Publikationsserver der Universitätsbibliothek Marburg

Titel:Humane Autoantikörper bei Prionerkrankungen
Autor:Röttger, Yvonne
Weitere Beteiligte: Dodel, Richard (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0634
DOI: https://doi.org/10.17192/z2013.0634
URN: urn:nbn:de:hebis:04-z2013-06341
DDC:500 Naturwissenschaften
Titel (trans.):Naturally occurring autoantibodies in prion disease
Publikationsdatum:2013-11-06
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Mikroglia, Neurodegeneration, Autoantikörper, Autoantikörper, Mikroglia, microglia, Prion, Prion disease, Prion, autoantibodies

Zusammenfassung:
Prionerkrankungen sind bislang nicht therapierbare, grundsätzlich tödlich verlaufende Krankheiten, die infektiösen Charakter besitzen. Dabei kommt es zur Fehlfaltung eines physiologisch vorkommenden Proteins, des zellulär exprimierten Prion Proteins PrPC. PrPC wird in eine stabile, unlösliche Form PrPSc gefaltet, welches Aggregate bilden und sich im Gehirn in Form von Prionplaques ablagern kann. Dadurch kommt es zu einem pro¬gressiven Neuronenverlust begleitet von einer profunden Mikrogliaaktivierung und ei¬ner Vakuolisierung der Hirnmasse. Studien in Zellkulturen und im Mausmodell haben ge¬zeigt, dass Immunisierungsstrategien als potentielle Therapien bei Prionerkrankun¬gen in Betracht gezogen werden können. Natürlich vorkommende Autoantikörper (nAbs) wurden schon bei der Alzheimer- und Parkinson-Erkrankung nachge¬wie¬sen und auf ihre Wirksamkeit untersucht. Die vorliegende Arbeit beschäftigt sich mit der Wirkweise von Prion-spezifischen nAbs (nAbs-PrP) in vitro bei Prion¬erkran¬kungen. Wir konnten erstmalig nAbs-PrP gegen das Prionproteinfragment PrP106-126 A117V im Serum und CSF gesunder Probanden detektieren. Darüber hinaus konnten nAbs-PrP aus ei¬nem kommerziell erwerblichen Pool intravenöser Immunglobuline (IVIg) mit-tels Affini¬täts¬chromatographie isoliert werden. Der Nachweis von nAbs-PrP in huma-nem Serum und CSF von gesunden Spendern impliziert eine physiologische Rolle von nAbs-PrP bei der Kon¬ver¬¬sion von PrPC zu PrPSc. Tatsächlich konnte in der vor¬lie-genden Arbeit ge¬zeigt werden, dass nAbs-PrP die Fibrillenbildung des Peptids PrP106-126 A117V konzen¬tra¬tions¬abhängig inhibieren. Auch die toxische Wirkung des Peptides auf Neu¬rone konnte durch nAbs-PrP gehemmt werden, was vermutlich mit dem hemmen¬den Einfluss auf die Fibrillenbildung einhergeht. Des Weiteren konnte gezeigt werden, dass nAbs-PrP ver¬¬mutlich eine bedeutende Rolle bei der Mikroglia-vermittelten Prion-„Clearance“ spielen. Eine Behandlung der Mikrogliazellen mit nAbs-PrP führte zu einer ver¬¬stärkten Pha¬gozytose von PrP106-126 A117V, die weder in einer Induktion pro-in¬flamma¬tori¬scher Zytokine noch in einer Einschränkung der Zellvitalität resultierte. Durch den Ein¬satz verschiedener Phagozytose-Inhibitoren konnte gezeigt werden, dass wahr¬schein¬lich zwei unterschiedliche Mechanismen für die Phagozytose von fi-brilliertem Prion¬pep¬tid einerseits und für die nAbs-PrP-vermittelte Prionaufnahme anderer¬seits ver¬ant¬wort¬lich sind. Zusammenfassend konnte in vitro gezeigt werden, dass nAbs-PrP in die patholo¬gi¬schen Prozesse der Prionkonversion und -toxizität eingreifen können. nAbs-PrP lösten dabei keine inflammatorische Reaktion in Mikrogliazellen aus, sondern wirkten fördernd auf die „Clearance“ von fibrillierten Prionpeptiden. Diese Ergebnisse legen nahe, den Effekt von nAbs-PrP auf den Krankheitsverlauf in vivo zu untersuchen.

Bibliographie / References

  1. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, et al. (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20: 6309–6316.
  2. Ciesielski-Treska J, Grant NJ, Ulrich G, Corrotte M, Bailly Y, et al. (2004) Fibrillar prion peptide (106–126) and scrapie prion protein hamper phagocytosis in microglia. Glia 46: 101–115.
  3. Walter L, Neumann H (2009) Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol 31: 513–525.
  4. Bate C, Boshuizen R, Williams A (2005) Microglial cells kill prion-damaged neurons in vitro by a CD14-dependent process. J Neuroimmunol 170: 62–70.
  5. Peyrin JM, Lasmezas CI, Haik S, Tagliavini F, Salmona M, et al. (1999) Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. Neuroreport 10: 723–729.
  6. Pul R, Nguyen D, Schmitz U, Marx P, Stangel M (2002) Comparison of intravenous immunoglobulin preparations on microglial function in vitro: more potent immunomodulatory capacity of an IgM/IgA-enriched preparation. Clin Neuropharmacol 25: 254–259.
  7. Giese A, Brown DR, Groschup MH, Feldmann C, Haist I, et al. (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol 8: 449–457.
  8. Garcao P, Oliveira CR, Agostinho P (2006) Comparative study of microglia activation induced by amyloid-beta and prion peptides: role in neurodegener- ation. J Neurosci Res 84: 182–193.
  9. Prusiner SB (1991) Molecular biology of prion diseases. Science 252: 1515–1522.
  10. Relkin NR, Szabo P, Adamiak B, Burgut T, Monthe C, et al. (2009) 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 30: 1728–1736.
  11. McHattie SJ, Brown DR, Bird MM (1999) Cellular uptake of the prion protein fragment PrP106–126 in vitro. J Neurocytol 28: 149–159.
  12. Liu Y, Schubert D (1997) Cytotoxic amyloid peptides inhibit cellular 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis. J Neurochem 69: 2285–2293.
  13. Newman SL, Mikus LK, Tucci MA (1991) Differential requirements for cellular cytoskeleton in human macrophage complement receptor-and Fc receptor- mediated phagocytosis. J Immunol 146: 967–974.
  14. Kranich J, Krautler NJ, Falsig J, Ballmer B, Li S, et al. (2008) Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain- dependent manner. J Exp Med 207: 2271–2281.
  15. Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determina- tion of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem 177: 244–249.
  16. Re F, Belyanskaya SL, Riese RJ, Cipriani B, Fischer FR, et al. (2002) Granulocyte-macrophage colony-stimulating factor induces an expression program in neonatal microglia that primes them for antigen presentation. J Immunol 169: 2264–2273.
  17. Levy Y, Hanan E, Solomon B, Becker OM (2001) Helix-coil transition of PrP106–126: molecular dynamic study. Proteins 45: 382–396.
  18. Saura J, Tusell JM, Serratosa J (2003) High-yield isolation of murine microglia by mild trypsinization. Glia 44: 183–189.
  19. Du Y, Wei X, Dodel R, Sommer N, Hampel H, et al. (2003) Human anti-beta- amyloid antibodies block beta-amyloid fibril formation and prevent beta- amyloid-induced neurotoxicity. Brain 126: 1935–1939.
  20. Neff F, Wei X, Nolker C, Bacher M, Du Y, et al. (2008) Immunotherapy and naturally occurring autoantibodies in neurodegenerative disorders. Autoimmun Rev 7: 501–507.
  21. Roettger Y, Du Y, Bacher M, Zerr I, Dodel R, et al. (2012) Immunotherapy in prion disease. Nat Rev Neurol.
  22. Axline SG, Reaven EP (1974) Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B. Role of subplasma- lemmal microfilaments. J Cell Biol 62: 647–659.
  23. Drevets DA, Campbell PA (1991) Macrophage phagocytosis: use of fluorescence microscopy to distinguish between extracellular and intracellular bacteria. J Immunol Methods 142: 31–38.
  24. Gold M, Mengel D, Roskam S, Dodel R, Bach JP (2013) Mechanisms of action of naturally occurring antibodies against beta-amyloid on microglia. J Neuroinflammation 10: 5.
  25. Koenigsknecht J, Landreth G (2004) Microglial phagocytosis of fibrillar beta- amyloid through a beta1 integrin-dependent mechanism. J Neurosci 24: 9838– 9846.
  26. Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380: 345–347.
  27. Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40: 195–205.
  28. Garcia-Garcia E, Rosales C (2002) Signal transduction during Fc receptor- mediated phagocytosis. J Leukoc Biol 72: 1092–1108.
  29. Gessner JE, Heiken H, Tamm A, Schmidt RE (1998) The IgG Fc receptor family. Ann Hematol 76: 231–248.
  30. Fabrizi C, Silei V, Menegazzi M, Salmona M, Bugiani O, et al. (2001) The stimulation of inducible nitric-oxide synthase by the prion protein fragment 106– 126 in human microglia is tumor necrosis factor-alpha-dependent and involves p38 mitogen-activated protein kinase. J Biol Chem 276: 25692–25696.
  31. Bacher M, Depboylu C, Du Y, Noelker C, Oertel WH, et al. (2009) Peripheral and central biodistribution of (111)In-labeled anti-beta-amyloid autoantibodies in a transgenic mouse model of Alzheimer's disease. Neurosci Lett 449: 240– 245.
  32. Brown DR, Schmidt B, Kretzschmar HA (1996) A neurotoxic prion protein fragment enhances proliferation of microglia but not astrocytes in culture. Glia 18: 59–67.
  33. Rezaie P, Lantos PL (2001) Microglia and the pathogenesis of spongiform encephalopathies. Brain Res Brain Res Rev 35: 55–72.
  34. Esen N, Kielian T (2007) Effects of low dose GM-CSF on microglial inflammatory profiles to diverse pathogen-associated molecular patterns (PAMPs). J Neuroinflammation 4: 10.
  35. Bard F, Cannon C, Barbour R, Burke RL, Games D, et al. (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6: 916–919.
  36. Salmona M, Malesani P, De Gioia L, Gorla S, Bruschi M, et al. (1999) Molecular determinants of the physicochemical properties of a critical prion protein region comprising residues 106–126. Biochem J 342 (Pt 1): 207–214.
  37. Brown DR (2000) Altered toxicity of the prion protein peptide PrP106–126 carrying the Ala(117)–.Val mutation. Biochem J 346 Pt 3: 785–791.
  38. Araki N, Johnson MT, Swanson JA (1996) A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 135: 1249–1260.
  39. Allen LA, Aderem A (1996) Molecular definition of distinct cytoskeletal structures involved in complement-and Fc receptor-mediated phagocytosis in macrophages. J Exp Med 184: 627–637.
  40. Pastore A, Zagari A (2007) A structural overview of the vertebrate prion proteins. Prion 1: 185–197.
  41. Papachroni KK, Ninkina N, Papapanagiotou A, Hadjigeorgiou GM, Xiromer- isiou G, et al. (2007) Autoantibodies to alpha-synuclein in inherited Parkinson's disease. J Neurochem 101: 749–756.
  42. Wei X, Roettger Y, Tan B, He Y, Dodel R, et al. (2012) Human Anti-prion Antibodies Block Prion Peptide Fibril Formation and Neurotoxicity. J Biol Chem 287: 12858–12866.
  43. Smith P, DiLillo DJ, Bournazos S, Li F, Ravetch JV (2012) Mouse model recapitulating human Fcgamma receptor structural and functional diversity. Proc Natl Acad Sci U S A 109: 6181–6186.
  44. Kellner A, Matschke J, Bernreuther C, Moch H, Ferrer I, et al. (2009) Autoantibodies against beta-amyloid are common in Alzheimer's disease and help control plaque burden. Ann Neurol 65: 24–31.
  45. Falsig J, Julius C, Margalith I, Schwarz P, Heppner FL, et al. (2008) A versatile prion replication assay in organotypic brain slices. Nat Neurosci 11: 109–117.
  46. Aguzzi A, Zhu C (2012) Five questions on prion diseases. PLoS Pathog 8: e1002651.
  47. Sulahian TH, Imrich A, Deloid G, Winkler AR, Kobzik L (2008) Signaling pathways required for macrophage scavenger receptor-mediated phagocytosis: analysis by scanning cytometry. Respir Res 9: 59.
  48. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, et al. (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 98: 8850–8855.
  49. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, et al. (1993) Neurotoxicity of a prion protein fragment. Nature 362: 543–546.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten