L., Yang, H., Liu, G., and Ren, D. (2008). Activation of MAPK Kinase 9 Induces Ethylene and Camalexin Biosynthesis and Enhances Sensitivity to Salt Stress in Arabidopsis. J. Biol. Chem. 283, 26996–27006.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten