Publikationsserver der Universitätsbibliothek Marburg

Titel:Untersuchungen zur selektiven Reaktivität von Ethen, Cyclooctin und Tetrahydrofuran mit Si(001)-Oberflächen
Autor:Mette, Gerson
Weitere Beteiligte: Höfer, Ulrich (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0469
DOI: https://doi.org/10.17192/z2013.0469
URN: urn:nbn:de:hebis:04-z2013-04697
DDC: Physik
Titel (trans.):Site-selective reactivity of ethylene, cyclooctyne and tetrahydrofuran on Si(001) surfaces
Publikationsdatum:2013-10-07
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Monte-Carlo, Cycloalkin, scanning tunneling microscopy, organic adsorbates, Cyclooctin, Reaktivität, Funktionalisierung <Chemie>, Cycloaddition, Rastertunnelmikroskopie, Adsorbat, semiconductor surface, reactivity, selectivity, Halbleiteroberfläche, Adsorption
Referenziert von:

Zusammenfassung:
Im Rahmen dieser Arbeit wurde die selektive Reaktivität dreier prototypischer organischer Adsorbate (Ethen, Cyclooctin und Tetrahydrofuran) mit der Si(001)-Oberfläche mittels Rastertunnelmikroskopie untersucht. Das Rastertunnelmikroskop ermöglicht hierbei die direkte Beobachtung der Oberfläche im Realraum mit atomarer Auflösung. Auf diese Weise ist es möglich, die auftretenden Adsorptionsgeometrien relativ zur Struktur der Oberfläche zu identifizieren. Ein einzelnes Adsorbat kann dabei durchaus mehrere Adsorptionsgeometrien mit teilweise stark verschiedenen Häufigkeiten aufweisen. Durch sorgfältige, bedeckungsabhängige Experimente können diese relativen Reaktivitätsunterschiede untersucht werden. Durch Variation der Probentemperatur während der Dosierung der Adsorbate sind zudem weitere Rückschlüsse auf die zugrunde liegenden Reaktionsmechanismen der Adsorption möglich, beispielsweise die Existenz von Zwischenzuständen. Darüber hinaus wurden in dieser Arbeit gezielt lokal gestörte Adsorptionsplätze durch verschiedene Wasserstoffvorbedeckungen hergestellt und deren platzspezifische Reaktivität für die Adsorption der verschiedenen Moleküle untersucht, was ebenfalls Rückschlüsse auf den jeweiligen Reaktionsmechanismus zulässt. Ethen ist das kleinste einfach-ungesättigte organische Molekül, dessen nicht-dissoziative Adsorption an einem Dimer der Si(001)-Oberfläche bereits seit vielen Jahren intensiv untersucht wurde. Überraschenderweise konnte in dieser Arbeit eine zweite, bisher nicht identifizierte Adsorptionsgeometrie nachgewiesen werden, die über zwei Dimere erfolgt. Obwohl die neue Adsorptionsgeometrie mit einer geringeren platzspezifischen Reaktivität verbunden ist, liegen bei höheren Bedeckungen annähernd 20% der Moleküle in dieser Adsorptionsgeometrie vor. Als wichtigstes Ergebnis der Untersuchungen zu Ethen auf Si(001) ist allerdings die – im Vergleich zur Adsorption auf der sauberen Oberfläche – deutlich erhöhte platzspezifische Reaktivität von Ethen an lokal gestörten Konfigurationen des voradsorbierten Wasserstoffs hervorzuheben. Durch diese Experimente konnte somit erfolgreich gezeigt werden, dass es auch im Fall einer nicht-dissoziativen Adsorption eines organischen Moleküls auf Si(001) prinzipiell möglich ist, das Adsorptionsverhalten durch lokale Störungen stark zu beeinflussen beziehungsweise zu steuern. Die beobachteten Effekte können durch die Adsorption des Ethens über einen mobilen Precursorzustand erklärt werden, was durch Monte-Carlo-Simulationen bestätigt wurde. Innerhalb eines Precursor-Modells konnten weitergehende Simulationen auch die experimentell beobachteten Adsorbatverteilungen des Ethens auf der sauberen Si(001)-Oberfläche von kleinen bis maximalen Bedeckungen von einer Monolage zufriedenstellend beschreiben. Insgesamt konnte somit in dieser Arbeit ein schlüssiges neues Gesamtbild der Adsorption von Ethen auf der sauberen Si(001)-Oberfläche entwickelt werden. Cycloalkine sind cyclische Kohlenwasserstoffe, die sich durch eine Dreifachbindung und eine damit zusammenhängende starke Verspannung des Molekülrings auszeichnen. Der Einfluss dieser Kombination aus Dreifachbindung und zusätzlicher Ringspannung auf den Adsorptionsmechanismus wurde in dieser Arbeit am Beispiel von Cyclooctin untersucht. Als wichtigstes Ergebnis kann zunächst festgehalten werden, dass sich bei der Adsorption von Cyclooctin auf der Si(001)-Oberfläche in Raumtemperatur- und Tieftemperaturexperimenten im Wesentlichen das gleiche Adsorptionsverhalten beobachten lässt, im Gegensatz zu vielen anderen untersuchten Molekülen. Diese Beobachtung deutet auf einen direkten (barrierelosen) Adsorptionspfad ohne Precursorzustand hin. Ferner konnte gezeigt werden, dass Cyclooctin von kleinen bis zu fast vollständigen und wohlgeordneten Bedeckungen mit hoher Reaktivität auf der Si(001)-Oberfläche adsorbiert. Cyclooctin zeigt dabei primär zwei unterschiedliche Adsorptionsgeometrien, die symmetrisch zu einem Dimer beziehungsweise zu zwei Dimeren sind. Dies führt entlang der Dimerreihe zu wechselnden Molekülabständen von 1.5- beziehungsweise 2-fachen Dimerabständen. In guter Übereinstimmung von Experiment und ebenfalls durchgeführten Monte-Carlo-Simulationen konnte die Maximalbedeckung des Cyclooctins zu 0.58 ML bestimmt werden. In Experimenten an wasserstoffvorbedeckten Si(001)-Oberflächen konnte keine erhöhte platzspezifische Reaktivität an lokal gestörten Adsorptionsplätzen festgestellt werden. Diese Beobachtung untermauert das Vorliegen eines direkten Adsorptionsmechanismus, wodurch sich Cyclooctin sehr wahrscheinlich durch eine, verglichen mit anderen Molekülen, erhöhte chemische Selektivität für die Adsorption auf der Si(001)-Oberfläche auszeichnet. Aufgrund der Ergebnisse dieser Arbeit gilt Cyclooctin im Zusammenhang der Funktionalisierung von Halbleitern daher als vielversprechender Kandidat für den Übergang von einer Halbleiteroberfläche zu einer organischen Multilage. Die Untersuchungen zur Adsorption von Tetrahydrofuran auf der Si(001)-Oberfläche sollten unter anderem der Frage nach möglichen Reaktionen eines Lösungsmittels mit der Halbleiteroberfläche nachgehen. Trotz der Reaktionsträgheit von Tetrahydrofuran in der flüssigen Phase konnte eine unerwartete und erstaunlich komplexe Oberflächenchemie des Tetrahydrofurans auf der Si(001)-Oberfläche festgestellt werden. So werden bei unterschiedlichen Probentemperaturen grundverschiedene Adsorptionsgeometrien und außerdem eine vielschichtige Umordnung nach dem Tempern auf höhere Temperaturen beobachtet. Bei tiefen Temperaturen deuten die Ergebnisse auf einen dativ-gebundenen, metastabilen Zwischenzustand hin, der sich durch thermische Anregung irreversibel in die bei Raumtemperaturexperimenten beobachtete Adsorptionsgeometrie umwandeln lässt. Tempern der mit Tetrahydrofuran bedeckten Si(001)-Oberfläche auf Temperaturen von 700 K führt zu einer Reihe von unterschiedlichen Konfigurationen, die auf eine Zerlegung des Moleküls und insbesondere den Einbau von Sauerstoff in das Siliziumsubstrat hindeuten. Die bei thermischer Anregung beobachtete Umwandlung der Tieftemperatur-Konfiguration in die Raumtemperatur-Konfiguration kann auch durch den Tunnelprozess selbst, das heißt spitzeninduziert, hervorgerufen werden. Diese Effekte wurden eingehend untersucht und konnten auf eine elektronische Anregung zurückgeführt werden.

Bibliographie / References

  1. J. Götzen, C. H. Schwalb, C. Schmidt, G. Mette, M. Marks, U. Höfer and G. Witte Structural evolution of Perfluoro-Pentacene films on Ag(111): Transition from 2D to 3D growth Langmuir 27, 993 (2011)
  2. D. Heber, P. Rösner, and W. Tochtermann, Cyclooctyne and 4-cyclooctyn-1-ol – Versa- tile building blocks in organic synthesis, European Journal of Organic Chemistry 2005, 4231 (2005).
  3. Wissenschaftlicher Werdegang 06/2002 Allgemeine Hochschulreife
  4. A. Selloni, P. Carnevali, E. Tosatti, and C. D. Chen, Voltage-dependent scanning- tunneling microscopy of a crystal surface: Graphite, Phys. Rev. B 31, 2602 (1985).
  5. U. Höfer, Nonlinear optical investigations of the dynamics of hydrogen interaction with silicon surfaces, Appl. Phys. A 63, 533 (1996).
  6. W. Ho, Single-molecule chemistry, J. Chem. Phys. 117, 11033 (2002).
  7. S. Pignataro and G. Distefano, n-σ mixing in pentatomic heterocyclic compounds of sixth group by photoelectron spectroscopy, Chem. Phys. Lett. 26, 356 (1974).
  8. P. Kratzer, B. Hammer, and J. K. Norskov, The coupling between adsorption dynamics and the surface structure: H 2 on Si(100), Chem. Phys. Lett. 229, 645 (1994).
  9. P. Kisliuk, The sticking probabilities of gases chemisorbed on the surfaces of solids, J. Phys. Chem. Solids 3, 95 (1957).
  10. K. Fujiwara, Localized bond model for H 2 O chemisorption on silicon surfaces, Surf. Sci. 108, 124 (1981).
  11. E. Schröder-Bergen and W. Ranke, The structure-sensitive adsorption of H 2 O and H 2 S on flat and stepped Si(001) surfaces, Surf. Sci. 236, 103 (1990).
  12. P. Dumas, Y. J. Chabal, and P. Jakob, Morphology of hydrogen-terminated Si(111) and Si(100) surfaces upon etching in HF and buffered-HF solutions, Surf. Sci. 269-270, 867 (1992).
  13. C. Huang, W. Widdra, and W. H. Weinberg, Adsorption of ethylene on the Si(100)- (2 × 1) surface, Surf. Sci. 315, L953 (1994).
  14. V. A. Ukraintsev and J. T. Yates Jr., The role of nickel in Si(001) roughening, Surf. Sci. 346, 31 (1996).
  15. A. J. Mayne, C. M. Goringe, C. W. Smith, and G. A. D. Briggs, Statistical analysis of adsorbates, Surf. Sci. 348, 209 (1996).
  16. R. E. Schlier and H. E. Farnsworth, Structure and adsorption characteristics of clean surfaces of germanium and silicon, J. Chem. Phys. 30, 917 (1959).
  17. J. E. Bartmess and R. M. Georgiadis, Empirical methods for determination of ionization gauge relative sensitivities for different gases, Vacuum 33, 149 (1983).
  18. D. Schmeisser, A comparative study of O 2 , H 2 and H 2 O adsorption on Si(100), Surf. Sci. 137, 197 (1984).
  19. J. Dabrowski and M. Scheffler, Self-consistent study of the electronic and structural- properties of the clean Si(001)(2 × 1) surface, Appl. Surf. Sci. 56-58, 15 (1992).
  20. Y. Wei, Y. Hong, and I. S. T. Tsong, Oxygen etching of the Si(100)-(2 × 1) surface, Appl. Surf. Sci. 92, 491 (1996).
  21. K. Akagi, S. Tsuneyuki, Y. Yamashita, K. Hamaguchi, and J. Yoshinobu, Structural and chemical property of unsaturated cyclic-hydrocarbon molecules regularly chemisorbed on Si(001) surface, Appl. Surf. Sci. 234, 162 (2004).
  22. J. Yoshinobu, Physical properties and chemical reactivity of the buckled dimer on Si(100), Prog. Surf. Sci. 77, 37 (2004).
  23. A. Namiki, Desorption related to adsorption of hydrogen via detailed balance on the Si(100) surfaces, Prog. Surf. Sci. 81, 337 (2006).
  24. T. R. Leftwich and A. V. Teplyakov, Chemical manipulation of multifunctional hydro- carbons on silicon surfaces, Surf. Sci. Rep. 63, 1 (2008).
  25. S. Okano and A. Oshiyama, A new alternative model of type-C defects on Si(100) surfaces, Surf. Sci. 554, 272 (2004).
  26. F. Bournel, J.-J. Gallet, F. Rochet, J. Fujii, and G. Panaccione, Adsorption of 2-butyne on Si(001) at room temperature: A valence band photoemission study, Surf. Sci. 601, 3750 (2007).
  27. Takeuchi, First principles calculations of the adsorption of acetylene on the Si(001) surface at low and full coverage, Surf. Sci. 601, 3361 (2007).
  28. H.-K. Lee, K.-j. Kim, T.-H. Kang, J. Chung, and B. Kim, Adsorption geometry of furan on Si(100) -2 × 1, Surf. Sci. 602, 914 (2008).
  29. C. Kadero˘ glu, B. Kutlu, B. Alkan, and M. Çakmak, Atomic and electronic properties of furan on the Si(001)-(2 × 2) surface, Surf. Sci. 602, 2845 (2008).
  30. F. A. Asmuruf and N. A. Besley, Density functional theory study of the near edge X-ray absorption fine structure and infrared spectroscopy of acetylene and benzene on group IV semiconductor surfaces, Surf. Sci. 603, 158 (2009).
  31. W. A. Hofer, A. J. Fisher, T. Bitzer, T. Rada, and N. V. Richardson, Tuning in on single molecular states: Adsorption sites and STM images of maleic anhydride on Si(100), Chem. Phys. Lett. 355, 347 (2002).
  32. M. Shimomura, M. Munakata, A. Iwasaki, M. Ikeda, T. Abukawa, K. Sato, T. Kawawa, H. Shimizu, N. Nagashima, and S. Kono, Atomistic morphology and structure of ethylene-chemisorbed Si(001) 2 × 1 surface, Surf. Sci. 504, 19 (2002).
  33. M. P. Schwartz and R. J. Hamers, The role of Pi-conjugation in attachment of organic molecules to the silicon (001) surface, Surf. Sci. 515, 75 (2002).
  34. F. Hennies, A. Föhlisch, W. Wurth, N. Witkowski, M. Nagasono, and M. N. Piancastelli, Fully polarization resolved X-ray absorption spectroscopy of C 2 H 4 on single-domain Si(001)-(2 × 1), Surf. Sci. 529, 144 (2003).
  35. R. Kone˘ cný and D. J. Doren, Cycloaddition reactions of unsaturated hydrocarbons on the Si(100)-(2 × 1) surface: Theoretical predictions, Surf. Sci. 417, 169 (1998).
  36. M. A. Filler and S. F. Bent, The surface as molecular reagent: Organic chemistry at the semiconductor interface, Prog. Surf. Sci. 73, 1 (2003).
  37. X. Cao and R. J. Hamers, Silicon surfaces as electron acceptors: dative bonding of amines with Si(001) and Si(111) surfaces, J. Am. Chem. Soc. 123, 10988 (2001).
  38. R. Hoffmann and R. B. Woodward, Selection rules for concerted cycloaddition reacti- ons, J. Am. Chem. Soc. 87, 2046 (1965).
  39. M. Nagao, H. Umeyama, K. Mukai, Y. Yamashita, J. Yoshinobu, K. Akagi, and S. Ts- uneyuki, Precursor mediated cycloaddition reaction of ethylene to the Si(100) c(4 × 2) surface, J. Am. Chem. Soc. 126, 9922 (2004).
  40. H. Liu and R. J. Hamers, Stereoselectivity in molecule-surface reactions: Adsorption of ethylene on the Silicon(001) surface, J. Am. Chem. Soc. 119, 7593 (1997).
  41. T. Bitzer, T. Rada, and N. V. Richardson, Inhibition of the [2+2] cycloaddition: Maleic anhydride on Si (100) -2 × 1, J. Phys. Chem. B 105, 4535 (2001).
  42. K. Hamaguchi, S. Machida, M. Nagao, F. Yasui, K. Mukai, Y. Yamashita, J. Yoshinobu, H. S. Kato, H. Okuyama, M. Kawai, T. Sato, and I. Masashi, Bonding and structure of 1,4-cyclohexadiene chemisorbed on Si(100)(2 × 1), J. Phys. Chem. B 105, 3718 (2001).
  43. F. Rochet, F. Bournel, J.-J. Gallet, G. Dufour, L. Lozzi, and F. Sirotti, Electronic structure of 1,3,5,7-cyclooctatetraene chemisorbed on Si(001) -2 × 1 at 300 K studied by PES, NEXAFS, and resonant valence band spectroscopy, J. Phys. Chem. B 106, 4967 (2002).
  44. T. Yang, G. Su, C. Ning, J. Deng, F. Wang, S. Zhang, X. Ren, and Y. Huang, New diagnostic of the most populated conformer of tetrahydrofuran in the gas phase, J. Phys. Chem. A 111, 4927 (2007).
  45. D. J. Doren and J. C. Tully, Precursor-mediated adsorption and desorption: A theoreti- cal analysis, Langmuir 4, 256 (1988).
  46. S. S. S. Vegunta, J. N. Ngunjiri, and J. C. Flake, Electrochemical and thermal grafting of alkyl grignard reagents onto (100) silicon surfaces, Langmuir 25, 12750 (2009).
  47. T. D. Wickard, E. Nelsen, N. Madaan, N. ten Brummelhuis, C. Diehl, H. Schlaad, R. C. Davis, and M. R. Linford, Attachment of polybutadienes to hydrogen-terminated silicon and post-derivatization of the adsorbed species, Langmuir 26, 1923 (2010).
  48. X. Lu, M. C. Lin, X. Xu, N. Wang, and Q. Zhang, Theoretical study of [4+2] cycloaddi- tions of some 6-and 5-member ring aromatic compounds on the Si(001) 2 × 1 surface: Correlation between binding energy and resonance energy, PhysChemComm 13, 1 (2001).
  49. M. H. Qiao, F. Tao, Y. Cao, Z. H. Li, W. L. Dai, J. F. Deng, and G. Q. Xu, Cycloaddition reaction of furan with Si(100) -2 × 1, J. Chem. Phys. 114, 2766 (2001).
  50. K.-Y. Kim, J.-H. Kim, J.-H. Cho, L. Kleinman, and H. Kang, Adsorption structure of 2-butyne on Si(100)-(2 × 1), J. Chem. Phys. 118, 6083 (2003).
  51. J.-H. Cho and L. Kleinman, Theoretical study of the reaction of acrylonitrile on Si(001), J. Chem. Phys. 121, 1557 (2004).
  52. T. Matsuno, T. Niida, H. Tsurumaki, and A. Namiki, Coverage dependent desorption dynamics of deuterium on Si(100) surfaces: Interpretation with a diffusion-promoted desorption model, J. Chem. Phys. 122, 024702 (2005).
  53. M. Cobian, G. Boureau, J. Hafner, and G. Kresse, Ab initio density-functional study of the bridging addition of acrylonitrile on the Si(100) surface, J. Chem. Phys. 123, 174705 (2005).
  54. M. A. Lipponer, N. Armbrust, M. Dürr, and U. Höfer, Adsorption dynamics of ethylene on Si(001), J. Chem. Phys. 136, 144703 (2012).
  55. C. S. Carmer, B. Weiner, and M. Frenklach, Molecular dynamics with combined quantum and empirical potentials: C 2 H 2 adsorption on Si(100), J. Chem. Phys. 99, 1356 (1993).
  56. P. Nachtigall, K. D. Jordan, and C. Sosa, Theoretical study of the mechanism of recombinative hydrogen desorption from the monohydride phase of Si(100): The role of defect migration, J. Chem. Phys. 101, 8073 (1994).
  57. U. Birkenheuer, U. Gutdeutsch, N. Rösch, A. Fink, S. Gokhale, D. Menzel, P. Trisch- berger, and W. Widdra, Density functional investigation of the geometric and electronic structure of ethylene adsorbed on Si(001), J. Chem. Phys. 108, 9868 (1998).
  58. F. Besenbacher, Scanning tunnelling microscopy studies of metal surfaces, Rep. Prog. Phys. 59, 1737 (1996).
  59. H. Neddermeyer, Scanning tunnelling microscopy of semiconductor surfaces, Rep. Prog. Phys. 59, 701 (1996).
  60. R. Miotto and A. C. Ferraz, Furan interaction with the Si(001)-(2 × 2)surface: Structu- ral, energetics, and vibrational spectra from first-principles, J. Phys.: Condens. Matter 21, 055006 (2009).
  61. J. W. Lyding, T.-C. Shen, G. C. Abeln, C. Wang, and J. R. Tucker, Nanoscale patterning and selective chemistry of silicon surfaces by ultrahigh-vacuum scanning tunneling microscopy, Nanotechnology 7, 128 (1996).
  62. P. Baumgärtel, R. Lindsay, O. Schaff, T. Gießel, R. Terborg, J. T. Hoeft, M. Polcik, A. M. Bradshaw, M. Carbone, M. N. Piancastelli, R. Zanoni, R. L. Toomes, and D. P. Woodruff, The dimers stay intact: a quantitative photoelectron study of the adsorption system Si(001)(2 × 1)-C 2 H 4 , New J. Phys. 1, 20.1 (1999).
  63. C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, New York -Oxford, 1993).
  64. R. M. Feenstra, Scanning tunneling spectroscopy, Surf. Sci. 299/300, 965 (1994).
  65. T. Sakurai and H. D. Hagstrum, Interplay of the monohydride phase and a newly discovered dihydride phase in chemisorption of H on Si(100) 2 × 1, Phys. Rev. B 14, 1593 (1976).
  66. N. D. Lang, Spectroscopy of single atoms in the scanning tunneling microscope, Phys. Rev. B 34, 5947 (1986).
  67. Y. Miyamoto and A. Oshiyama, Energetics in the initial stage of oxidation of silicon, Phys. Rev. B 43, 9287 (1991).
  68. U. Höfer, L. P. Li, and T. F. Heinz, Desorption of hydrogen from Si(100) 2 × 1 at low coverages: The influence of π-bonded dimers on the kinetics, Phys. Rev. B 45, 9485 (1992).
  69. Tsong, Evolution of surface morphology of Si(100)-(2 × 1) during oxygen adsorption at elevated temperatures, Phys. Rev. B 50, 1567 (1994).
  70. J. E. Northrup, Theoretical studies of arsine adsorption on Si(100), Phys. Rev. B 51, 2218 (1995).
  71. E. Pehlke, Highly reactive dissociative adsorption of hydrogen molecules on partially H-covered Si(001) surfaces: A density-functional study, Phys. Rev. B 62, 12932 (2000).
  72. Y. Morikawa, Adsorption geometries and vibrational modes of C 2 H 2 on the Si(001) surface, Phys. Rev. B 63, 033405 (2001).
  73. A. Fink, W. Widdra, W. Wurth, C. Keller, M. Stichler, A. Achleitner, G. Comelli, S. Lizzit, A. Baraldi, and D. Menzel, Core-level spectroscopy of hydrocarbons adsorbed on Si(100)-(2 × 1): A systematic comparison, Phys. Rev. B 64, 045308 (2001).
  74. J.-H. Cho and L. Kleinman, Adsorption of cyclopentene on the Si(001) surface: A first-principles study, Phys. Rev. B 64, 235420 (2001).
  75. M. Z. Hossain, Y. Yamashita, K. Mukai, and J. Yoshinobu, Model for C defect on Si(100): The dissociative adsorption of a single water molecule on two adjacent dimers, Phys. Rev. B 67, 153307 (2003).
  76. Z. H. Hu, A. Biedermann, E. Knoesel, and T. F. Heinz, Quantitative study of adsorbate- adsorbate interactions of hydrogen on the Si(100) surface, Phys. Rev. B 68, 155418 (2003).
  77. C. H. Schwalb, M. Lawrenz, M. Dürr, and U. Höfer, Real-space investigation of fast diffusion processes of hydrogen on Si(001) by combination of nanosecond laser heating and STM, Phys. Rev. B 75, 85439 (2007).
  78. McKenzie, Water on silicon (001): C defects and initial steps of surface oxidation, Phys. Rev. B 77, 201305(R) (2008).
  79. Q. J. Zhang, X. L. Fan, W. M. Lau, and Z.-F. Liu, Sublayer Si atoms as reactive centers in the chemisorption on Si(100): Adsorption of C 2 H 2 and C 2 H 4 , Phys. Rev. B 79, 195303 (2009).
  80. S. C. Jung and M. H. Kang, Adsorption structure of pyrazine on Si(100): Density- functional calculations, Phys. Rev. B 80, 235312 (2009).
  81. S.-Y. Yu, H. Kim, and J.-Y. Koo, Extrinsic nature of point defects on the Si(001) surface: Dissociated water molecules, Phys. Rev. Lett. 100, 036107 (2008).
  82. J. Bardeen, Tunnelling from a many-particle point of view, Phys. Rev. Lett. 6, 57 (1961).
  83. P. Krüger and J. Pollmann, Dimer reconstruction of Diamond, Si, and Ge (001) surfaces, Phys. Rev. Lett. 74, 1155 (1995).
  84. K. Kato, T. Uda, and K. Terakura, Backbond oxidation of the Si(001) surface: Narrow channel of barrierless oxidation, Phys. Rev. Lett. 80, 2000 (1998).
  85. M. Dürr, Z. Hu, A. Biedermann, U. Höfer, and T. F. Heinz, Real-space study of the pathway for dissociative adsorption of H 2 on Si(001), Phys. Rev. Lett. 88, 46104 (2002).
  86. R. Martel, P. Avouris, and I.-W. Lyo, Molecularly adsorbed oxygen species on Si(111)- (7 × 7): STM-induced dissociative attachment studies, Science 272, 385 (1996).
  87. M. McEllistrem, M. Allgeier, and J. J. Boland, Dangling bond dynamics on the silicon (100) -2 × 1 surface: Dissociation, diffusion, and recombination, Science 279, 545 (1998).
  88. B. C. Stipe, M. A. Rezaei, and W. Ho, Inducing and viewing the rotational motion of a single molecule, Science 279, 1907 (1998).
  89. E. J. Buehler and J. J. Boland, Dimer preparation that mimics the transition state for the adsorption of H 2 on the Si(100) -2 × 1 surface, Science 290, 506 (2000).
  90. M. Dürr, M. B. Raschke, E. Pehlke, and U. Höfer, Structure sensitive reaction channels of molecular hydrogen on silicon surfaces, Phys. Rev. Lett. 86, 123 (2001).
  91. B. N. J. Persson, Surface resistivity and vibrational damping in adsorbed layers, Phys. Rev. B 44, 3277 (1991).
  92. A. Vittadini, A. Selloni, and M. Casarin, Pairing of hydrogen atoms on the Si(100) - 2 × 1 surface: The role of interactions among dimers, Phys. Rev. B 49, 11191 (1994).
  93. H. Over, J. Wasserfall, W. Ranke, C. Ambiatello, R. Sawitzki, D. Wolf, and W. Moritz, Surface atomic geometry of Si(001)-(2 × 1): A low-energy electron-diffraction structure analysis, Phys. Rev. B 55, 4731 (1997).
  94. D. X. Chen and J. J. Boland, Chemisorption-induced disruption of surface electronic structure: Hydrogen adsorption on the Si(100) -2 × 1 surface, Phys. Rev. B 65, 165336 (2002).
  95. J.-H. Cho and L. Kleinman, Adsorption kinetics of acetylene and ethylene on Si(001), Phys. Rev. B 69, 075303 (2004).
  96. B. D. Yu, Y. J. Kim, J. Jeon, H. Kim, H. W. Yeom, I. W. Lyo, K. Kong, Y. Miyamoto, O. Sugino, and T. Ohno, Ab initio study of incorporation of O 2 molecules into Si(001) surfaces: Oxidation by Si ejection, Phys. Rev. B 70, 033307 (2004).
  97. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49, 57 (1982).
  98. Y. J. Chabal and K. Raghavachari, Surface infrared study of Si(100)-(2 × 1) H, Phys. Rev. Lett. 53, 282 (1984).
  99. E. S. Hood, B. H. Toby, and W. H. Weinberg, Precursor-mediated molecular chemi- sorption and thermal desorption: The interrelationships among energetics, kinetics, and adsorbate lattice structure, Phys. Rev. Lett. 55, 2437 (1985).
  100. E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, Unusually low surface-recombination velocity on silicon and germanium surfaces, Phys. Rev. Lett. 57, 249 (1986).
  101. D. J. Chadi, Stabilities of single-layer and bilayer steps on Si(001) surfaces, Phys. Rev. Lett. 59, 1691 (1987).
  102. K. W. Kolasinski, W. Nessler, A. de Meijere, and E. Hasselbrink, Hydrogen adsorption on and desorption from Si: Considerations on the applicability of detailed balance, Phys. Rev. Lett. 72, 1356 (1994).
  103. B. S. Swartzentruber, Direct measurement of surface diffusion using atom-tracking scanning tunneling microscopy, Phys. Rev. Lett. 76, 459 (1996).
  104. G. Meyer, L. Bartels, S. Zöphel, E. Henze, and K. H. Rieder, Controlled atom by atom restructuring of a metal surface with the scanning tunneling microscope, Phys. Rev. Lett. 78, 1512 (1997).
  105. A. Biedermann, E. Knoesel, Z. Hu, and T. F. Heinz, Dissociative adsorption of H 2 on Si(100) induced by atomic H, Phys. Rev. Lett. 83, 1810 (1999).
  106. M. Weinelt, M. Kutschera, T. Fauster, and M. Rohlfing, Dynamics of exciton formation at the Si(100) c(4 × 2) surface, Phys. Rev. Lett. 92, 126801 (2004).
  107. P. A. Taylor, R. M. Wallace, C. C. Cheng, W. H. Weinberg, M. J. Dresser, W. J. Choyke, and J. T. Yates Jr., Adsorption and decomposition of acetylene on Si(100)-(2 × 1), J. Am. Chem. Soc. 114, 6754 (1992).
  108. L. Clemen, R. M. Wallace, P. A. Taylor, M. J. Dresser, W. J. Choyke, W. H. Weinberg, and J. T. Yates Jr., Adsorption and thermal behavior of ethylene on Si(100)-(2 × 1), Surf. Sci. 268, 205 (1992).
  109. A. Pietzsch, F. Hennies, A. Föhlisch, W. Wurth, M. Nagasono, N. Witkowski, and M. N. Piancastelli, Adsorption geometry of C 2 H 2 on the single-domain Si(001)-(2 × 1) surface: Fully polarization resolved NEXAFS, Surf. Sci. 562, 65 (2004).
  110. M. Marsili, N. Witkowski, O. Pulci, O. Pluchery, P. L. Silvestrelli, R. Del Sole, and Y. Borensztein, Adsorption of small hydrocarbon molecules on Si surfaces: Ethylene on Si(001), Phys. Rev. B 77, 125337 (2008).
  111. J.-H. Cho, D.-H. Oh, K. S. Kim, and L. Kleinman, Adsorption structure of 1,4- cyclohexadiene on Si(001), J. Chem. Phys. 116, 3800 (2002).
  112. Adsorption von molekularem Sauerstoff bei hohen Probentemperaturen . . . 122
  113. K. J. Miller and J. A. Savchik, A new empirical method to calculate average molecular polarizabilities, J. Am. Chem. Soc. 101, 7206 (1979).
  114. J. T. Yates, A new opportunity in silicon-based microelectronics, Science 279, 335 (1998).
  115. J. A. Nelder and R. Mead, A simplex method for function minimization, The Computer Journal 7, 308 (1965).
  116. W. F. Bergerson, J. A. Mulder, R. P. Hsung, and X.-Y. Zhu, Assembly of organic molecules on silicon surfaces via the Si-N linkage, J. Am. Chem. Soc. 121, 454 (1999).
  117. G. Cantele, F. Trani, D. Ninno, M. Cossi, and V. Barone, A theoretical study of ethylene, cyclopentene and 1-amino-3-cyclopentene adsorption on the silicon (001) surface, J. Phys.: Condens. Matter 18, 2349 (2006).
  118. R. J. Hamers, Atomic-resolution surface spectroscopy with the scanning tunneling microscope, Annu. Rev. Phys. Chem. 40, 531 (1989).
  119. R. S. Becker, G. S. Higashi, Y. J. Chabal, and A. J. Becker, Atomic scale conversion of clean Si(111):H -1 × 1 to Si(111) -2 × 1 by electron-stimulated desorption, Phys. Rev. Lett. 65, 1917 (1990).
  120. T.-C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, P. Avouris, and R. E. Wal- kup, Atomic-scale desorption through electronic and vibrational excitation mechanisms, Science 268, 1590 (1995).
  121. G. Mette, Aufbau eines Experiments zur Rastertunnelspektroskopie und erste Messun- gen auf der Si(001)-Oberfläche, Diplomarbeit, Philipps-Universität Marburg, 2007.
  122. H. Detert and H. Meier, Chemical and spectroscopical properties of medium sized trans-and cis-bicyclo[n.1.0]alk-2-ynes, Liebigs Ann./Recueil 1565 (1997).
  123. D. Schmeisser, F. J. Himpsel, and G. Hollinger, Chemisorption of H 2 O on Si(100), Phys. Rev. B 27, 7813 (1983).
  124. B. I. Craig, Comment on ‚Adsorption of ethylene on the Si(100)-(2 × 1) surface' by C. Huang , W. Widdra and W. Henry Weinberg, Surf. Sci. 329, 293 (1995).
  125. G. T. Wang, C. Mui, C. B. Musgrave, and S. F. Bent, Competition and selectivity of organic reactions on semiconductor surfaces: Reaction of unsaturated ketones on Si(100) -2 × 1 and Ge(100) -2 × 1, J. Am. Chem. Soc. 124, 8990 (2002).
  126. R. A. Wolkow, Controlled molecular adsorption on silicon: Laying a foundation for molecular devices, Annu. Rev. Phys. Chem. 50, 413 (1999).
  127. J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, and D. C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors, Nature 417, 722 (2002).
  128. J. S. Hovis, H. Liu, and R. J. Hamers, Cycloaddition chemistry of 1,3-Dienes on the Silicon(001) surface: Competition between [4+2] and [2+2] reactions, J. Phys. Chem. B 102, 6873 (1998).
  129. J. A. Barriocanal and D. J. Doren, Cycloaddition of carbonyl compounds on Si(100): New mechanisms and approaches to selectivity for surface cycloaddition reactions, J. Am. Chem. Soc. 123, 7340 (2001).
  130. Cyclooctinadsorption auf der fast vollständig wasserstoffbedeckten Oberfläche 88
  131. W. Brenig, A. Gross, and R. Russ, Detailed balance and phonon assisted sticking in adsorption and desorption of H 2 /Si, Z. Phys. B 96, 231 (1994).
  132. R. J. Hamers and U. K. Köhler, Determination of the local electronic structure of atomic-sized defects on Si(001) by tunneling spectroscopy, J. Vac. Sci. Technol. A 7, 2854 (1989).
  133. X. Lu, Diradical mechanism for the [2+2] cycloaddition of ethylene on Si(100) surface, J. Am. Chem. Soc. 125, 6384 (2003).
  134. R. A. Wolkow, Direct observation of an increase in buckled dimers on Si(001) at low-temperature, Phys. Rev. Lett. 68, 2636 (1992).
  135. G. Dujardin, R. E. Walkup, and P. Avouris, Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope, Science 255, 1232 (1992).
  136. H. Ibach, H. Wagner, and D. Bruchmann, Dissociative chemisorption of H 2 O on Si(100) and Si(111) -A vibrational study, Solid State Commun. 42, 457 (1982).
  137. K. Klass, G. Mette, J. Güdde, M. Dürr and U. Höfer Second-harmonic microscopy for fluence-dependent investigation of laser-induced surface reactions Phys. Rev. B 83, 125116 (2011)
  138. Beiträge zu internationalen Konferenzen G. Mette, K. Klass, J. Güdde, M. Dürr and U. Höfer Time-resolved investigation of laser-induced diffusion by optical second-harmonic microscopy Passion for Knowledge (San Sebastian, Spain, 2010)
  139. R. H. Fowler and L. Nordheim, Electron emission in intense electric fields, Proc. R. Soc. London A119, 173 (1928).
  140. W. Kim, H. Kim, G. Lee, Y.-K. Hong, S. Lee, and J.-Y. Koo, Empty-state scanning tunneling microscopy image of C 2 H 2 on Si(001) – new evidence for paired end-bridge di-σ configuration, Surf. Sci. 538, L477 (2003).
  141. F. Rochet, F. Jolly, F. Bournel, G. Dufour, F. Sirotti, and J.-L. Cantin, Ethylene on Si(001) -2 × 1 and Si(111) -7 × 7: X-ray photoemission spectroscopy with synchrotron radiation, Phys. Rev. B 58, 11029 (1998).
  142. Y. J. Chabal and S. B. Christman, Evidence of dissociation of water on the Si(100) 2 × 1 surface, Phys. Rev. B 29, 6974 (1984).
  143. G. T. Wang, C. Mui, C. B. Musgrave, and S. F. Bent, Example of a thermodynamically controlled reaction on a semiconductor surface: Acetone on Ge(100) -2 × 1, J. Phys. Chem. B 105, 12559 (2001).
  144. R. I. G. Uhrberg, G. V. Hansson, J. M. Nicholls, and S. A. Flodström, Experimental stu- dies of the dangling-and dimer-bond-related surface electron bands on Si(100) (2 × 1), Phys. Rev. B 24, 4684 (1981).
  145. P. L. Silvestrelli, O. Pulci, M. Palummo, R. Del Sole, and F. Ancilotto, First-principles study of acetylene adsorption on Si(100): The end-bridge structure, Phys. Rev. B 68, 235306 (2003).
  146. J.-H. Lee, J. Y. Lee, and J.-H. Cho, First-principles study of thermal and electron- activated dissociation of acetone on Si(001), J. Chem. Phys. 129, 194110 (2008).
  147. W. Pan, T. Zhu, and W. Yang, First-principles study of the structural and electronic properties of ethylene adsorption on Si(100)-(2 × 1) surface, J. Chem. Phys. 107, 3981 (1997).
  148. R. J. Hamers, Formation and characterization of organic monolayers on semiconductor surfaces, Annu. Rev. Anal. Chem. 1, 707 (2008).
  149. M. Shimomura, D. Ichikawa, Y. Fukuda, T. Abukawa, T. Aoyama, and S. Kono, Formation of one-dimensional molecular chains on a solid surface: Pyrazine/Si(001), Phys. Rev. B 72, 033303 (2005).
  150. R. J. Hamers, J. S. Hovis, S. Lee, H. Liu, and J. Shan, Formation of ordered, anisotropic organic monolayers on the Si(001) surface, J. Phys. Chem. B 101, 1489 (1997).
  151. G. Mette, K. Klass, M. Dürr, J. Güdde and U. Höfer Design and operation of a microscopy setup for optical second harmonic generation DPG-Spring Meeting of the Division Condensed Matter Physics (Regensburg, Germany, 2010)
  152. R. B. Turner, A. D. Jarrett, P. Goebel, and B. J. Mallon, Heats of hydrogenation. IX. Cyclic acetylenes and some miscellaneous olefins, J. Am. Chem. Soc. 95, 790 (1973).
  153. G. Mette, C. H. Schwalb, M. Dürr, and U. Höfer Scanning tunneling spectroscopy on silicon surfaces European Graduate College Seminar " Electron-Electron Interactions in Solids " (Ráckeve, Hungary, 2007)
  154. G. Mette, C. H. Schwalb, M. Dürr, and U. Höfer Site-selective adsorption of ethylene on Si(001) induced by hydrogen precoverage Winterschool on Ultrafast Processes in Condensed Matter (Reit im Winkl, Germany, 2009)
  155. Liste der Publikationen G. Mette, C. H. Schwalb, M. Dürr, and U. Höfer Site-selective reactivity of ethylene on clean and hydrogen precovered Si(001) Chem. Phys. Lett. 483, 209 (2009)
  156. M. Z. Hossain, S. Machida, M. Nagao, Y. Yamashita, K. Mukai, and J. Yoshinobu, Highly selective surface Lewis acid-base reaction: Trimethylamine on Si(100) c(4 × 2), J. Phys. Chem. B 108, 4737 (2004).
  157. H. Ibach and J. E. Rowe, Hydrogen adsorption and surface structures of silicon, Surf. Sci. 43, 481 (1974).
  158. Y. J. Chabal, A. L. Harris, K. Raghavachari, and J. C. Tully, Infrared-spectroscopy of H-terminated silicon surfaces, Int. J. Mod. Phys. B 7, 1031 (1993).
  159. [145] Instruction manual UHV-24 ionization gauge (Varian, Inc., Lexington, 2004).
  160. G. Ehrlich, Interaction of nitrogen with a tungsten surface, J. Phys. Chem. 60, 1388 (1956).
  161. T. Komeda, Y. Kim, M. Kawai, B. N. J. Persson, and H. Ueba, Lateral hopping of molecules induced by excitation of internal vibration mode, Science 295, 2055 (2002).
  162. R. Terborg, M. Polcik, J. T. Hoeft, M. Kittel, D. I. Sayago, R. L. Toomes, and D. P. Woodruff, Local adsorption geometry of acetylene on Si(100)(2 × 1): Multiple sites and the role of substrate temperature, Phys. Rev. B 66, 085333 (2002).
  163. C. R. K. Marrian and R. J. Colton, Low-voltage electron beam lithography with a scanning tunneling microscope, Appl. Phys. Lett. 56, 755 (1990).
  164. F. D. Jong and A. P. J. Jansen, Molecular dynamics simulations of adsorption and diffusion of Xe on bare and Xe covered Pt(111), Surf. Sci. 317, 1 (1994).
  165. I. Fleming, Molecular Orbitals and Organic Chemical Reactions (Wiley, New York, 2009).
  166. R. L. Summers, NASA Technical Note TND-5285 (National Aeronautics and Space Administration, Washington (DC), 1969).
  167. Y. J. Chabal and K. Raghavachari, New ordered structure for the H-saturated Si(100) surface: The (3 × 1) phase, Phys. Rev. Lett. 54, 1055 (1985).
  168. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipies in C: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1988).
  169. W. Widdra, A. Fink, S. Gokhale, P. Trischberger, D. Menzel, U. Birkenheuer, U. Gutdeutsch, and N. Rösch, One-dimensional delocalized adsorbate Bloch states on a semiconductor surface: C 2 H 4 /Si(001)-(2 × 1), Phys. Rev. Lett. 80, 4269 (1998).
  170. P. Bratu, K. L. Kompa, and U. Höfer, Optical second-harmonic investigations of H 2 and D 2 adsorption on Si(100) 2 × 1: The surface temperature dependence of the sticking coefficient, Chem. Phys. Lett. 251, 1 (1996).
  171. T. Tabata, T. Aruga, and Y. Murata, Order-disorder transition on Si(001): c(4 × 2) to (2 × 1), Surf. Sci. 179, L63 (1987).
  172. M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, Origin of type-C defects on the Si(100)-(2 × 1) surface, Phys. Rev. B 65, 161302(R) (2002).
  173. Position der Tetrahydrofuran-Adsorptionsgeometrie bei tiefen Temperaturen . 106
  174. M. Z. Hossain, S. Machida, Y. Yamashita, K. Mukai, and J. Yoshinobu, Purely site- specific chemisorption and conformation of trimethylamine on Si(100) c(4 × 2), J. Am. Chem. Soc. 125, 9252 (2003).
  175. J. Belzner, H. Ihmels, B. O. Kneisel, and R. Herbst-Irmer, Reactions of a cyclotrisilane with alkynes: Synthesis and first crystal structure of 1,2-disilacyclobut-3-enes, J. Chem. Soc., Chem. Commun. 1989 (1994).
  176. C. Mui, G. T. Wang, S. F. Bent, and C. B. Musgrave, Reactions of methylamines at the Si(100) -2 × 1 surface, J. Chem. Phys. 114, 10170 (2001).
  177. R. Kliese, B. Röttger, D. Badt, and H. Neddermeyer, Real-time STM investigation of the initial stages of oxygen interaction with Si(100) 2 × 1, Ultramicroscopy 42-44, 824 (1992).
  178. W. Widdra, C. Huang, and W. H. Weinberg, Reply to " Comment on ‚Adsorption of ethylene on the Si(100)-(2 × 1) surface' by B. I. Craig " , Surf. Sci. 329, 295 (1995).
  179. C. Bai, Scanning Tunneling Microscopy and its Applications, 2nd ed. (Springer, Berlin -Heidelberg -New York, 2000).
  180. J. Kubby and J. J. Boland, Scanning tunneling microscopy of semiconductor surfaces, Surf. Sci. Rep. 26, 61 (1996).
  181. J. J. Boland, Scanning tunneling microscopy of the interaction of hydrogen with silicon surfaces, Adv. Phys. 42, 129 (1993).
  182. R. M. Tromp, R. J. Hamers, and J. E. Demuth, Si(001) dimer structure observed with scanning tunneling microscopy, Phys. Rev. Lett. 55, 1303 (1985).
  183. M. Chander, Y. Z. Li, J. C. Patrin, and J. H. Weaver, Si(100)-(2 × 1) surface defects and dissociative and nondissociative adsorption of H 2 O studied with scanning tunneling microscopy, Phys. Rev. B 48, 2493 (1993).
  184. L. J. Lauhon and W. Ho, Single molecule thermal rotation and diffusion: Acetylene on Cu(001), J. Chem. Phys. 111, 5633 (1999).
  185. G. Mette, C. Schwalb, M. Dürr, and U. Höfer, Site-selective reactivity of ethylene on clean and hydrogen precovered Si(001), 483, 209 (2009).
  186. P. Avouris, R. E. Walkup, A. R. Rossi, T.-C. Shen, G. C. Abeln, J. R. Tucker, and J. W. Lyding, STM-induced H atom desorption from Si(100): Isotope effects and site selectivity, Chem. Phys. Lett. 257, 148 (1996).
  187. P. Avouris and D. Cahill, STM studies of Si(100) -2 × 1 oxidation: Defect chemistry and Si ejection, Ultramicroscopy 42-44, 838 (1992).
  188. STM-Topographie nach Tempern der tetrahydrofuranbedeckten Oberfläche . 110
  189. J. S. Hovis and R. J. Hamers, Structure and bonding of ordered organic monolayers of 1,5-cyclooctadiene on the Silicon(001) surface, J. Phys. Chem. B 101, 9581 (1997).
  190. Y. Wang, M. Shi, and J. W. Rabalais, Structure of the Si(100) surface in the clean (2 × 1), (2 × 1)-H monohydride, (1 × 1)-H dihydride, and (4 × 4)-H phases, Phys. Rev. B 48, 1678 (1993).
  191. L. S. O. Johansson, R. I. G. Uhrberg, P. Martensson, and G. V. Hansson, Surface- state band-structure of the Si(100) 2 × 1 surface studied with polarization-dependent angle-resolved photoemission on single-domain surfaces, Phys. Rev. B 42, 1305 (1990).
  192. J. Yoshinobu, H. Tsuda, M. Onchi, and M. Nishijima, The adsorbed states of ethy- lene on Si(100)c(4 × 2), Si(100)(2 × 1), and vicinal Si(100) 9 @BULLET : Electron energy loss spectroscopy and low-energy electron diffraction studies, J. Chem. Phys. 87, 7332 (1987).
  193. M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, The adsorption and reactions of water on Si(100) -2 × 1 and Si(111) -7 × 7 surfaces, Surf. Sci. 351, 87 (1996).
  194. Q. Liu and R. Hoffmann, The bare and acetylene chemisorbed Si(001) surface, and the mechanism of acetylene chemisorption, J. Am. Chem. Soc. 117, 4082 (1995).
  195. The International Technology Roadmap for Semiconductors -Executive Summary, (2011).
  196. F. Wang, D. C. Sorescu, and K. D. Jordan, Theoretical calculations of voltage-dependent STM images of acetylene on the Si(001) surface, J. Phys. Chem. B 106, 1316 (2002).
  197. J. Tersoff and D. R. Hamann, Theory and application for the scanning tunneling microscope, Phys. Rev. Lett. 50, 1998 (1983).
  198. J. Tersoff and D. R. Hamann, Theory of the scanning tunneling microscope, Phys. Rev. B 31, 805 (1985).
  199. N. A. Besley and A. Noble, Time-dependent density functional theory study of the X-ray absorption spectroscopy of acetylene, ethylene, and benzene on Si(100), J. Phys. Chem. C 111, 3333 (2007).
  200. C.-H. Chung, W.-J. Jung, and I.-W. Lyo, Trapping-mediated chemisorption of ethylene on Si(001)-c(4 × 2), Phys. Rev. Lett. 97, 116102 (2006).
  201. T. Mineva, R. Nathaniel, K. L. Kostov, and W. Widdra, Two bonding configurations of acetylene on Si(001)-(2 × 1): A combined high-resolution electron energy loss spectroscopy and density functional theory study, J. Chem. Phys. 125, 194712 (2006).
  202. J.-Y. Lee and J.-H. Cho, Two dissociation pathways of water and ammonia on the Si(001) surface, J. Phys. Chem. B 110, 18455 (2006).
  203. L. S. O. Johansson and B. Reihl, Unoccupied surface-state bands on the single-domain Si(100) 2 × 1 surface, Surf. Sci. 269/270, 810 (1992).
  204. A. Bondi, Van der Waals volumes and radii, J. Phys. Chem. 68, 441 (1964).
  205. X. L. Fan, Y. F. Zhang, W. M. Lau, and Z. F. Liu, Violation of the symmetry rule for the [2+2] addition in the chemisorption of C 2 H 4 on Si(100), Phys. Rev. B 72, 165305 (2005).
  206. D. F. Padowitz and R. J. Hamers, Voltage-dependent STM images of covalently bound molecules on Si(100), J. Phys. Chem. B 102, 8541 (1998).
  207. A. H. Flood, J. F. Stoddart, D. W. Steuerman, and J. R. Heath, Whence molecular electronics?, Science 306, 2055 (2004).
  208. P. Bratu, W. Brenig, A. Groß, M. Hartmann, U. Höfer, P. Kratzer, and R. Russ, Reaction dynamics of molecular hydrogen on silicon surfaces, Phys. Rev. B 54, 5978 (1996).
  209. B. Mudryk and T. Cohen, Synthetically useful dianions via reductive lithiation of tetrahydrofurans by aromatic radical anions, J. Am. Chem. Soc. 113, 1866 (1991).
  210. C. Mui, J. H. Han, G. T. Wang, C. B. Musgrave, and S. F. Bent, Proton transfer reactions on semiconductor surfaces, J. Am. Chem. Soc. 124, 4027 (2002).
  211. X. Lu, X. Xu, N. Wang, Q. Zhang, and M. C. Lin, Chemisorption and decomposition of thiophene and furan on the Si(100) -2 × 1 surface: A quantum chemical study, J. Phys. Chem. B 105, 10069 (2001).
  212. H. S. Lee, C. H. Choi, and M. S. Gordon, Comparative study of surface cycloadditions of ethylene and 2-butene on the Si(100) -2 × 1 surface, J. Phys. Chem. B 109, 5067 (2005).
  213. J. M. Schmeltzer, L. A. Porter Jr., M. P. Stewart, and J. M. Buriak, Hydride abstraction initiated hydrosilylation of terminal alkenes and alkynes on porous silicon, Langmuir 18, 2971 (2002).
  214. M. Izawa and T. Kumihashi, Surface migration as a determinate factor of the sticking coefficient derived from the chemisorption model, J. Chem. Phys. 103, 9418 (1995).
  215. P. Duffy, J. A. Sordo, and F. Wang, Valence orbital response to pseudorotation of tetrahydrofuran: A snapshot using dual space analysis, J. Chem. Phys. 128, 125102 (2008).
  216. D. J. Doren and J. C. Tully, Dynamics of precursor-mediated chemisorption, J. Chem. Phys. 94, 8428 (1991).
  217. M. P. D'Evelyn, Y. L. Yang, and L. F. Suctu, π-bonded dimers, preferential pairing, and first-order desorption kinetics of hydrogen on Si(100)-(2 × 1), J. Chem. Phys. 96, 852 (1992).
  218. K. Kuhnke, M. Morin, P. Jakob, N. J. Levinos, Y. J. Chabal, and A. L. Harris, Vibrational energy transfer among adsorbate modes: Picosecond dynamics on stepped H/Si(111), J. Chem. Phys. 99, 6114 (1993).
  219. K. R. Harikumar, J. C. Polanyi, A. Zabet-Khosousi, P. Czekala, H. Lin, and W. A. Hofer, Directed long-range molecular migration energized by surface reaction, Nature Chem. 3, 400 (2011).
  220. M. Dürr, M. B. Raschke, and U. Höfer, Effect of beam energy and surface temperature on the dissociative adsorption of H 2 on Si(001), J. Chem. Phys. 111, 10411 (1999).
  221. D. A. King and M. G. Wells, Molecular beam investigation of adsorption kinetics on bulk metal targets: Nitrogen on tungsten, Surf. Sci. 29, 454 (1972).
  222. P. C. Weakliem, W. Smith, and E. A. Carter, Subpicosecond interconversion of buckled and symmetric dimers on Si(100), Surf. Sci. 232, L219 (1990).
  223. R. Di Felice, C. A. Pignedoli, C. M. Bertoni, A. Catellani, P. L. Silvestrelli, C. Sbraccia, F. Ancilotto, M. Palummo, and O. Pulci, Ab initio investigation of the adsorption of organic molecules at Si(111) and Si(100) surfaces, Surf. Sci. 532-535, 982 (2003).
  224. A. J. Fisher, P. E. Blöchl, and G. A. D. Briggs, Hydrocarbon adsorption on Si(001): When does the Si dimer bond break?, Surf. Sci. 374, 298 (1997).
  225. M. Dürr and U. Höfer, Hydrogen diffusion on silicon surfaces, Prog. Surf. Sci. (submit- ted) (2012).
  226. M. Dürr and U. Höfer, Dissociative adsorption of molecular hydrogen on silicon surfaces, Surf. Sci. Rep. 61, 465 (2006).
  227. K. L. Kostov, R. Nathaniel, T. Mineva, and W. Widdra, Vibrational characterization of ethylene adsorption and its thermal evolution on Si(001)-(2 × 1): Identification of majority and minority species, J. Chem. Phys. 133, 054705 (2010).
  228. L. Brandsma and H. D. Verkruijsse, Improved synthesis of cyclooctyne, Synthesis 290 (1978).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten