Publikationsserver der Universitätsbibliothek Marburg

Titel:The small G-protein MglA connects the motility machinery to the bacterial actin cytoskeleton
Autor:Hot, Edina
Weitere Beteiligte: Sogaard-Andersen, Lotte (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0066
DOI: https://doi.org/10.17192/z2014.0066
URN: urn:nbn:de:hebis:04-z2014-00669
DDC: Biowissenschaften, Biologie
Titel (trans.):Das kleine G-Protein MglA verbindet die Bewegungsmaschine mit dem bakteriellen Aktin-Zytoskelett
Publikationsdatum:2014-08-07
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
cytoskeleton, motility, Bewegung, bacteria, focal adhesions, fokale Adhäsionskomplexe, Zytoskelett, Bakterien

Summary:
Motility of Myxococcus xanthus cells is powered by two distinct engines: S-motility allows grouped cells movement and is driven by type IV pili (T4P) at the leading cell pole that use ATP for their function and pull the cell forward upon their retraction. Single cell movement is called gliding or A-motility and its AglQ/R/S engine is powered by proton-motive force and is incorporated at focal adhesion complexes in the cell. The control of motility and its direction is accomplished by cells rapidly switching their leading into lagging cell pole (cellular reversal), a process regulated by the small Ras-like G-protein MglA and its cognate GTPase activating protein (GAP) MglB. Using fluorescence microscopy it was previously shown that MglA localizes at the leading cell pole and MglB at the lagging cell pole and both proteins dynamically switch polarity during cellular reversal. Further, recent experiments showed that an A-motility protein AglZ, and A-motility engine AglQ/R/S localize at clusters distributed along the cell body that stay fixed relative to the substratum as the cell moves forming focal adhesion complexes (FACs). Based on the in vivo experiments it has been proposed that gliding motility machinery assembles at the leading cell pole and that it is guided by the cytoskeletal element to the lagging cell pole, where it disassembles. In this work we investigated the function of MglA during gliding motility. First, we demonstrate that MglA in its active state forms a focal adhesion cluster, which co-localizes with AglZ and AglQ, thus showing that active MglA is a component of the FACs. We show that MglA is essential for incorporation of AlgQ in the FACs, and that MglA GTPase cycle regulates the number of AglQ clusters. Further, we provide evidence that the GTPase negative MglA variant MglAQ82A leads to regularly reversing cells after movement of only one cell length, and that MglA GTPase cycle regulates the disassembly of the FACs at the lagging cell pole. Fluorescent YFP-MglAQ82A forms a focal adhesion cluster which appears to regularly oscillate between the poles, and causes the cell to move in a pendulum-like manner. Unlike wildtype MglA, MglAQ82A is insensitive to the GAP activity of MglB, and upon reaching the lagging cell pole where MglB localizes, it causes a cellular reversal by starting to oscillate in the opposite direction. The co-localizing YFP-MglAQ82A/AglZ-mCherry and YFP-MglAQ82A/AglQ-mCherry FAC also appear to continuously oscillate between the poles suggesting that the gliding motility machinery coupled to active MglA needs to be disassembled at the lagging cell pole by MglB GAP, and in this way allow uni-directional motility for distances longer than one cell length. Furthermore, in this work we demonstrate that active wt MglA and MglAQ82L variant interact directly with filament forming MreB actin homolog. Additionally, our results show that the formation and localization of FACs depend on intact MreB, thus indicating that MreB acts as a scaffold for the assembly of gliding motility machinery. The addition of antibiotics which inhibit peptidoglycan (PG) synthesis and reduce the dynamics of MreB in other bacteria did not inhibit single cell motility and did not cause mislocalization of MglA and AglQ. This strongly suggests that the major proposed function of MreB as a scaffold for PG elongation machinery is not coupled to its essential role during gliding motility in M. xanthus. Thus, we demonstrate that MreB is required for MglA, AglZ and AglQ localization at FACs during gliding, and this function of MreB is separable from its major proposed function in PG synthesis.

Bibliographie / References

  1. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
  2. Wehrle-Haller, B. (2012). Assembly and disassembly of cell matrix adhesions. Curr Opin Cell Biol 24, 569-581.
  3. Opitz, C., and Soldati, D. (2002). 'The glideosome': a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Molecular Microbiology 45, 597-604.
  4. Soldati, D., and Meissner, M. (2004). Toxoplasma as a novel system for motility. Current Opinion in Cell Biology 16, 32-40.
  5. Sander, E.E., ten Klooster, J.P., van Delft, S., van der Kammen, R.A., and Collard, J.G. (1999). Rac downregulates Rho activity: Reciprocal balance between both GTPases determines cellular morphology and migratory behavior. Journal of Cell Biology 147, 1009-1021.
  6. Murray, T.S., and Kazmierczak, B.I. (2006). FlhF is required for swimming and swarming in Pseudomonas aeruginosa. Journal of Bacteriology 188, 6995-7004.
  7. Laukaitis, C.M., Webb, D.J., Donais, K., and Horwitz, A.F. (2001). Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. Journal of Cell Biology 153, 1427-1440.
  8. Pollard, T.D., and Borisy, G.G. (2003). Cellular motility driven by assembly and disassembly of actin filaments (vol 112, pg 453, 2002). Cell 113, 549-549.
  9. Wolgemuth, C., Hoiczyk, E., Kaiser, D., and Oster, G. (2002a). How myxobacteria glide. Current Biology 12, 369-377.
  10. Wetzel, D.M., Hakansson, S., Hu, K., Roos, D., and Sibley, L.D. (2003). Actin filament polymerization regulates gliding motility by apicomplexan parasites. Molecular Biology of the Cell 14, 396-406.
  11. Mayer, J.A., and Amann, K.J. (2009). Assembly properties of the Bacillus subtilis actin, MreB. Cell Motil Cytoskeleton 66, 109-118.
  12. Pate, J.L., and Chang, L.Y.E. (1979). Evidence That Gliding Motility in Prokaryotic Cells Is Driven by Rotary Assemblies in the Cell Envelopes. Current Microbiology 2, 59-64.
  13. Mizuno, Y., Makioka, A., Kawazu, S., Kano, S., Kawai, S., Akaki, M., Aikawa, M., and Ohtomo, H. (2002). Effect of jasplakinolide on the growth, invasion, and actin cytoskeleton of Plasmodium falciparum. Parasitology Research 88, 844-848.
  14. King, C.A. (1988). Cell Motility of Sporozoan Protozoa. Parasitology Today 4, 315- 319.
  15. Minamino, T., Imada, K., and Namba, K. (2008). Molecular motors of the bacterial flagella. Curr Opin Struct Biol 18, 693-701.
  16. White, C.L., and Gober, J.W. (2012). MreB: pilot or passenger of cell wall synthesis? Trends in Microbiology 20, 74-79.
  17. Raftopoulou, M., and Hall, A. (2004). Cell migration: Rho GTPases lead the way. Developmental Biology 265, 23-32.
  18. Verkhovsky, A.B., Svitkina, T.M., and Borisy, G.G. (1999). Self-polarization and directional motility of cytoplasm. Current Biology 9, 11-20.
  19. Small, J.V., Isenberg, G., and Celis, J.E. (1978). Polarity of Actin at Leading-Edge of Cultured-Cells. Nature 272, 638-639.
  20. Lee, J., Ishihara, A., Theriot, J.A., and Jacobson, K. (1993). Principles of Locomotion for Simple-Shaped Cells. Nature 362, 167-171.
  21. Low, H.H., and Lowe, J. (2006). A bacterial dynamin-like protein. Nature 444, 766- 769.
  22. Mattila, P.K., and Lappalainen, P. (2008). Filopodia: molecular architecture and cellular functions. Nature Reviews Molecular Cell Biology 9, 446-454.
  23. Pandza, S., Baetens, M., Park, C.H., Au, T., Keyhan, M., and Matin, A. (2000). The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Molecular Microbiology 36, 414-423.
  24. Youderian, P., Burke, N., White, D.J., and Hartzell, P.L. (2003). Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 49, 555-570.
  25. Young, K.D. (2003). Bacterial shape. Molecular Microbiology 49, 571-580.
  26. Zhang, X.Y.Z., Goemaere, E.L., Thome, R., Gavioli, M., Cascales, E., and Lloubes, R. (2009). Mapping the Interactions between Escherichia coli Tol Subunits ROTATION OF THE TolR TRANSMEMBRANE HELIX. Journal of Biological Chemistry 284, 4275-4282.
  27. Singer, M., and Kaiser, D. (1995). Ectopic production of guanosine penta-and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev 9, 1633-1644.
  28. Ridley, A.J., and Hall, A. (1992a). Distinct Patterns of Actin Organization Regulated by the Small Gtp-Binding Proteins Rac and Rho. Cold Spring Harbor Symposia on Quantitative Biology 57, 661-671.
  29. Shih, Y.L., Kawagishi, I., and Rothfield, L. (2005). The MreB and Min cytoskeletal- like systems play independent roles in prokaryotic polar differentiation. Mol Microbiol 58, 917-928.
  30. Komatsu, M., Takano, H., Hiratsuka, T., Ishigaki, Y., Shimada, K., Beppu, T., and Ueda, K. (2006). Proteins encoded by the conservon of Streptomyces coelicolor A3(2) comprise a membrane-associated heterocomplex that resembles eukaryotic G protein- coupled regulatory system. Mol Microbiol 62, 1534-1546.
  31. Stewart, M.J., and Vanderberg, J.P. (1988). Malaria Sporozoites Leave Behind Trails of Circumsporozoite Protein during Gliding Motility. Journal of Protozoology 35, 389- 393.
  32. Stewart, M.J., and Vanderberg, J.P. (1991). Malaria Sporozoites Release Circumsporozoite Protein from Their Apical End and Translocate It Along Their Surface. Journal of Protozoology 38, 411-421.
  33. Sibley, L.D. (2004). Intracellular parasite invasion strategies. Science 304, 248-253.
  34. Kimmel, A. R., and Parent, C.A. (2003). Dictyostelium discoideum cAMP chemotaxis pathway. Science 300, 1525-1527.
  35. Sliusarenko, O., Zusman, D.R., and Oster, G. (2007). The motors powering A- motility in Myxococcus xanthus are distributed along the cell body. Journal of Bacteriology 189, 7920-7921.
  36. Lovering, A.L., Safadi, S.S., and Strynadka, N.C.J. (2012). Structural Perspective of Peptidoglycan Biosynthesis and Assembly. Annual Review of Biochemistry, Vol 81 81, 451-478.
  37. Krendel, M., and Mooseker, M.S. (2005). Myosins: Tails (and heads) of functional diversity. Physiology 20, 239-251.
  38. Le Clainche, C., and Carlier, M.F. (2008). Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiological Reviews 88, 489-513.
  39. McBride, M.J. (2004). Cytophaga-flavobacterium gliding motility. Journal of Molecular Microbiology and Biotechnology 7, 63-71.
  40. Wennerberg, K., Rossman, K.L., and Der, C.J. (2005). The Ras superfamily at a glance. Journal of Cell Science 118, 843-846.
  41. Zaidel-Bar, R., Milo, R., Kam, Z., and Geiger, B. (2007). A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. Journal of Cell Science 120, 137-148.
  42. Webb, D.J., Donais, K., Whitmore, L.A., Thomas, S.M., Turner, C.E., Parsons, J.T., and Horwitz, A.F. (2004). FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biology 6, 154-+.
  43. Scheffzek, K., and Ahmadian, M. (2005). GTPase activating proteins: structural and functional insights 18 years after discovery. Cellular and Molecular Life Sciences 62, 3014-3038.
  44. Shi, X., Wegener-Feldbrugge, S., Huntley, S., Hamann, N., Hedderich, R., and Sogaard-Andersen, L. (2008). Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 190, 613-624.
  45. Wittmann, T., and Waterman-Storer, C.M. (2001). Cell motility: can Rho GTPases and microtubules point the way? Journal of Cell Science 114, 3795-3803.
  46. Rorth, P. (2009). Collective cell migration. Annu Rev Cell Dev Biol 25, 407-429.
  47. Russell, D.G., and Sinden, R.E. (1981). The Role of the Cytoskeleton in the Motility of Coccidian Sporozoites. Journal of Cell Science 50, 345-359.
  48. Sambrook, J.J., and Russell, D.D.W. (2001). Molecular cloning: a laboratory manual.
  49. Pinder, J.C., Fowler, R.E., Dluzewski, A.R., Bannister, L.H., Lavin, F.M., Mitchell, G.H., Wilson, R.J.M., and Gratzer, W.B. (1998). Actomyosin motor in the merozoite of the malaria parasite, Plasmodium falciparum: implications for red cell invasion. Journal of Cell Science 111, 1831-1839.
  50. Robson, K.J.H., Hall, J.R.S., Jennings, M.W., Harris, T.J.R., Marsh, K., Newbold, C.I., Tate, V.E., and Weatherall, D.J. (1988). A Highly Conserved Amino-Acid- Sequence in Thrombospondin, Properdin and in Proteins from Sporozoites and Blood Stages of a Human Malaria Parasite. Nature 335, 79-82.
  51. Kroos, L., Hartzell, P., Stephens, K., and Kaiser, D. (1988). A Link between Cell- Movement and Gene-Expression Argues That Motility Is Required for Cell Cell Signaling during Fruiting Body Development. Genes & Development 2, 1677-1685.
  52. Lleo, M.M., Canepari, P., and Satta, G. (1990). Bacterial-Cell Shape Regulation - Testing of Additional Predictions Unique to the 2-Competing-Sites Model for Peptidoglycan Assembly and Isolation of Conditional Rod-Shaped Mutants from Some Wild-Type Cocci. Journal of Bacteriology 172, 3758-3771.
  53. King, C.A. (1981). Cell-Surface Interaction of the Protozoan Gregarina with Concanavalin-a Beads -Implications for Models of Gregarine Gliding. Cell Biology International Reports 5, 297-305.
  54. Opas, M. (1995). Cellular adhesiveness, contractility, and traction: Stick, grip, and slip control. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire 73, 311-316.
  55. Mignot, T., Shaevitz, J.W., Hartzell, P.L., and Zusman, D.R. (2007b). Evidence that focal adhesion complexes power bacterial gliding motility. Science 315, 853-856.
  56. Mauriello, E.M.F., Mignot, T., Yang, Z.M., and Zusman, D.R. (2010a). Gliding Motility Revisited: How Do the Myxobacteria Move without Flagella? Microbiology and Molecular Biology Reviews 74, 229-+.
  57. Nakane, D., Sato, K., Wada, H., McBride, M.J., and Nakayama, K. (2013). Helical flow of surface protein required for bacterial gliding motility. Proc Natl Acad Sci U S A References 135
  58. Wolgemuth, C.W., Hoiczyk, E., Kaiser, D., and Oster, G. (2002b). How gliding bacteria glide. Biophysical Journal 82, 402a-402a.
  59. Mejillano, M.R., Kojima, S., Applewhite, D.A., Gertler, F.B., Svitkina, T.M., and Borisy, G.G. (2004). Lamellipodial versus filopodial mode of the actin nanomachinery: Pivotal role of the filament barbed end. Cell 118, 363-373.
  60. Abercrombie , M., Heaysman, J.E., and Pegrum, S.M. (1970). Locomotion of Fibroblasts in Culture .1. Movements of Leading Edge. Experimental Cell Research 59, 393.
  61. King, C.A., Whitehead, C., Pringle, N., Cooper, L., and Baines, I.C. (1986). Motility of Protozoan Gregarines -a Model for Studying Mechanochemical Force Transduction at the Cell-Surface. Cell Motility and the Cytoskeleton 6, 243-243.
  62. Mazza, P., Noens, E.E., Schirner, K., Grantcharova, N., Mommaas, A.M., Koerten, H.K., Muth, G., Flardh, K., van Wezel, G.P., and Wohlleben, W. (2006). MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores. Mol Microbiol 60, 838-852.
  63. Vicente-Manzanares, M., Ma, X.F., Adelstein, R.S., and Horwitz, A.R. (2009). Non- muscle myosin II takes centre stage in cell adhesion and migration. Nature Reviews Molecular Cell Biology 10, 778-790.
  64. Vollmer, W., Blanot, D., and de Pedro, M.A. (2008). Peptidoglycan structure and architecture. Fems Microbiology Reviews 32, 149-167.
  65. van den Ent, F., Amos, L.A., and Lowe, J. (2001). Prokaryotic origin of the actin cytoskeleton. Nature 413, 39-44.
  66. Vetter, I.R., and Wittinghofer, A. (2001). Signal transduction -The guanine nucleotide-binding switch in three dimensions. Science 294, 1299-1304.
  67. Scott, A.E., Simon, E., Park, S.K., Andrews, P., and Zusman, D.R. (2008). Site- specific receptor methylation of FrzCD in Myxococcus xanthus is controlled by a tetra- trico peptide repeat (TPR) containing regulatory domain of the FrzF methyltransferase.
  68. Miertzschke, M., Koerner, C., Vetter, I.R., Keilberg, D., Hot, E., Leonardy, S., Sogaard-Andersen, L., and Wittinghofer, A. (2011). Structural analysis of the Ras- like G protein MglA and its cognate GAP MglB and implications for bacterial polarity.
  69. Ausmees, N., Kuhn, J.R., and Jacobs-Wagner, C. (2003). The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115, 705-713.
  70. Abercrombie, M., Heaysman, J.E., and Pegrum, S.M. (1971). The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res 67, 359-367.
  71. Ridley, A.J., and Hall, A. (1992b). The Small Gtp-Binding Protein Rho Regulates the Assembly of Focal Adhesions and Actin Stress Fibers in Response to Growth-Factors. Cell 70, 389-399.
  72. Kusumoto, A., Shinohara, A., Terashima, H., Kojima, S., Yakushi, T., and Homma, M. (2008). Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus. Microbiology-Sgm 154, 1390-1399.
  73. Morrissette, N.S., and Sibley, L.D. (2002). Cytoskeleton of apicomplexan parasites. Microbiology and Molecular Biology Reviews 66, 21-+.
  74. Koch, M.K., and Hoiczyk, E. (2013). Characterization of myxobacterial A-motility: insights from microcinematographic observations. J Basic Microbiol.
  75. Petit, V., and Thiery, J.P. (2000). Focal adhesions: structure and dynamics. Biol Cell 92, 477-494.
  76. Muller, F.D., Schink, C.W., Hoiczyk, E., Cserti, E., and Higgs, P.I. (2012). Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Molecular Microbiology 83, 486-505.
  77. Pollard, T.D., Satterwhite, L., Cisek, L., Corden, J., Sato, M., and Maupin, P. (1990). Actin and Myosin Biochemistry in Relation to Cytokinesis. Annals of the New York Academy of Sciences 582, 120-130.
  78. Lew, A.E., Dluzewski, A.R., Johnson, A.M., and Pinder, J.C. (2002). Myosins of Babesia bovis: molecular characterisation, erythrocyte invasion, and phylogeny. Cell Motility and the Cytoskeleton 52, 202-220.
  79. Mignot, T., Merlie, J.P., Jr., and Zusman, D.R. (2005a). Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310, 855-857.
  80. Rafelski, S.M., and Theriot, J.A. (2004). Crawling toward a unified model of cell motility: Spatial and temporal regulation of actin dynamics. Annual Review of Biochemistry 73, 209-239.
  81. Praefcke, G.J.K., and McMahon, H.T. (2004). The dynamin superfamily: Universal membrane tubulation and fission molecules? Nature Reviews Molecular Cell Biology 5, 133-147.
  82. Mauriello, E.M., Nan, B., and Zusman, D.R. (2009). AglZ regulates adventurous (A-) motility in Myxococcus xanthus through its interaction with the cytoplasmic receptor, FrzCD. Mol Microbiol 72, 964-977.
  83. Seto, S., Uenoyama, A., and Miyata, M. (2005). Identification of a 521-kilodalton protein (Gli521) involved in force generation or force transmission for Mycoplasma mobile gliding. Journal of Bacteriology 187, 3502-3510.
  84. Uenoyama, A., and Miyata, M. (2005). Gliding ghosts of Mycoplasma mobile. Proceedings of the National Academy of Sciences of the United States of America 102, 12754-12758.
  85. Shaw, M.K., and Tilney, L.G. (1999). Induction of an acrosomal process in Toxoplasma gondii: Visualization of actin filaments in a protozoan parasite. Proceedings of the National Academy of Sciences of the United States of America 96, 9095-9099.
  86. Wu, S.S., and Kaiser, D. (1997). Regulation of expression of the pilA gene in Myxococcus xanthus. Journal of Bacteriology 179, 7748-7758.
  87. Satyshur, K.A., Worzalla, G.A., Meyer, L.S., Heiniger, E.K., Aukema, K.G., Misic, A.M., and Forest, K.T. (2007). Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility. Structure 15, 363-376.
  88. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. Embo Journal 22, 5283-5292.
  89. Yam, P.T., Wilson, C.A., Ji, L., Hebert, B., Barnhart, E.L., Dye, N.A., Wiseman, P.W., Danuser, G., and Theriot, J.A. (2007). Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. Journal of Cell Biology 178, 1207-1221.
  90. Arnold, J.W., and Shimkets, L.J. (1988). Cell-Surface Properties Correlated with Cohesion in Myxococcus xanthus. Journal of Bacteriology 170, 5771-5777.
  91. Srivastava, P., Demarre, G., Karpova, T.S., McNally, J., and Chattoraj, D.K. (2007). Changes in nucleoid morphology and origin localization upon inhibition or alteration of the actin homolog, MreB, of Vibrio cholerae. J Bacteriol 189, 7450-7463.
  92. Yuda, M., Sawai, T., and Chinzei, Y. (1999). Structure and expression of an adhesive protein-like molecule of mosquito invasive-stage malarial parasite. Journal of Experimental Medicine 189, 1947-1952.
  93. Vicente-Manzanares, M., Koach, M.A., Whitmore, L., Lamers, M.L., and Horwitz, A.F. (2008). Segregation and activation of myosin IIB creates a rear in migrating cells. Journal of Cell Biology 183, 543-554.
  94. McBride, M.J., Braun, T.F., and Brust, J.L. (2003). Flavobacterium johnsoniae GldH is a lipoprotein that is required for gliding motility and chitin utilization. Journal of Bacteriology 185, 6648-6657.
  95. Waidner, B., Specht, M., Dempwolff, F., Haeberer, K., Schaetzle, S., Speth, V., Kist, M., and Graumann, P.L. (2009). A novel system of cytoskeletal elements in the human pathogen Helicobacter pylori. PLoS Pathog 5, e1000669.
  96. Balaban, M., Joslin, S.N., and Hendrixson, D.R. (2009). FlhF and Its GTPase Activity Are Required for Distinct Processes in Flagellar Gene Regulation and Biosynthesis in Campylobacter jejuni. Journal of Bacteriology 191, 6602-6611.
  97. Sato, K., Naito, M., Yukitake, H., Hirakawa, H., Shoji, M., McBride, M.J., Rhodes, R.G., and Nakayama, K. (2010). A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci U S A 107, 276-281.
  98. Mauriello, E.M.F., Mouhamar, F., Nan, B., Ducret, A., Dai, D., Zusman, D.R., and Mignot, T. (2010b). Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. Embo Journal 29, 315-326.
  99. Kuhn, J., Briegel, A., Morschel, E., Kahnt, J., Leser, K., Wick, S., Jensen, G.J., and Thanbichler, M. (2010). Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J 29, 327-339.
  100. Mogilner, A., and Keren, K. (2009). The shape of motile cells. Curr Biol 19, R762- 771.
  101. Popp, D., Narita, A., Maeda, K., Fujisawa, T., Ghoshdastider, U., Iwasa, M., Maeda, Y., and Robinson, R.C. (2010). Filament Structure, Organization, and Dynamics in MreB Sheets. Journal of Biological Chemistry 285, 15858-15865.
  102. Wang, S., Arellano-Santoyo, H., Combs, P.A., and Shaevitz, J.W. (2010). Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria. Proc Natl Acad Sci U S A 107, 9182-9185.
  103. Zhang, Y., Franco, M., Ducret, A., and Mignot, T. (2010). A Bacterial Ras-Like Small GTP-Binding Protein and Its Cognate GAP Establish a Dynamic Spatial Polarity Axis to Control Directed Motility. Plos Biology 8.
  104. Leonardy, S., Miertzschke, M., Bulyha, I., Sperling, E., Wittinghofer, A., and Sogaard-Andersen, L. (2010). Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP. Embo Journal 29, 2276-2289.
  105. Shaevitz, J.W., and Gitai, Z. (2010). The Structure and Function of Bacterial Actin Homologs. Cold Spring Harbor Perspectives in Biology 2.
  106. Sogaard-Andersen, L. (2011). Directional intracellular trafficking in bacteria. Proceedings of the National Academy of Sciences of the United States of America 108, 7283-7284.
  107. Salje, J., van den Ent, F., de Boer, P., and Lowe, J. (2011). Direct membrane binding by bacterial actin MreB. Mol Cell 43, 478-487.
  108. Luciano, J., Agrebi, R., Le Gall, A.V., Wartel, M., Fiegna, F., Ducret, A., Brochier- Armanet, C., and Mignot, T. (2011). Emergence and Modular Evolution of a Novel Motility Machinery in Bacteria. Plos Genetics 7.
  109. van Teeffelen, S., Wang, S.Y., Furchtgott, L., Huang, K.C., Wingreen, N.S., Shaevitz, J.W., and Gitai, Z. (2011). The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proceedings of the National Academy of Sciences of the United States of America 108, 15822-15827.
  110. Localization of MglA, an essential gliding motility protein in Myxococcus xanthus. Cytoskeleton (Hoboken) 67, 322-337.
  111. Spoerner, M., Herrmann, C., Vetter, I.R., Kalbitzer, H.R., and Wittinghofer, A. (2001). Dynamic properties of the Ras switch I region and its importance for binding to effectors. Proceedings of the National Academy of Sciences of the United States of America 98, 4944-4949.
  112. Zhang, Y., Guzzo, M., Ducret, A., Li, Y.Z., and Mignot, T. (2012). A Dynamic Response Regulator Protein Modulates G-Protein-Dependent Polarity in the Bacterium Myxococcus xanthus. Plos Genetics 8.
  113. Swulius, M.T., and Jensen, G.J. (2012). The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-Terminal yellow fluorescent protein tag. J Bacteriol 194, 6382-6386.
  114. Walsh, C.T., and Wencewicz, T.A. (2013). Flavoenzymes: Versatile catalysts in biosynthetic pathways. Natural Product Reports 30, 175-200.
  115. Sun, S.X., Walcott, S., and Wolgemuth, C.W. (2010). Cytoskeletal cross-linking and bundling in motor-independent contraction. Curr Biol 20, R649-654.
  116. Pollard, T.D., and Cooper, J.A. (2009). Actin, a central player in cell shape and movement. Science 326, 1208-1212.
  117. Ataide, S.F., Schmitz, N., Shen, K.A., Ke, A.L., Shan, S.O., Doudna, J.A., and Ban, N.N. (2011). The Crystal Structure of the Signal Recognition Particle in Complex with Its Receptor. Science 331, 881-886.
  118. Thrombospondin-Related Adhesive Protein (Trap) of Plasmodium-Falciparum - Expression during Sporozoite Ontogeny and Binding to Human Hepatocytes. Embo Journal 14, 3883-3894.
  119. McBride, M.J., and Braun, T.F. (2004). GldI is a lipoprotein that is required for Flavobacterium johnsoniae gliding motility and chitin utilization. Journal of Bacteriology 186, 2295-2302.
  120. Spratt, B.G. (1975). Distinct Penicillin Binding-Proteins Involved in Division, Elongation, and Shape of Escherichia-Coli-K12. Proceedings of the National Academy of Sciences of the United States of America 72, 2999-3003.
  121. Yang, R.F., Bartle, S., Otto, R., Stassinopoulos, A., Rogers, M., Plamann, L., and Hartzell, P. (2004). AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. Journal of Bacteriology 186, 6168-6178.
  122. Young, G.M., Smith, M.J., Minnich, S.A., and Miller, V.L. (1999). The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. Journal of Bacteriology 181, 2823-2833.
  123. Kim, Y.K., and McCarter, L.L. (2000). Analysis of the polar flagellar gene system of Vibrio parahaemolyticus. Journal of Bacteriology 182, 3693-3704.
  124. Miroux, B., and Walker, J.E. (1996). Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. Journal of Molecular Biology 260, 289-298.
  125. Sander, E.E., and Collard, J.G. (1999). Rho-like GTPases: Their role in epithelial cell-cell adhesion and invasion. European Journal of Cancer 35, 1302-1308.
  126. Soufo, H.J., and Graumann, P.L. (2003). Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr Biol 13, 1916-1920.
  127. Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., and Horwitz, A.R. (2003). Cell migration: Integrating signals from front to back. Science 302, 1704-1709.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten