Publikationsserver der Universitätsbibliothek Marburg

Titel:Untersuchungen zur Struktur und Stabilität neuer, durch Genome Mining identifizierter Lassopeptide
Autor:Zimmermann, Marcel
Weitere Beteiligte: Marahiel, Mohamed A. (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0721
URN: urn:nbn:de:hebis:04-z2013-07212
DOI: https://doi.org/10.17192/z2013.0721
DDC: Chemie
Titel (trans.):Structure and stability investigations of novel lasso peptides identified by genome mining
Publikationsdatum:2013-12-18
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Biosynthese, nuclear magnetic resonance, Naturstoff, Massenspektrometrie, Stabilität, Peptide, structure, Struktur, genome mining, stability, Magnetische Kernresonanz, Mutation, ribosomal peptide, genome mining

Zusammenfassung:
Das zunehmende Auftreten multiresistenter Bakterien macht die Suche nach neuen antibakteriellen Wirkstoffen notwendiger denn je. Naturstoffe stellen dabei eine sehr reichhaltige Quelle dar, da sie über strukturelle und chemische Diversität verfügen, die teilweise nicht oder nur unter großem Aufwand synthetisch zugänglich ist. Für die Identifikation neuer Naturstoffe kann dabei besonders die Methode des Genome Minings genutzt werden, da durch die stark gesunkenen Kosten von Sequenzierungen immer mehr Komplettgenome in den Datenbanken zur Verfügung stehen. Eine spezielle Familie der ribosomal synthetisierten und post-translational modifizierten Peptide (RiPPs) sind die Lassopeptide, die ihren Namen ihrer besonderen dreidimensionalen Faltung verdanken. Diese zeigen trotz geringer chemischer Modifikation thermische und proteolytische Stabilität und teilweise interessante Bioaktivitäten. In dieser Arbeit konnten mit dem Genome Mining Ansatz fast 100 potentielle Lassopeptidbiosynthesegencluster identifiziert werden. Als Beweis der Funktionalität des Genome Minings wurde ein Cluster ausgewählt und das hitzelabile Lassopeptid Astexin-1 in verschiedenen Verkürzungsvarianten isoliert, auf thermische und proteolytische Stabilität hin untersucht und seine 3D-Struktur mittels NMR-Spektroskopie aufgeklärt. Eine extensive Mutagenesestudie wurde zur Untersuchung der Spezifität der Biosynthesemaschinerie, sowie zur Identifikation wichtiger Reste für die Stabilität der Lassofaltung durchgeführt. Dabei konnte durch rationale Inkorporation einer Mutation der nativ hitzelabile Naturstoff in ein hitzestabiles Lassopeptid transformiert werden. Im zweiten Teil der Arbeit wurden zwei Biosynthesegencluster aus Caulobacter sp. K31, die durch Genome Mining identifiziert worden sind, ausgewählt und es konnten vier neue Lassopeptide, die Caulonodine IV – VII, isoliert werden. Diese vier Caulonodine tragen Serin bzw. Alanin an Position 1 der Lassopeptidsequenz und definieren damit die Klasse II der Lassopeptide neu, da vorher nur Peptide mit Glycin an dieser Position bekannt waren. Die Caulonodine wurden auf ihre thermische und proteolytische Stabilität hin untersucht und offenbarten sich als hitzelabile Lassopeptide. Die anschließende Mutagenesestudie zeigte die veränderte Spezifität der Biosynthesemaschinerie für Position 1 und ermöglichte die Postulierung der Stöpselaminosäuren für alle vier Caulonodine. Diese Vorhersage wurde für Caulonodin V durch Aufklärung der 3D Struktur mittels NMR-Spektroskopie bestätigt. Eine Mutagenesestudie des Leaderpeptids konnte bestätigen, dass im Leaderpeptid weitere Reste neben Thr-2 für die Prozessierung durch die Biosynthesemaschinerie wichtig sind.

Bibliographie / References

  1. Gillon AD, Saska I, Jennings CV, Guarino RF, Craik DJ, et al. (2008) Biosynthesis of circular proteins in plants. Plant J 53: 505-515.
  2. Saska I, Gillon AD, Hatsugai N, Dietzgen RG, Hara-Nishimura I, et al. (2007) An asparaginyl endopeptidase mediates in vivo protein backbone cyclization. J Biol Chem 282: 29721-29728.
  3. Dutton JL, Renda RF, Waine C, Clark RJ, Daly NL, et al. (2004) Conserved structural and sequence elements implicated in the processing of gene-encoded circular proteins. J Biol Chem 279: 46858-46867.
  4. Herrmann T, Guntert P, Wuthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319: 209-227.
  5. Zhang Q, van der Donk WA, Liu W (2012) Radical-mediated enzymatic methylation: a tale of two SAMS. Acc Chem Res 45: 555-564.
  6. Adelman K, Yuzenkova J, La Porta A, Zenkin N, Lee J, et al. (2004) Molecular mechanism of transcription inhibition by peptide antibiotic Microcin J25. Mol Cell 14: 753-762.
  7. Inokoshi J, Matsuhama M, Miyake M, Ikeda H, Tomoda H (2012) Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171. Appl Microbiol Biotechnol 95: 451-460.
  8. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, et al. (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39: W339-346.
  9. Hegemann JD, Zimmermann M, Zhu S, Klug D, Marahiel MA (2013) Lasso peptides from proteobacteria: Genome mining employing heterologous expression and mass spectrometry. Biopolymers 100: 527-542.
  10. Houssen WE, Jaspars M (2010) Azole-based cyclic peptides from the sea squirt Lissoclinum patella: old scaffolds, new avenues. Chembiochem 11: 1803-1815.
  11. Yan KP, Li Y, Zirah S, Goulard C, Knappe TA, et al. (2012) Dissecting the maturation steps of the lasso peptide microcin J25 in vitro. Chembiochem 13: 1046-1052.
  12. Picur B, Lisowski M, Siemion IZ (1998) A new cyclolinopeptide containing nonproteinaceous amino acid N-methyl-4-aminoproline. Letters in Peptide Science 5: 183-187.
  13. Otaka T, Kaji A (1981) Mode of action of bottromycin A2: effect on peptide bond formation. FEBS Lett 123: 173-176.
  14. Weiz AR, Ishida K, Makower K, Ziemert N, Hertweck C, et al. (2011) Leader peptide and a membrane protein scaffold guide the biosynthesis of the tricyclic peptide microviridin. Chem Biol 18: 1413-1421.
  15. Ma P, Nishiguchi K, Yuille HM, Davis LM, Nakayama J, et al. (2011) Anti-HIV siamycin I directly inhibits autophosphorylation activity of the bacterial FsrC quorum sensor and other ATP- dependent enzyme activities. FEBS Lett 585: 2660-2664.
  16. Sanchez-Barrena MJ, Martinez-Ripoll M, Galvez A, Valdivia E, Maqueda M, et al. (2003) Structure of bacteriocin AS-48: from soluble state to membrane bound state. J Mol Biol 334: 541-549.
  17. van Belkum MJ, Martin-Visscher LA, Vederas JC (2011) Structure and genetics of circular bacteriocins. Trends Microbiol 19: 411-418.
  18. Frechet D, Guitton JD, Herman F, Faucher D, Helynck G, et al. (1994) Solution structure of RP 71955, a new 21 amino acid tricyclic peptide active against HIV-1 virus. Biochemistry 33: 42- 50.
  19. Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, et al. (2006) Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01-B0171, have a lasso structure. J Am Chem Soc 128: 7486-7491.
  20. Potterat O, Wagner K, Gemmecker G, Mack J, Puder C, et al. (2004) BI-32169, a bicyclic 19- peptide with strong glucagon receptor antagonist activity from Streptomyces sp. J Nat Prod 67: 1528-1531.
  21. Wecksler SR, Stoll S, Iavarone AT, Imsand EM, Tran H, et al. (2010) Interaction of PqqE and PqqD in the pyrroloquinoline quinone (PQQ) biosynthetic pathway links PqqD to the radical SAM superfamily. Chem Commun (Camb) 46: 7031-7033.
  22. Dasgupta S, Huang K-W, Wu J (2012) Trifluoromethyl acting as stopper in [2]rotaxane. Chemical Communications 48: 4821-4823.
  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.
  24. Wang CK, Kaas Q, Chiche L, Craik DJ (2008) CyBase: a database of cyclic protein sequences and structures, with applications in protein discovery and engineering. Nucleic Acids Res 36: D206-210.
  25. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, et al. (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38: W695-699.
  26. Chiu J, March PE, Lee R, Tillett D (2004) Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res 32: e174.
  27. Nar H, Schmid A, Puder C, Potterat O (2010) High-resolution crystal structure of a lasso Peptide. ChemMedChem 5: 1689-1692.
  28. Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294: 1327-1336.
  29. Rosengren KJ, Clark RJ, Daly NL, Goransson U, Jones A, et al. (2003) Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J Am Chem Soc 125: 12464-12474.
  30. Wagner G (1990) Nmr Investigations of Protein-Structure. Progress in Nuclear Magnetic Resonance Spectroscopy 22: 101-139.
  31. Knappe TA, Manzenrieder F, Mas-Moruno C, Linne U, Sasse F, et al. (2011) Introducing lasso peptides as molecular scaffolds for drug design: engineering of an integrin antagonist. Angew Chem Int Ed Engl 50: 8714-8717.
  32. Wyss DF, Lahm HW, Manneberg M, Labhardt AM (1991) Anantin--a peptide antagonist of the atrial natriuretic factor (ANF). II. Determination of the primary sequence by NMR on the basis of proton assignments. J Antibiot (Tokyo) 44: 172-180.
  33. Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2013) Caulosegnins I-III: A Highly Diverse Group of Lasso Peptides Derived from a Single Biosynthetic Gene Cluster. J Am Chem Soc 135: 210-222.
  34. Potterat O, Stephan H, Metzger JW, Gnau V, Zähner H, et al. (1994) Aborycin -a tryciclic 21- peptide antibiotic isolated from Streptomyces griseoflavus. Liebigs Ann Chem: 741-743.
  35. Gruber CW, Cemazar M, Clark RJ, Horibe T, Renda RF, et al. (2007) A novel plant protein- disulfide isomerase involved in the oxidative folding of cystine knot defense proteins. J Biol Chem 282: 20435-20446.
  36. Hemsley A, Arnheim N, Toney MD, Cortopassi G, Galas DJ (1989) A simple method for site- directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res 17: 6545-6551.
  37. Morita H, Takeya K (2010) Bioactive Cyclic Peptides from Higher Plants. Heterocycles 80: 739- 764.
  38. Poindexter JS (1964) Biological Properties and Classification of the Caulobacter Group. Bacteriol Rev 28: 231-295.
  39. Kobayashi Y, Ichioka M, Hirose T, Nagai K, Matsumoto A, et al. (2010) Bottromycin derivatives: efficient chemical modifications of the ester moiety and evaluation of anti-MRSA and anti- VRE activities. Bioorg Med Chem Lett 20: 6116-6120.
  40. Morita H, Shishido A, Kayashita T, Shimomura M, Takeya K, et al. (1994) Cyclic Peptide from Higher-Plants .14. 2 Novel Cyclic-Peptides, Yunnanin-a and Yunnanin-B from Stellaria- Yunnanensis. Chemistry Letters: 2415-2418.
  41. Morita H, Kayashita T, Uchida A, Takeya K, Itokawa H (1997) Cyclic peptides from higher plants .33. Delavayins A-C, three new cyclic peptides from Stellaria delavayi. J Nat Prod 60: 212-215.
  42. Maksimov MO, Link AJ (2013) Discovery and characterization of an isopeptidase that linearizes lasso peptides. J Am Chem Soc 135: 12038-12047.
  43. Knerr PJ, van der Donk WA (2012) Discovery, biosynthesis, and engineering of lantipeptides. Annu Rev Biochem 81: 479-505.
  44. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI- BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389- 3402.
  45. Constantine KL, Friedrichs MS, Detlefsen D, Nishio M, Tsunakawa M, et al. (1995) High- resolution solution structure of siamycin II: novel amphipathic character of a 21-residue peptide that inhibits HIV fusion. J Biomol NMR 5: 271-286.
  46. Rance M, Sorensen OW, Bodenhausen G, Wagner G, Ernst RR, et al. (1983) Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun 117: 479-485.
  47. Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of Exchange Processes by 2- Dimensional Nmr-Spectroscopy. Journal of Chemical Physics 71: 4546-4553.
  48. Helynck G, Dubertret C, Mayaux JF, Leboul J (1993) Isolation of RP 71955, a new anti-HIV-1 peptide secondary metabolite. J Antibiot (Tokyo) 46: 1756-1757.
  49. Giessen TW, Franke KB, Knappe TA, Kraas FI, Bosello M, et al. (2012) Isolation, structure elucidation, and biosynthesis of an unusual hydroxamic acid ester-containing siderophore from Actinosynnema mirum. J Nat Prod 75: 905-914.
  50. Maksimov MO, Pan SJ, James Link A (2012) Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep 29: 996-1006.
  51. Iwatsuki M, Uchida R, Takakusagi Y, Matsumoto A, Jiang CL, et al. (2007) Lariatins, novel anti- mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J Antibiot (Tokyo) 60: 357-363.
  52. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37: W202-208.
  53. Freeman MF, Gurgui C, Helf MJ, Morinaka BI, Uria AR, et al. (2012) Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338: 387-390.
  54. Ishitsuka MO, Kusumi T, Kakisawa H, Kaya K, Watanabe MM (1990) Microviridin -a Novel Tricyclic Depsipeptide from the Toxic Cyanobacterium Microcystis-Viridis. J Am Chem Soc 112: 8180-8182.
  55. Bax A, Davis DG (1985) Mlev-17-Based Two-Dimensional Homonuclear Magnetization Transfer Spectroscopy. Journal of Magnetic Resonance 65: 355-360.
  56. Okino T, Matsuda H, Murakami M, Yamaguchi K (1995) New Microviridins, Elastase Inhibitors from the Blue-Green-Alga Microcystis-Aeruginosa. Tetrahedron 51: 10679-10686.
  57. Hamada T, Matsunaga S, Yano G, Fusetani N (2005) Polytheonamides A and B, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, Theonella swinhoei. J Am Chem Soc 127: 110-118.
  58. Hamada T, Sugawara T, Matsunaga S, Fusetani N (1994) Polytheonamides, Unprecedented Highly Cytotoxic Polypeptides, from the Marine Sponge Theonella-Swinhoei .1. Isolation and Component Amino-Acids. Tetrahedron Letters 35: 719-720.
  59. Philmus B, Christiansen G, Yoshida WY, Hemscheidt TK (2008) Post-translational modification in microviridin biosynthesis. Chembiochem 9: 3066-3073.
  60. Kimura K, Kanou F, Takahashi H, Esumi Y, Uramoto M, et al. (1997) Propeptin, a new inhibitor of prolyl endopeptidase produced by Microbispora. I. Fermentation, isolation and biological properties. J Antibiot (Tokyo) 50: 373-378.
  61. Yamasaki M, Yano K, Yoshida M, Matsuda Y, Yamaguchi K (1994) RES-701-1, a novel and selective endothelin type B receptor antagonist produced by Streptomyces sp. RE-701. II. Determination of the primary sequence. J Antibiot (Tokyo) 47: 276-280.
  62. Yano K, Yamasaki M, Yoshida M, Matsuda Y, Yamaguchi K (1995) RES-701-2, a novel and selective endothelin type B receptor antagonist produced by Streptomyces sp. II. Determination of the primary structure. J Antibiot (Tokyo) 48: 1368-1370.
  63. Yang X, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis. Chemistry 19: 7662-7677.
  64. Ziemert N, Ishida K, Liaimer A, Hertweck C, Dittmann E (2008) Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Angew Chem Int Ed Engl 47: 7756-7759.
  65. Detlefsen DJ, Hill SE, Volk KJ, Klohr SE, Tsunakawa M, et al. (1995) Siamycins I and II, new anti- HIV-1 peptides: II. Sequence analysis and structure determination of siamycin I. J Antibiot (Tokyo) 48: 1515-1517.
  66. Tsunakawa M, Hu SL, Hoshino Y, Detlefson DJ, Hill SE, et al. (1995) Siamycins I and II, new anti- HIV peptides: I. Fermentation, isolation, biological activity and initial characterization. J Antibiot (Tokyo) 48: 433-434.
  67. Katahira R, Shibata K, Yamasaki M, Matsuda Y, Yoshida M (1995) Solution structure of endothelin B receptor selective antagonist RES-701-1 determined by 1H NMR spectroscopy. Bioorg Med Chem 3: 1273-1280.
  68. Chiche L, Heitz A, Gelly JC, Gracy J, Chau PT, et al. (2004) Squash inhibitors: from structural motifs to macrocyclic knottins. Curr Protein Pept Sci 5: 341-349.
  69. Shimamura H, Gouda H, Nagai K, Hirose T, Ichioka M, et al. (2009) Structure Determination and Total Synthesis of Bottromycin A(2): A Potent Antibiotic against MRSA and VRE. Angewandte Chemie-International Edition 48: 914-917.
  70. Bayro MJ, Mukhopadhyay J, Swapna GV, Huang JY, Ma LC, et al. (2003) Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot. J Am Chem Soc 125: 12382-12383.
  71. Knappe TA, Linne U, Xie X, Marahiel MA (2010) The glucagon receptor antagonist BI-32169 constitutes a new class of lasso peptides. FEBS Lett 584: 785-789.
  72. Pan SJ, Rajniak J, Maksimov MO, Link AJ (2012) The role of a conserved threonine residue in the leader peptide of lasso peptide precursors. Chem Commun (Camb) 48: 1880-1882.
  73. Martin-Visscher LA, Gong X, Duszyk M, Vederas JC (2009) The three-dimensional structure of carnocyclin A reveals that many circular bacteriocins share a common structural motif. J Biol Chem 284: 28674-28681.
  74. Hwang TL, Shaka AJ (1995) Water Suppression That Works -Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients. Journal of Magnetic Resonance Series A 112: 275- 279.
  75. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7: 1513-1523.
  76. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, et al. (2013) antiSMASH 2.0--a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41: W204-212.
  77. Condie JA, Nowak G, Reed DW, Balsevich JJ, Reaney MJ, et al. (2011) The biosynthesis of Caryophyllaceae-like cyclic peptides in Saponaria vaccaria L. from DNA-encoded precursors. Plant J 67: 682-690.
  78. Xie X, Marahiel MA (2012) NMR as an effective tool for the structure determination of lasso peptides. Chembiochem 13: 621-625.
  79. Saether O, Craik DJ, Campbell ID, Sletten K, Juul J, et al. (1995) Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34: 4147- 4158.
  80. Philmus B, Guerrette JP, Hemscheidt TK (2009) Substrate specificity and scope of MvdD, a GRASP-like ligase from the microviridin biosynthetic gene cluster. ACS Chem Biol 4: 429-434.
  81. Wilson KA, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, et al. (2003) Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc 125: 12475- 12483.
  82. Cheung WL, Pan SJ, Link AJ (2010) Much of the microcin J25 leader peptide is dispensable. J Am Chem Soc 132: 2514-2515.
  83. Gonnet GH, Cohen MA, Benner SA (1992) Exhaustive matching of the entire protein sequence database. Science 256: 1443-1445.
  84. Corre C, Challis GL (2009) New natural product biosynthetic chemistry discovered by genome mining. Nat Prod Rep 26: 977-986.
  85. Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154: 1555-1569.
  86. Haft DH, Basu MK, Mitchell DA (2010) Expansion of ribosomally produced natural products: a nitrile hydratase-and Nif11-related precursor family. BMC Biol 8: 70.
  87. Pavlova O, Mukhopadhyay J, Sineva E, Ebright RH, Severinov K (2008) Systematic structure- activity analysis of microcin J25. J Biol Chem 283: 25589-25595.
  88. Wilkinson B, Micklefield J (2007) Mining and engineering natural-product biosynthetic pathways. Nat Chem Biol 3: 379-386.
  89. Walton JD, Hallen-Adams HE, Luo H (2010) Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms. Biopolymers 94: 659-664.
  90. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, et al. (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68: 4431-4440.
  91. Lin PF, Samanta H, Bechtold CM, Deminie CA, Patick AK, et al. (1996) Characterization of siamycin I, a human immunodeficiency virus fusion inhibitor. Antimicrob Agents Chemother 40: 133-138.
  92. Solbiati JO, Ciaccio M, Farias RN, Salomon RA (1996) Genetic analysis of plasmid determinants for microcin J25 production and immunity. J Bacteriol 178: 3661-3663.
  93. Nakayama J, Tanaka E, Kariyama R, Nagata K, Nishiguchi K, et al. (2007) Siamycin attenuates fsr quorum sensing mediated by a gelatinase biosynthesis-activating pheromone in Enterococcus faecalis. J Bacteriol 189: 1358-1365.
  94. Salomon RA, Farias RN (1992) Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174: 7428-7435.
  95. Galperin MY, Koonin EV (1997) A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci 6: 2639-2643.
  96. Leikoski N, Fewer DP, Jokela J, Wahlsten M, Rouhiainen L, et al. (2010) Highly diverse cyanobactins in strains of the genus Anabaena. Appl Environ Microbiol 76: 701-709.
  97. Li B, Sher D, Kelly L, Shi Y, Huang K, et al. (2010) Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proc Natl Acad Sci U S A 107: 10430-10435.
  98. Velasquez JE, van der Donk WA (2011) Genome mining for ribosomally synthesized natural products. Curr Opin Chem Biol 15: 11-21.
  99. Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64: 43-60.
  100. Kuznedelov K, Semenova E, Knappe TA, Mukhamedyarov D, Srivastava A, et al. (2011) The antibacterial threaded-lasso peptide capistruin inhibits bacterial RNA polymerase. J Mol Biol 412: 842-848.
  101. Shen YQ, Bonnot F, Imsand EM, RoseFigura JM, Sjolander K, et al. (2012) Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry 51: 2265-2275.
  102. Maksimov MO, Pelczer I, Link AJ (2012) Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci U S A 109: 15223-15228.
  103. Rohrlack T, Christoffersen K, Kaebernick M, Neilan BA (2004) Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria. Appl Environ Microbiol 70: 5047-5050.
  104. Carroll AR, Coll JC, Bourne DJ, MacLeod JK, Zabriskie TM, et al. (1996) Patellins 1-6 and trunkamide A: Novel cyclic hexa-, hepta-and octa-peptides from colonial ascidians, Lissoclinum sp. Australian Journal of Chemistry 49: 659-667.
  105. Yano K, Toki S, Nakanishi S, Ochiai K, Ando K, et al. (1996) MS-271, a novel inhibitor of calmodulin-activated myosin light chain kinase from Streptomyces sp.--I. Isolation, structural determination and biological properties of MS-271. Bioorg Med Chem 4: 115-120.
  106. Knappe TA, Linne U, Robbel L, Marahiel MA (2009) Insights into the biosynthesis and stability of the lasso peptide capistruin. Chem Biol 16: 1290-1298.
  107. Zimmermann M, Hegemann JD, Xie X, Marahiel MA (2013) The astexin-1 lasso peptides: biosynthesis, stability, and structural studies. Chem Biol 20: 558-569.
  108. Wieland T, Faulstich H (1978) Amatoxins, phallotoxins, phallolysin, and antamanide: the biologically active components of poisonous Amanita mushrooms. CRC Crit Rev Biochem 5: 185-260.
  109. Blond A, Cheminant M, Destoumieux-Garzon D, Segalas-Milazzo I, Peduzzi J, et al. (2002) Thermolysin-linearized microcin J25 retains the structured core of the native macrocyclic peptide and displays antimicrobial activity. Eur J Biochem 269: 6212-6222.
  110. Rebuffat S, Blond A, Destoumieux-Garzon D, Goulard C, Peduzzi J (2004) Microcin J25, from the macrocyclic to the lasso structure: implications for biosynthetic, evolutionary and biotechnological perspectives. Curr Protein Pept Sci 5: 383-391.
  111. Duquesne S, Destoumieux-Garzon D, Zirah S, Goulard C, Peduzzi J, et al. (2007) Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. Chem Biol 14: 793-803.
  112. Knappe TA, Linne U, Zirah S, Rebuffat S, Xie X, et al. (2008) Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J Am Chem Soc 130: 11446-11454.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten