Publikationsserver der Universitätsbibliothek Marburg

Titel:Rolle der cytosolischen Glutaredoxine im zellulären Eisenmetabolismus in Eukaryoten
Autor:Hoffmann, Bastian
Weitere Beteiligte: Lill, Roland (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0475
URN: urn:nbn:de:hebis:04-z2013-04757
DOI: https://doi.org/10.17192/z2013.0475
DDC: Biowissenschaften, Biologie
Titel (trans.):Role of the cytosolic monothiol glutaredoxins in iron metabolism of eukaryotes
Publikationsdatum:2013-10-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Ironmetabolism, Metabolismus, Ironhomöostasis, Eisenhomöostase, Eisen, Monothiol Glutaredoxine, Saccharomyces cerevisiaem, monothiol glutaredoxins. Saccharomyces cerevisiae, Eisenmetabolismus, Stoffwechsel

Zusammenfassung:
Glutaredoxine kommen in allen phylogenetischen Reichen der Lebewesen vor. Zu dieser Proteinfamilie gehören Dithiol-Glutaredoxine, die ein CPYC Motiv im aktiven Zentrum aufweisen und eine wichtige Rolle bei der Aufrechterhaltung des zellulären Redoxpotentials spielen. Einzeldomänen Monothiol-Glutaredoxine mit einem CGFS Motiv im aktiven Zentrum spielen eine zentrale Funktion bei der Maturierung zellulärer Eisen-Schwefel (Fe/S) Proteine und sind üblicherweise in den Mitochondrien und Chloroplasten lokalisiert. Multidomänen Monothiol-Glutaredoxine sind Fusionsproteine, die aus einer N-terminalen Thioredoxindomäne und einer oder mehreren C-terminalen Monothiol Glutaredoxindomäne(n) bestehen. Diese Unterfamilie der Glutaredoxine kommt im Cytosol und Nukleus fast aller Eukaryoten vor. In der Bäckerhefe S. cerevisiae binden die Multidomänen-Glutaredoxine Grx3 und Grx4 einen Fe/S-Kofaktor und spielen eine essenzielle Rolle bei der Maturierung aller Klassen Eisen-haltiger Proteine und der Regulation der zellulären Eisenhomöostase. Zentrales Ziel der Arbeit war die bessere funktionelle Charakterisierung der Multidomänen Monothiol-Glutaredoxine. Zwei zentrale Fragen standen hierbei im Vordergrund: (1) Welche strukturellen Unterschiede befähigen die ansonsten sehr ähnlichen Glutaredoxine dazu, jeweils spezifische Funktionen zu übernehmen? (2) In wie weit ist die für S. cerevisiae beschriebene Funktion der Multidomänen Glutaredoxine im Eisenmetabolismus höherer Eukaryoten konserviert? Der ersten Frage wurde durch Untersuchungen der Auswirkungen gezielter Mutationen auf die Funktionalität von Grx4 in S. cerevisiae nachgegangen. Diese Analyse zeigte, dass ein Dithiol-Motiv anstelle des Monothiol Motivs im aktiven Zentrum von Grx4 zu einer stark reduzierten Fe/S Clusterbindung und einem moderaten Funktionsverlust dieses Proteins in vivo führt. Hingegen ist ein Prolin im aktiven Zentrum von Grx4 im Gegensatz zu den Einzeldomänen Glutaredoxinen vollkommen kompatibel mit der Bindung eines Fe/S Clusters. Darüber hinaus ist die Thioredoxindomäne von Grx4 absolut essenziell für die Funktion. Wahrscheinlich fungiert diese Domäne als Bindestelle für andere Proteine. Grx3 und Grx4 interagieren direkt mit dem Eisen-regulierten Transkriptionsfaktor Aft1 und inaktivieren Aft1 bei ausreichend verfügbarem Eisen. Es konnte gezeigt werden, dass die Regulation von Aft1 inkompatibel mit einem Dithiol-Motiv im aktiven Zentrum von Grx4 ist und dass Aft1 mit dem C Terminus von Grx4 interagiert. Diese Interaktion ist nicht Eisen-abhängig und ist erhöht, wenn Grx4 keinen Fe/S Cluster gebunden hat. Somit ist nur die Inaktivierung von Aft1 direkt vom Fe/S Cluster von Grx4 abhängig. Insgesamt zeigte diese Arbeit wichtige strukturelle Voraussetzungen für die Funktion der Multidomänen Glutaredoxine im Eisenmetabolismus von S. cerevisiae auf. Zur Beantwortung der zweiten Frage wurden die Auswirkungen der siRNA-vermittelten Depletion von Grx3 in HeLa Zellen untersucht. Grx3-depletierte HeLa Zellen zeigten vergleichbar mit Hefe-Zellen Defekte in der Assemblierung von Fe/S Proteinen des Cytosols und des Zellkerns. Ein Defekt in der Reifung des „Iron Regulatory Protein 1“ (IRP1) führte zum Abbau der Apo-Form dieses Proteins und entsprechenden Auswirkungen auf den Eisenmetabolismus. Im Gegensatz zu Hefe-Zellen zeigten Grx3-depletierte HeLa Zellen keinen Effekt auf die Maturierung mitochondrialer Fe/S Cluster- oder Häm-haltiger Proteine. Trotz des geänderten Eisenmetabolismus wies das Transkriptom von Grx3-depletierten HeLa Zellen keine geänderte Regulation typischer Eisen-regulierter Gene auf. Dazu gehören z.B. Gene, die eine Funktion in den Mitochondrien sowie unter hypoxischen Bedingungen ausüben. Dies und die fehlenden Effekte auf die mitochondrialen Eisen-abhängigen Proteine sind auffällige Unterschiede zu der Hefe. Zusammenfassend konnte eine in allen Eukaryoten konservierte Funktion von Grx3 hinsichtlich der Biogenese von cytosolischen, nicht aber mitochondrialen Fe/S Proteinen nachgewiesen werden.

Bibliographie / References

  1. Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin. Biochemistry 48, 6041-6043.
  2. Hoff, K.G., Culler, S.J., Nguyen, P.Q., McGuire, R.M., Silberg, J.J., and Smolke, C.D. (2009). In vivo fluorescent detection of Fe-S clusters coordinated by human GRX2. Chem Biol 16, 1299- 1308.
  3. Haas, H. (2012). Iron -A Key Nexus in the Virulence of Aspergillus fumigatus. Front Microbiol 3, 28.
  4. Jeong, D., Kim, J.M., Cha, H., Oh, J.G., Park, J., Yun, S.H., Ju, E.S., Jeon, E.S., Hajjar, R.J., and Park, W.J. (2008). PICOT attenuates cardiac hypertrophy by disrupting calcineurin-NFAT signaling. Circ Res 102, 711-719.
  5. Camaschella, C., Campanella, A., De Falco, L., Boschetto, L., Merlini, R., Silvestri, L., Levi, S., and Iolascon, A. (2007). The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 110, 1353-1358.
  6. Hoff, K.G., Ta, D.T., Tapley, T.L., Silberg, J.J., and Vickery, L.E. (2002). Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU. J Biol Chem 277, 27353-27359.
  7. Bandyopadhyay, S., Chandramouli, K., and Johnson, M.K. (2008a). Iron-sulfur cluster biosynthesis. Biochem Soc Trans 36, 1112-1119.
  8. Berndt, C., Lillig, C.H., and Holmgren, A. (2008). Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim Biophys Acta 1783, 641-650.
  9. Gelling, C., Dawes, I.W., Richhardt, N., Lill, R., and Muhlenhoff, U. (2008). Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol Cell Biol 28, 1851-1861.
  10. Muhlenhoff, U., Stadler, J.A., Richhardt, N., Seubert, A., Eickhorst, T., Schweyen, R.J., Lill, R., and Wiesenberger, G. (2003b). A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J Biol Chem 278, 40612-40620.
  11. Sheftel, A.D., Stehling, O., Pierik, A.J., Netz, D.J., Kerscher, S., Elsasser, H.P., Wittig, I., Balk, J., Brandt, U., and Lill, R. (2009). Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Mol Cell Biol 29, 6059-6073.
  12. Urzica, E., Pierik, A.J., Muhlenhoff, U., and Lill, R. (2009). Crucial role of conserved cysteine residues in the assembly of two iron-sulfur clusters on the CIA protein Nar1. Biochemistry 48, 4946-4958.
  13. Gerber, J., Neumann, K., Prohl, C., Muhlenhoff, U., and Lill, R. (2004). The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe/S proteins. Mol Cell Biol 24, 4848-4857.
  14. Philpott, C.C., Rashford, J., Yamaguchi-Iwai, Y., Rouault, T.A., Dancis, A., and Klausner, R.D. (1998). Cell-cycle arrest and inhibition of G1 cyclin translation by iron in AFT1-1(up) yeast.
  15. Geoffroy, M.C., and Hay, R.T. (2009). An additional role for SUMO in ubiquitin-mediated proteolysis. Nat Rev Mol Cell Biol 10, 564-568.
  16. Investigation of iron-sulfur protein maturation in eukaryotes. Methods Mol Biol 372, 325- 342.
  17. Ulrich, H.D. (2009). The SUMO system: an overview. Methods Mol Biol 497, 3-16.
  18. Couturier, J., Jacquot, J.P., and Rouhier, N. (2009a). Evolution and diversity of glutaredoxins in photosynthetic organisms. Cell Mol Life Sci 66, 2539-2557.
  19. Canessa, P., and Larrondo, L.F. (2013). Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol 97, 939-955.
  20. Talmadge, C.B., Finkernagel, S., Sumegi, J., Sciorra, L., and Rabinow, L. (1998). Chromosomal mapping of three human LAMMER protein-kinase-encoding genes. Hum Genet 103, 523- 524.
  21. Mullis, K.B., and Faloona, F.A. (1987). Specific synthesis of DNA in vitro via a polymerase- catalyzed chain reaction. Methods Enzymol 155, 335-350.
  22. Vlamis-Gardikas, A. (2008). The multiple functions of the thiol-based electron flow pathways of Escherichia coli: Eternal concepts revisited. Biochim Biophys Acta 1780, 1170-1200.
  23. Philpott, C.C. (2006). Iron uptake in fungi: a system for every source. Biochim Biophys Acta 1763, 636-645.
  24. Froschauer, E.M., Schweyen, R.J., and Wiesenberger, G. (2009). The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane. Biochim Biophys Acta 1788, 1044-1050.
  25. Schnackerz, K.D., Dobritzsch, D., Lindqvist, Y., and Cook, P.F. (2004). Dihydropyrimidine dehydrogenase: a flavoprotein with four iron-sulfur clusters. Biochim Biophys Acta 1701, 61- 74.
  26. Haunhorst, P., Berndt, C., Eitner, S., Godoy, J.R., and Lillig, C.H. (2010). Characterization of the human monothiol glutaredoxin 3 (PICOT) as iron-sulfur protein. Biochem Biophys Res Commun 394, 372-376.
  27. Hentze, M.W., Muckenthaler, M.U., Galy, B., and Camaschella, C. (2010). Two to tango: regulation of Mammalian iron metabolism. Cell 142, 24-38.
  28. Arlt, A., and Schafer, H. (2011). Role of the immediate early response 3 (IER3) gene in cellular stress response, inflammation and tumorigenesis. Eur J Cell Biol 90, 545-552.
  29. Chepelev, N.L., and Willmore, W.G. (2011). Regulation of iron pathways in response to hypoxia. Free Radic Biol Med 50, 645-666.
  30. Lindahl, M., and Kieselbach, T. (2009). Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria. J Proteomics 72, 416-438.
  31. Sheftel, A., Stehling, O., and Lill, R. (2010a). Iron-sulfur proteins in health and disease. Trends Endocrinol Metab 21, 302-314.
  32. Umehara, H., Nishii, Y., Morishima, M., Kakehi, Y., Kioka, N., Amachi, T., Koizumi, J., Hagiwara, M., and Ueda, K. (2003). Effect of cisplatin treatment on speckled distribution of a serine/arginine-rich nuclear protein CROP/Luc7A. Biochem Biophys Res Commun 301, 324- 329.
  33. Ma, K., and Wang, K. (2002). Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulin. FEBS Lett 532, 273-278.
  34. Vlamis-Gardikas, A., and Holmgren, A. (2002). Thioredoxin and glutaredoxin isoforms.
  35. Vector systems for heterologous expression of proteins in Saccharomyces cerevisiae.
  36. Molik, S., Lill, R., and Muhlenhoff, U. (2007). Methods for studying iron metabolism in yeast mitochondria. Methods Cell Biol 80, 261-280.
  37. Isakov, N., Witte, S., and Altman, A. (2000). PICOT-HD: a highly conserved protein domain that is often associated with thioredoxin and glutaredoxin modules. Trends Biochem Sci 25, 537-539.
  38. Agar, J.N., Krebs, C., Frazzon, J., Huynh, B.H., Dean, D.R., and Johnson, M.K. (2000). IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39, 7856-7862.
  39. Feng, Y., Zhong, N., Rouhier, N., Hase, T., Kusunoki, M., Jacquot, J.P., Jin, C., and Xia, B. (2006). Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site. Biochemistry 45, 7998-8008.
  40. Chandramouli, K., and Johnson, M.K. (2006). HscA and HscB stimulate [2Fe-2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction. Biochemistry 45, 11087- 11095.
  41. Tsai, C.L., and Barondeau, D.P. (2010). Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex. Biochemistry 49, 9132-9139.
  42. Mesecke, N., Mittler, S., Eckers, E., Herrmann, J.M., and Deponte, M. (2008). Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into iron- sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins. Biochemistry 47, 1452-1463.
  43. Wingert, R.A., Galloway, J.L., Barut, B., Foott, H., Fraenkel, P., Axe, J.L., Weber, G.J., Dooley, K., Davidson, A.J., Schmid, B., et al. (2005). Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature 436, 1035-1039.
  44. Netz, D.J., Stumpfig, M., Dore, C., Muhlenhoff, U., Pierik, A.J., and Lill, R. (2010). Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat Chem Biol 6, 758- 765.
  45. Rouault, T.A., and Tong, W.H. (2005). Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6, 345-351.
  46. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans 33, 1375- 1377.
  47. Chamnongpol, S., Dodson, W., Cromie, M.J., Harris, Z.L., and Groisman, E.A. (2002). Fe(III)- mediated cellular toxicity. Mol Microbiol 45, 711-719.
  48. Kosman, D.J. (2003). Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47, 1185- 1197.
  49. Witte, S., Villalba, M., Bi, K., Liu, Y., Isakov, N., and Altman, A. (2000). Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C- interacting protein with a thioredoxin homology domain. J Biol Chem 275, 1902-1909.
  50. Johansson, C., Lillig, C.H., and Holmgren, A. (2004). Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J Biol Chem 279, 7537-7543.
  51. Characterization of the interaction between the J-protein Jac1p and the scaffold for Fe-S cluster biogenesis, Isu1p. J Biol Chem 281, 14580-14587.
  52. Comini, M.A., Rettig, J., Dirdjaja, N., Hanschmann, E.M., Berndt, C., and Krauth-Siegel, R.L. (2008). Monothiol glutaredoxin-1 is an essential iron-sulfur protein in the mitochondrion of African trypanosomes. J Biol Chem 283, 27785-27798.
  53. Shelton, M.D., Chock, P.B., and Mieyal, J.J. (2005). Glutaredoxin: role in reversible protein s- glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal 7, 348-366.
  54. Berndt, C., Hudemann, C., Hanschmann, E.M., Axelsson, R., Holmgren, A., and Lillig, C.H. (2007). How does iron-sulfur cluster coordination regulate the activity of human glutaredoxin 2? Antioxid Redox Signal 9, 151-157.
  55. Xu, X.M., and Moller, S.G. (2011). Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal 15, 271-307.
  56. Rouhier, N., Couturier, J., and Jacquot, J.P. (2006). Genome-wide analysis of plant glutaredoxin systems. J Exp Bot 57, 1685-1696.
  57. Babu, M.M., Iyer, L.M., Balaji, S., and Aravind, L. (2006). The natural history of the WRKY- GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res 34, 6505-6520.
  58. Heymann, P., Ernst, J.F., and Winkelmann, G. (2000). Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiol Lett 186, 221-227.
  59. Peggion, C., Lopreiato, R., Casanova, E., Ruzzene, M., Facchin, S., Pinna, L.A., Carignani, G., and Sartori, G. (2008). Phosphorylation of the Saccharomyces cerevisiae Grx4p glutaredoxin by the Bud32p kinase unveils a novel signaling pathway involving Sch9p, a yeast member of the Akt / PKB subfamily. Febs J 275, 5919-5933.
  60. Murphy, M.P. (2012). Modulating mitochondrial intracellular location as a redox signal. Sci Signal 5, pe39.
  61. Muhlenhoff, U., Gerl, M.J., Flauger, B., Pirner, H.M., Balser, S., Richhardt, N., Lill, R., and Stolz, J. (2007). The ISC [corrected] proteins Isa1 and Isa2 are required for the function but not for the de novo synthesis of the Fe/S clusters of biotin synthase in Saccharomyces cerevisiae. Eukaryot Cell 6, 495-504.
  62. Jeong, D., Cha, H., Kim, E., Kang, M., Yang, D.K., Kim, J.M., Yoon, P.O., Oh, J.G., Bernecker, O.Y., Sakata, S., et al. (2006). PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility. Circ Res 99, 307-314.
  63. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J Cell Sci 119, 4554-4564.
  64. Weinreich, M.A., and Hogquist, K.A. (2008). Thymic emigration: when and how T cells leave home. J Immunol 181, 2265-2270.
  65. Jbel, M., Mercier, A., Pelletier, B., Beaudoin, J., and Labbe, S. (2009). Iron activates in vivo DNA binding of Schizosaccharomyces pombe transcription factor Fep1 through its amino- terminal region. Eukaryot Cell 8, 649-664.
  66. Neeb, A., Wallbaum, S., Novac, N., Dukovic-Schulze, S., Scholl, I., Schreiber, C., Schlag, P., Moll, J., Stein, U., and Sleeman, J.P. (2012). The immediate early gene Ier2 promotes tumor cell motility and metastasis, and predicts poor survival of colorectal cancer patients. Oncogene 31, 3796-3806.
  67. Greer, S.N., Metcalf, J.L., Wang, Y., and Ohh, M. (2012). The updated biology of hypoxia- inducible factor. Embo J 31, 2448-2460.
  68. Ozanne, B.W., Spence, H.J., McGarry, L.C., and Hennigan, R.F. (2007). Transcription factors control invasion: AP-1 the first among equals. Oncogene 26, 1-10.
  69. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5, R80.
  70. Alves, R., Vilaprinyo, E., Sorribas, A., and Herrero, E. (2009). Evolution based on domain combinations: the case of glutaredoxins. BMC evolutionary biology 9, 66.
  71. Rodriguez-Manzaneque, M.T., Ros, J., Cabiscol, E., Sorribas, A., and Herrero, E. (1999). Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 19, 8180-8190.
  72. Izquierdo, A., Casas, C., Muhlenhoff, U., Lillig, C.H., and Herrero, E. (2008). Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway. Eukaryot Cell 7, 1415-1426.
  73. Herrero, E., Ros, J., Tamarit, J., and Belli, G. (2006). Glutaredoxins in fungi. Photosynth Res 89, 127-140.
  74. Herrero, E., and de la Torre-Ruiz, M.A. (2007). Monothiol glutaredoxins: a common domain for multiple functions. Cell Mol Life Sci 64, 1518-1530.
  75. Tamarit, J., Belli, G., Cabiscol, E., Herrero, E., and Ros, J. (2003). Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin. J Biol Chem 278, 25745-25751.
  76. Herrero, E., Ros, J., Belli, G., and Cabiscol, E. (2008). Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780, 1217-1235.
  77. Molina, M.M., Belli, G., de la Torre, M.A., Rodriguez-Manzaneque, M.T., and Herrero, E. (2004). Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins. J Biol Chem 279, 51923-51930.
  78. Belli, G., Polaina, J., Tamarit, J., De La Torre, M.A., Rodriguez-Manzaneque, M.T., Ros, J., and Herrero, E. (2002). Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein. J Biol Chem 277, 37590-37596.
  79. Muhlenhoff, U., Molik, S., Godoy, J.R., Uzarska, M.A., Richter, N., Seubert, A., Zhang, Y., Stubbe, J., Pierrel, F., Herrero, E., et al. (2010). Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab 12, 373-385.
  80. Castells-Roca, L., Muhlenhoff, U., Lill, R., Herrero, E., and Belli, G. (2011). The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs. Mol Microbiol 81, 232-248.
  81. Molina-Navarro, M.M., Casas, C., Piedrafita, L., Belli, G., and Herrero, E. (2006). Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria. FEBS Lett 580, 2273-2280.
  82. Campuzano, V., Montermini, L., Molto, M.D., Pianese, L., Cossee, M., Cavalcanti, F., Monros, E., Rodius, F., Duclos, F., Monticelli, A., et al. (1996). Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423-1427.
  83. Cossee, M., Durr, A., Schmitt, M., Dahl, N., Trouillas, P., Allinson, P., Kostrzewa, M., Nivelon- Chevallier, A., Gustavson, K.H., Kohlschutter, A., et al. (1999). Friedreich's ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol 45, 200-206.
  84. Labbe, S., Pelletier, B., and Mercier, A. (2007). Iron homeostasis in the fission yeast Schizosaccharomyces pombe. Biometals 20, 523-537.
  85. Ulrich, H.D., and Davies, A.A. (2009). In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae. Methods Mol Biol 497, 81-103.
  86. Su, D., Berndt, C., Fomenko, D.E., Holmgren, A., and Gladyshev, V.N. (2007). A conserved cis- proline precludes metal binding by the active site thiolates in members of the thioredoxin family of proteins. Biochemistry 46, 6903-6910.
  87. Rutherford, J.C., Ojeda, L., Balk, J., Muhlenhoff, U., Lill, R., and Winge, D.R. (2005). Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J Biol Chem 280, 10135-10140.
  88. Lee, D.W., Kaur, D., Chinta, S.J., Rajagopalan, S., and Andersen, J.K. (2009). A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione- Literatutverzeichnis S e i t e | 157
  89. Navarro-Sastre, A., Tort, F., Stehling, O., Uzarska, M.A., Arranz, J.A., Del Toro, M., Labayru, M.T., Landa, J., Font, A., Garcia-Villoria, J., et al. (2011). A fatal mitochondrial disease is Literatutverzeichnis S e i t e | 159 associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am J Hum Genet 89, 656-667.
  90. Zheng, L., Baumann, U., and Reymond, J.L. (2004). An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32, e115.
  91. Benita, Y., Kikuchi, H., Smith, A.D., Zhang, M.Q., Chung, D.C., and Xavier, R.J. (2009). An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 37, 4587-4602.
  92. Eferl, R., and Wagner, E.F. (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3, 859-868.
  93. Shaulian, E., and Karin, M. (2002). AP-1 as a regulator of cell life and death. Nat Cell Biol 4, E131-136.
  94. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248- 254.
  95. Li, L., Miao, R., Bertram, S., Jia, X., Ward, D.M., and Kaplan, J. (2012b). A Role for Iron-Sulfur Clusters in the Regulation of Transcription Factor Yap5-dependent High Iron Transcriptional Responses in Yeast. J Biol Chem 287, 35709-35721.
  96. Gari, E., Piedrafita, L., Aldea, M., and Herrero, E. (1997). A set of vectors with a tetracycline- regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13, 837-848.
  97. Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno- Borchart, A., Doenges, G., Schwob, E., Schiebel, E., et al. (2004). A versatile toolbox for PCR- based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947-962.
  98. Zhou, G., Broyles, S.S., Dixon, J.E., and Zalkin, H. (1992). Avian glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing and activity are dependent upon essential cysteine residues. J Biol Chem 267, 7936-7942.
  99. Yang, Y.F., and Wells, W.W. (1991). Catalytic mechanism of thioltransferase. J Biol Chem 266, 12766-12771.
  100. Hausmann, A., Samans, B., Lill, R., and Muhlenhoff, U. (2008). Cellular and mitochondrial remodeling upon defects in iron-sulfur protein biogenesis. J Biol Chem 283, 8318-8330.
  101. Picciocchi, A., Saguez, C., Boussac, A., Cassier-Chauvat, C., and Chauvat, F. (2007). CGFS-type monothiol glutaredoxins from the cyanobacterium Synechocystis PCC6803 and other evolutionary distant model organisms possess a glutathione-ligated [2Fe-2S] cluster. Biochemistry 46, 15018-15026.
  102. Olson, J.W., Agar, J.N., Johnson, M.K., and Maier, R.J. (2000). Characterization of the NifU and NifS Fe-S cluster formation proteins essential for viability in Helicobacter pylori. Biochemistry 39, 16213-16219.
  103. Vashisht, A.A., Zumbrennen, K.B., Huang, X., Powers, D.N., Durazo, A., Sun, D., Bhaskaran, N., Persson, A., Uhlen, M., Sangfelt, O., et al. (2009). Control of iron homeostasis by an iron- regulated ubiquitin ligase. Science 326, 718-721.
  104. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem 257, 13028-13033.
  105. depleted dopaminergic cells: implications for Parkinson's disease. Antioxid Redox Signal 11, 2083-2094.
  106. Fra2-Grx3 complex and is required for in vivo iron signaling in yeast. J Biol Chem 286, 867- 876.
  107. Muhlenhoff, U., Balk, J., Richhardt, N., Kaiser, J.T., Sipos, K., Kispal, G., and Lill, R. (2004). Functional characterization of the eukaryotic cysteine desulfurase Nfs1p from Saccharomyces cerevisiae. J Biol Chem 279, 36906-36915.
  108. Lill, R. (2009). Function and biogenesis of iron-sulphur proteins. Nature 460, 831-838.
  109. Lundstrom-Ljung, J., and Holmgren, A. (1995). Glutaredoxin accelerates glutathione- dependent folding of reduced ribonuclease A together with protein disulfide-isomerase. J Biol Chem 270, 7822-7828.
  110. Fernandes, A.P., and Holmgren, A. (2004). Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6, 63-74.
  111. Lillig, C.H., Berndt, C., and Holmgren, A. (2008). Glutaredoxin systems. Biochim Biophys Acta 1780, 1304-1317.
  112. Holmgren, A. (1978). Glutathione-dependent enzyme reactions of the phage T4 ribonucleotide reductase system. J Biol Chem 253, 7424-7430.
  113. Bharath, S., Hsu, M., Kaur, D., Rajagopalan, S., and Andersen, J.K. (2002). Glutathione, iron and Parkinson's disease. Biochem Pharmacol 64, 1037-1048.
  114. Amutha, B., Gordon, D.M., Gu, Y., Lyver, E.R., Dancis, A., and Pain, D. (2008). GTP is required for iron-sulfur cluster biogenesis in mitochondria. J Biol Chem 283, 1362-1371.
  115. Li, H., Mapolelo, D.T., Dingra, N.N., Keller, G., Riggs-Gelasco, P.J., Winge, D.R., Johnson, M.K., and Outten, C.E. (2011a). Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S]
  116. Bai, S.W., Herrera-Abreu, M.T., Rohn, J.L., Racine, V., Tajadura, V., Suryavanshi, N., Bechtel, S., Wiemann, S., Baum, B., and Ridley, A.J. (2011). Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol 9, 54.
  117. Zhang, S.X., Garcia-Gras, E., Wycuff, D.R., Marriot, S.J., Kadeer, N., Yu, W., Olson, E.N., Garry, D.J., Parmacek, M.S., and Schwartz, R.J. (2005). Identification of direct serum-response factor gene targets during Me2SO-induced P19 cardiac cell differentiation. J Biol Chem 280, 19115-19126.
  118. Zhang, Y., Liu, L., Wu, X., An, X., Stubbe, J., and Huang, M. (2011). Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein: requirement of Rnr4 and contribution of Grx3/4 AND Dre2 proteins. J Biol Chem 286, 41499-41509.
  119. Ueta, R., Fujiwara, N., Iwai, K., and Yamaguchi-Iwai, Y. (2012). Iron-induced dissociation of the Aft1p transcriptional regulator from target gene promoters is an initial event in iron- dependent gene suppression. Mol Cell Biol 32, 4998-5008.
  120. Yoon, T., and Cowan, J.A. (2003). Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J Am Chem Soc 125, 6078-6084.
  121. Diekert, K., de Kroon, A.I., Kispal, G., and Lill, R. (2001). Isolation and subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. Methods Cell Biol 65, 37-51.
  122. Berggard, T., Linse, S., and James, P. (2007). Methods for the detection and analysis of protein-protein interactions. Proteomics 7, 2833-2842.
  123. Sambrook, J., and DW, R. (2001). Molecular Cloning -A laboratory manual, 3rd edition. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  124. Li, H., and Outten, C.E. (2012). Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe- 2S] binding partners in iron homeostasis. Biochemistry 51, 4377-4389.
  125. Dagert, M., and Ehrlich, S.D. (1979). Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6, 23-28.
  126. Yang, Y., Jao, S., Nanduri, S., Starke, D.W., Mieyal, J.J., and Qin, J. (1998). Reactivity of the human thioltransferase (glutaredoxin) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity. Biochemistry 37, 17145-17156.
  127. Nemeth, E., and Ganz, T. (2006). Regulation of iron metabolism by hepcidin. Annu Rev Nutr 26, 323-342.
  128. Ojeda, L., Keller, G., Muhlenhoff, U., Rutherford, J.C., Lill, R., and Winge, D.R. (2006). Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J Biol Chem 281, 17661-17669.
  129. sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 153, 413-427.
  130. Sequence-specific interaction between mitochondrial Fe-S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function. J Biol Chem 279, 29167-29174.
  131. Yun, C.W., Tiedeman, J.S., Moore, R.E., and Philpott, C.C. (2000). Siderophore-iron uptake in saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. J Biol Chem 275, 16354-16359.
  132. Haas, H., Eisendle, M., and Turgeon, B.G. (2008). Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46, 149-187.
  133. Brow, D.A., and Guthrie, C. (1988). Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature 334, 213-218.
  134. Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis. Similarities to and differences from its bacterial counterpart. J Biol Chem 278, 29719-29727.
  135. Bushweller, J.H., Aslund, F., Wuthrich, K., and Holmgren, A. (1992). Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14----S) and its mixed disulfide with glutathione. Biochemistry 31, 9288-9293.
  136. SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine- rich splicing factors. J Biol Chem 271, 24569-24575.
  137. Johansson, C., Roos, A.K., Montano, S.J., Sengupta, R., Filippakopoulos, P., Guo, K., von Delft, F., Holmgren, A., Oppermann, U., and Kavanagh, K.L. (2011). The crystal structure of human GLRX5: iron-sulfur cluster co-ordination, tetrameric assembly and monomer activity.
  138. Ceylan, S., Seidel, V., Ziebart, N., Berndt, C., Dirdjaja, N., and Krauth-Siegel, R.L. (2010). The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism. J Biol Chem 285, 35224-35237.
  139. O'Donovan, K.J., Tourtellotte, W.G., Millbrandt, J., and Baraban, J.M. (1999). The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci 22, 167-173.
  140. Balk, J., Aguilar Netz, D.J., Tepper, K., Pierik, A.J., and Lill, R. (2005). The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron-sulfur protein assembly.
  141. Hausmann, A., Aguilar Netz, D.J., Balk, J., Pierik, A.J., Muhlenhoff, U., and Lill, R. (2005). The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron- sulfur protein assembly machinery. Proc Natl Acad Sci U S A 102, 3266-3271.
  142. Angers, S., Thorpe, C.J., Biechele, T.L., Goldenberg, S.J., Zheng, N., MacCoss, M.J., and Moon, R.T. (2006). The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 8, 348-357.
  143. Lill, R., Hoffmann, B., Molik, S., Pierik, A.J., Rietzschel, N., Stehling, O., Uzarska, M.A., Webert, H., Wilbrecht, C., and Muhlenhoff, U. (2012). The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823, 1491-1508.
  144. Gravina, S.A., and Mieyal, J.J. (1993). Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. Biochemistry 32, 3368-3376.
  145. Gietz, R.D., and Woods, R.A. (2002). Transformation of yeast by lithium acetate/single- stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350, 87-96.
  146. Li, L., Bagley, D., Ward, D.M., and Kaplan, J. (2008). Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol Cell Biol 28, 1326-1337.
  147. Muhlenhoff, U., Gerber, J., Richhardt, N., and Lill, R. (2003a). Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. Embo J 22, 4815-4825.
  148. Kispal, G., Sipos, K., Lange, H., Fekete, Z., Bedekovics, T., Janaky, T., Bassler, J., Aguilar Netz, D.J., Balk, J., Rotte, C., et al. (2005). Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. Embo J 24, 589-598.
  149. Netz, D.J., Pierik, A.J., Stumpfig, M., Muhlenhoff, U., and Lill, R. (2007). The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nat Chem Biol 3, 278-286.
  150. Hoffmann, B., Uzarska, M.A., Berndt, C., Godoy, J.R., Haunhorst, P., Lillig, C.H., Lill, R., and Muhlenhoff, U. (2011). The multidomain thioredoxin-monothiol glutaredoxins represent a distinct functional group. Antioxid Redox Signal 15, 19-30.
  151. Rouhier, N. (2010). Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly. New Phytol 186, 365-372.
  152. Pantopoulos, K. (2004). Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012, 1-13.
  153. Couturier, J., Koh, C.S., Zaffagnini, M., Winger, A.M., Gualberto, J.M., Corbier, C., Decottignies, P., Jacquot, J.P., Lemaire, S.D., Didierjean, C., et al. (2009b). Structure-function relationship of the chloroplastic glutaredoxin S12 with an atypical WCSYS active site. J Biol Chem 284, 9299-9310.
  154. Bonomi, F., Iametti, S., Morleo, A., Ta, D., and Vickery, L.E. (2008). Studies on the mechanism of catalysis of iron-sulfur cluster transfer from IscU[2Fe2S] by HscA/HscB chaperones. Biochemistry 47, 12795-12801.
  155. Srinivasan, U., Mieyal, P.A., and Mieyal, J.J. (1997). pH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis. Biochemistry 36, 3199-3206.
  156. Kaplan, C.D., and Kaplan, J. (2009). Iron acquisition and transcriptional regulation. Chem Rev 109, 4536-4552.
  157. Lill, R., and Muhlenhoff, U. (2008). Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77, 669-700.
  158. Yamaguchi-Iwai, Y., Ueta, R., Fukunaka, A., and Sasaki, R. (2002). Subcellular localization of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. J Biol Chem 277, 18914-18918.
  159. Sipos, K., Lange, H., Fekete, Z., Ullmann, P., Lill, R., and Kispal, G. (2002). Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem 277, 26944-26949.
  160. Hoff, K.G., Cupp-Vickery, J.R., and Vickery, L.E. (2003). Contributions of the LPPVK motif of the iron-sulfur template protein IscU to interactions with the Hsc66-Hsc20 chaperone system. J Biol Chem 278, 37582-37589.
  161. Rouault, T.A. (2006). The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2, 406-414.
  162. Heckman, K.L., and Pease, L.R. (2007). Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2, 924-932.
  163. Thioredoxins, Glutaredoxins, and Peroxiredoxins-Molecular Mechanisms and Health Significance: from Cofactors to Antioxidants to Redox Signaling. Antioxid Redox Signal.
  164. Lange, H., Lisowsky, T., Gerber, J., Muhlenhoff, U., Kispal, G., and Lill, R. (2001). An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic
  165. Lillig, C.H., Berndt, C., Vergnolle, O., Lonn, M.E., Hudemann, C., Bill, E., and Holmgren, A. (2005). Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc Natl Acad Sci U S A 102, 8168-8173.
  166. Kispal, G., Csere, P., Prohl, C., and Lill, R. (1999). The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. Embo J 18, 3981-3989.
  167. Mortimer, R.K., and Johnston, J.R. (1986). Genealogy of principal strains of the yeast genetic stock center. Genetics 113, 35-43.
  168. Gerber, J., Muhlenhoff, U., and Lill, R. (2003). An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep 4, 906-911.
  169. Adam, A.C., Bornhovd, C., Prokisch, H., Neupert, W., and Hell, K. (2006). The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria. Embo J 25, 174-183.
  170. Wiedemann, N., Urzica, E., Guiard, B., Muller, H., Lohaus, C., Meyer, H.E., Ryan, M.T., Meisinger, C., Muhlenhoff, U., Lill, R., et al. (2006). Essential role of Isd11 in mitochondrial iron-sulfur cluster synthesis on Isu scaffold proteins. Embo J 25, 184-195.
  171. Yuvaniyama, P., Agar, J.N., Cash, V.L., Johnson, M.K., and Dean, D.R. (2000). NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc Natl Acad Sci U S A 97, 599-604.
  172. Biederbick, A., Stehling, O., Rosser, R., Niggemeyer, B., Nakai, Y., Elsasser, H.P., and Lill, R. (2006). Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation. Mol Cell Biol 26, 5675-5687.
  173. Hoff, K.G., Silberg, J.J., and Vickery, L.E. (2000). Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc Natl Acad Sci U S A 97, 7790-7795.
  174. Rouhier, N., Unno, H., Bandyopadhyay, S., Masip, L., Kim, S.K., Hirasawa, M., Gualberto, J.M., Lattard, V., Kusunoki, M., Knaff, D.B., et al. (2007). Functional, structural, and spectroscopic characterization of a glutathione-ligated [2Fe-2S] cluster in poplar glutaredoxin C1. Proc Natl Acad Sci U S A 104, 7379-7384.
  175. Hortschansky, P., Eisendle, M., Al-Abdallah, Q., Schmidt, A.D., Bergmann, S., Thon, M., Kniemeyer, O., Abt, B., Seeber, B., Werner, E.R., et al. (2007). Interaction of HapX with the CCAAT-binding complex--a novel mechanism of gene regulation by iron. Embo J 26, 3157- 3168.
  176. Iron, copper, and iron regulatory protein 2 in Alzheimer's disease and related dementias.
  177. Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153, 163-168.
  178. Philpott, C.C., and Protchenko, O. (2008). Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 7, 20-27.
  179. Brynczka, C., and Merrick, B.A. (2007). Nerve growth factor potentiates p53 DNA binding but inhibits nitric oxide-induced apoptosis in neuronal PC12 cells. Neurochem Res 32, 1573- 1585.
  180. Bandyopadhyay, S., Gama, F., Molina-Navarro, M.M., Gualberto, J.M., Claxton, R., Naik, S.G., Huynh, B.H., Herrero, E., Jacquot, J.P., Johnson, M.K., et al. (2008b). Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe-2S] clusters. Embo J 27, 1122-1133.
  181. Rondou, P., Haegeman, G., Vanhoenacker, P., and Van Craenenbroeck, K. (2008). BTB Protein KLHL12 targets the dopamine D4 receptor for ubiquitination by a Cul3-based E3 ligase. J Biol Chem 283, 11083-11096.
  182. Bych, K., Kerscher, S., Netz, D.J., Pierik, A.J., Zwicker, K., Huynen, M.A., Lill, R., Brandt, U., and Balk, J. (2008). The iron-sulphur protein Ind1 is required for effective complex I assembly. Embo J 27, 1736-1746.
  183. Kumanovics, A., Chen, O.S., Li, L., Bagley, D., Adkins, E.M., Lin, H., Dingra, N.N., Outten, C.E., Keller, G., Winge, D., et al. (2008). Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J Biol Chem 283, 10276-10286.
  184. Shi, H., Bencze, K.Z., Stemmler, T.L., and Philpott, C.C. (2008). A cytosolic iron chaperone that delivers iron to ferritin. Science 320, 1207-1210.
  185. Stehling, O., Netz, D.J., Niggemeyer, B., Rosser, R., Eisenstein, R.S., Puccio, H., Pierik, A.J., and Lill, R. (2008). Human Nbp35 is essential for both cytosolic iron-sulfur protein assembly and iron homeostasis. Mol Cell Biol 28, 5517-5528.
  186. Luikenhuis, S., Perrone, G., Dawes, I.W., and Grant, C.M. (1998). The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 9, 1081-1091.
  187. Hong, S.K., and Dawid, I.B. (2009). FGF-dependent left-right asymmetry patterning in zebrafish is mediated by Ier2 and Fibp1. Proc Natl Acad Sci U S A 106, 2230-2235.
  188. Mercier, A., and Labbe, S. (2009). Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1. J Biol Chem 284, 20249-20262.
  189. Mieyal, J.J., Gallogly, M.M., Qanungo, S., Sabens, E.A., and Shelton, M.D. (2008). Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10, 1941-1988.
  190. Li, H., Mapolelo, D.T., Dingra, N.N., Naik, S.G., Lees, N.S., Hoffman, B.M., Riggs-Gelasco, P.J., Huynh, B.H., Johnson, M.K., and Outten, C.E. (2009). The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 48, 9569-9581.
  191. Rouhier, N., Couturier, J., Johnson, M.K., and Jacquot, J.P. (2010). Glutaredoxins: roles in iron homeostasis. Trends Biochem Sci 35, 43-52.
  192. Iron regulation through the back door: iron-dependent metabolite levels contribute to transcriptional adaptation to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 9, 460-471.
  193. Ye, H., Jeong, S.Y., Ghosh, M.C., Kovtunovych, G., Silvestri, L., Ortillo, D., Uchida, N., Tisdale, J., Camaschella, C., and Rouault, T.A. (2010). Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. J Clin Invest 120, 1749-1761.
  194. Lopez-Bergami, P., Lau, E., and Ronai, Z. (2010). Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer 10, 65-76.
  195. Ye, H., and Rouault, T.A. (2010). Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49, 4945-4956.
  196. Sheftel, A.D., Stehling, O., Pierik, A.J., Elsasser, H.P., Muhlenhoff, U., Webert, H., Hobler, A., Hannemann, F., Bernhardt, R., and Lill, R. (2010b). Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci U S A 107, 11775-11780.
  197. Bao, G., Clifton, M., Hoette, T.M., Mori, K., Deng, S.X., Qiu, A., Viltard, M., Williams, D., Paragas, N., Leete, T., et al. (2010). Iron traffics in circulation bound to a siderocalin (Ngal)- catechol complex. Nat Chem Biol 6, 602-609.
  198. Stemmler, T.L., Lesuisse, E., Pain, D., and Dancis, A. (2010). Frataxin and mitochondrial FeS cluster biogenesis. J Biol Chem 285, 26737-26743.
  199. Sun, Q.A., Kirnarsky, L., Sherman, S., and Gladyshev, V.N. (2001). Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc Natl Acad Sci U S A 98, 3673-3678.
  200. Jbel, M., Mercier, A., and Labbe, S. (2011). Grx4 monothiol glutaredoxin is required for iron limitation-dependent inhibition of Fep1. Eukaryot Cell 10, 629-645.
  201. Netz, D.J., Stith, C.M., Stumpfig, M., Kopf, G., Vogel, D., Genau, H.M., Stodola, J.L., Lill, R., Burgers, P.M., and Pierik, A.J. (2012b). Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 8, 125-132.
  202. Brautigam, L., Schutte, L.D., Godoy, J.R., Prozorovski, T., Gellert, M., Hauptmann, G., Holmgren, A., Lillig, C.H., and Berndt, C. (2011). Vertebrate-specific glutaredoxin is essential for brain development. Proc Natl Acad Sci U S A 108, 20532-20537.
  203. Jin, L., Pahuja, K.B., Wickliffe, K.E., Gorur, A., Baumgartel, C., Schekman, R., and Rape, M. (2012). Ubiquitin-dependent regulation of COPII coat size and function. Nature 482, 495- 500.
  204. Rutherford, J.C., and Bird, A.J. (2004). Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3, 1-13.
  205. Muhlenhoff, U., Richter, N., Pines, O., Pierik, A.J., and Lill, R. (2011). Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J Biol Chem 286, 41205-41216.
  206. Sheftel, A.D., Wilbrecht, C., Stehling, O., Niggemeyer, B., Elsasser, H.P., Muhlenhoff, U., and Lill, R. (2012). The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Mol Biol Cell 23, 1157-1166.
  207. Morano, K.A., Grant, C.M., and Moye-Rowley, W.S. (2012). The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190, 1157-1195.
  208. Netz, D.J., Pierik, A.J., Stumpfig, M., Bill, E., Sharma, A.K., Pallesen, L.J., Walden, W.E., and Lill, R. (2012a). A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation. J Biol Chem 287, 12365-12378.
  209. Bridwell-Rabb, J., Iannuzzi, C., Pastore, A., and Barondeau, D.P. (2012). Effector role reversal during evolution: the case of frataxin in Fe-S cluster biosynthesis. Biochemistry 51, 2506- 2514.
  210. Li, H., Mapolelo, D.T., Randeniya, S., Johnson, M.K., and Outten, C.E. (2012a). Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2. Biochemistry 51, 1687- 1696.
  211. Philpott, C.C., Leidgens, S., and Frey, A.G. (2012). Metabolic remodeling in iron-deficient fungi. Biochim Biophys Acta 1823, 1509-1520.
  212. Pimentel, C., Vicente, C., Menezes, R.A., Caetano, S., Carreto, L., and Rodrigues-Pousada, C. (2012). The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability. PLoS One 7, e37434.
  213. Nandal, A., Ruiz, J.C., Subramanian, P., Ghimire-Rijal, S., Sinnamon, R.A., Stemmler, T.L., Bruick, R.K., and Philpott, C.C. (2011). Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab 14, 647-657.
  214. Vachon, P., Mercier, A., Jbel, M., and Labbe, S. (2012). The monothiol glutaredoxin Grx4 exerts an iron-dependent inhibitory effect on Php4 function. Eukaryot Cell 11, 806-819.
  215. Stehling, O., Vashisht, A.A., Mascarenhas, J., Jonsson, Z.O., Sharma, T., Netz, D.J., Pierik, A.J., Wohlschlegel, J.A., and Lill, R. (2012). MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 337, 195-199.
  216. Shakamuri, P., Zhang, B., and Johnson, M.K. (2012). Monothiol glutaredoxins function in storing and transporting [Fe2S2] clusters assembled on IscU scaffold proteins. J Am Chem Soc 134, 15213-15216.
  217. Finley, D., Ulrich, H.D., Sommer, T., and Kaiser, P. (2012). The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192, 319-360.
  218. Thompson, J.W., and Bruick, R.K. (2012). Protein degradation and iron homeostasis. Biochim Biophys Acta 1823, 1484-1490.
  219. Salahudeen, A.A., Thompson, J.W., Ruiz, J.C., Ma, H.W., Kinch, L.N., Li, Q., Grishin, N.V., and Bruick, R.K. (2009). An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 326, 722-726.
  220. Anderson, C.P., Shen, M., Eisenstein, R.S., and Leibold, E.A. (2012). Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta 1823, 1468- 1483.
  221. Uzarska, M.A., Dutkiewicz, R., Freibert, S.A., Lill, R., and Muhlenhoff, U. (2013). The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Mol Biol Cell.
  222. Haunhorst, P., Hanschmann, E.M., Brautigam, L., Stehling, O., Hoffmann, B., Muhlenhoff, U., Lill, R., Berndt, C., and Lillig, C.H. (2013). Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation. Mol Biol Cell 24, 1895-1903.
  223. Vogelstein, B., and Gillespie, D. (1979). Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A 76, 615-619.
  224. Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350-4354.
  225. Balk, J., Pierik, A.J., Netz, D.J., Muhlenhoff, U., and Lill, R. (2004). The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins. Embo J 23, 2105-2115.
  226. Carr, M.W., Roth, S.J., Luther, E., Rose, S.S., and Springer, T.A. (1994). Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A 91, 3652-3656.
  227. Kim, K.D., Kim, H.J., Lee, K.C., and Roe, J.H. (2011). Multi-domain CGFS-type glutaredoxin Grx4 regulates iron homeostasis via direct interaction with a repressor Fep1 in fission yeast.
  228. Adlard, P.A., and Bush, A.I. (2006). Metals and Alzheimer's disease. J Alzheimers Dis 10, 145- 163.
  229. Daum, G., Bohni, P.C., and Schatz, G. (1982). Import of proteins into mitochondria.
  230. Sutak, R., Lesuisse, E., Tachezy, J., and Richardson, D.R. (2008). Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol 16, 261-268.
  231. Adinolfi, S., Iannuzzi, C., Prischi, F., Pastore, C., Iametti, S., Martin, S.R., Bonomi, F., and Pastore, A. (2009). Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS. Nat Struct Mol Biol 16, 390-396.
  232. Balk, J., and Pilon, M. (2011). Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends Plant Sci 16, 218-226.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten