Microwave Measurements on n-Disk Systems and Investigation of Branching in correlated Potentials and turbulent Flows

In this work we investigate the wave propagation in three different complex systems. In the first two systems we focus on the wave propagation through random potentials, the first one in a microwave and the second one in an acoustic setup. In both systems we focus on the non-Gaussian properties of t...

Ausführliche Beschreibung

Gespeichert in:
1. Verfasser: Barkhofen, Sonja
Beteiligte: Kuhl, Ulrich (Prof. Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Veröffentlicht: Philipps-Universität Marburg 2013
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

1. http://archiv.ub.uni-marburg.de/diss/z2008/0582

2. http://archiv.ub.uni-marburg.de/ed/2010/0007

3. U. Kuhl, R. Höhmann, J. Main, and H.-J. Stöckmann. Resonance widths in open microwave cavities studied by harmonic inversion. Phys. Rev. Lett., 100:254101, 2008.

4. E. J. Heller, L. Kaplan, and A. Dahlen. Refraction of a Gaussian seaway. J. Geophys. Res., 113:C09023, 2008.

5. P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109:1492, 1958.

6. V. Petkov and L. Stoyanov. Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function. Anal. PDE, 3:427, 2010.

7. R. Höhmann, U. Kuhl, H.-J. Stöckmann, L. Kaplan, and E. J. Heller. Freak waves in the linear regime: A microwave study. Phys. Rev. Lett., 104:093901, 2010.

8. M. P. Jura, M. A. Topinka, L. Urban, A. Yazdani, H. Shtrikman, L. N. Pfeiffer, K. W. West, and D. Goldhaber-Gordon. Unexpected features of branched flow through high-mobility two-dimensional electron gases. Nature, 3:841, 2007.

9. R. Schäfer M. C. Münnix and T. Guhr. A random matrix approach to credit risk. Preprint, 2011. arXiv:1102.3900.

10. S. Nonnenmacher. Spectral problems in open quantum chaos. Nonlin- earity, 24:R123, 2011.

11. J. Main, P. A. Dando, D. Belki´Belki´c, and H. S. Taylor. Decimation and harmonic inversion of periodic orbit signals. J. Phys. A, 33:1247, 2000.

12. W. Lu, L. Viola, K. Pance, M. Rose, and S. Sridhar. Microwave study of quantum n-disk scattering. Phys. Rev. E, 61:3652, 2000.

13. L. Kaplan. Statistics of branched flow in a weak correlated random potential. Phys. Rev. Lett., 89:184103, 2002.

14. W. T. Lu, S. Sridhar, and M. Zworski. Fractal Weyl laws for chaotic open systems. Phys. Rev. Lett., 91:154101, 2003.

15. A. Wirzba. Quantum mechanics and semiclassics of hyperbolic n-disk scattering systems. Phys. Rep., 309:1, 1999. REFERENCES [56] D. Ruelle and G. Gallavotti. Thermodynamic formalism, volume 112. Addison-Wesley Reading, Massachusetts, 1978.

16. P. Cvitanovi´Cvitanovi´c and B. Eckhardt. Periodic orbit expansions for classical smooth flows. J. Phys. A, 24:L237, 1991.

17. B. Eckhardt, G. Russberg, P. Cvitanovi´Cvitanovi´c, P. Rosenqvist, and P. Scherer. Pinball scattering. In C. Casati and B. Chirikov, editors, Quantum Chaos Between Order and Disorder, page 405. University Press, Cam- bridge, 1995.

18. P. Cvitanovi´Cvitanovi´c and B. Eckhardt. Symmetry decomposition of chaotic dynamics. Nonlinearity, 6:277, 1993.

19. B. S. White and B. Fornberg. On the chance of freak waves at sea. J. Fluid Mech., 355:113, 1998.

20. M. C. Gutzwiller. Chaos in Classical and Quantum Mechanics. Inter- disciplinary Applied Mathematics, Vol. 1. Springer, New York, 1990.

21. [4] N. Bohr. ¨ Uber die Serienspektra der Elemente. Z. Phys., 2:423, 1920.

22. S. Nonnenmacher and M. Zworski. Quantum decay rates in chaotic scattering. Acta Mathematica, 203:149, 2009.

23. K. E. Aidala, R. E. Parrot, T. Kramer, E. J. Heller, R. M. Westervelt, M. P. Hanson, and A. C. Gossard. Imaging magnetic focusing of coherent electron waves. Phys. Rev. E, 72:066214, 2005.

24. J. J. Metzger, R. Fleischman, and T. Geisel. Universal statistics of branched flow. Phys. Rev. Lett., 105:020601, 2010. REFERENCES

25. V. A. Kulkarny and B. S. White. focusing of waves in turbulent inho- mogeneous media. Phys. Fluids, 25:1770, 1982.

26. M. V. Berry. Regular and irregular semiclassical wavefunctions. J. Phys. A, 10:2083, 1977.

27. Y.-H. Kim, U. Kuhl, H.-J. Stöckmann, and J. P. Bird. Investigating dynamical tunnelling in open quantum dots by means of a soft-walled microwave-cavity analogue. J. Phys.: Condens. Matter, 17:L191, 2005.

28. Y.-H. Kim, M. Barth, H.-J. Stöckmann, and J. P. Bird. Wavefunction scarring in open quantum dots: A microwave-billiard analogy study. Phys. Rev. B, 65:165317, 2002.

29. H.-M. Lauber, P. Weidenhammer, and D. Dubbers. Geometric phases and hidden symmetries in simple resonators. Phys. Rev. Lett., 72:1004, 1994.

30. J. Stein, H.-J. Stöckmann, and U. Stoffregen. Microwave studies of billiard Green functions and propagators. Phys. Rev. Lett., 75:53, 1995.

31. K. Pance, W. Lu, and S. Sridhar. Quantum fingerprints of classicsl Ruelle-Pollicot resonances. Phys. Rev. Lett., 85:2737, 2000.

32. M. A. Topinka, B. J. LeRoy, S. E. J. Shaw, E. J. Heller, R. M. Westervelt, K. D. Maranowski, and A. C. Gossard. Imaging coherent electron flow from a quantum point contact. Science, 289:2323, 2000.

33. J. Metzger. Branched Flow and Caustics in two-dimensional random potentials and magnetic fields. PhD thesis, University of Göttingen, 2010.

34. P. Gaspard. Chaos, scattering and statistical mechanics. University Press, Cambridge, 1998.

35. P. Gaspard and S. A. Rice. Scattering from a classically chaotic repellor. J. Chem. Phys., 90:2225, 1989.

36. P. Gaspard and D. Alonso Ramirez. Ruelle classical resonances and dynamical chaos: The three-and four-disk scatterers. Phys. Rev. A, 45:8383, 1992.

37. H. Padé. Sur la représentation approchée d'une fonction par des frac- tions rationnelles. Number 740 in Théses de la Faculté des sciences de Paris. Gauthier-Villars et Fils, 1892.

38. E. J. Heller. Bound-state eigenfunctions of classically chaotic Hamilto- nian systems: Scars of periodic orbits. Phys. Rev. Lett., 53:1515, 1984.

39. A. N. Kolmogorov. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13:82, 1962.

40. Pascal Knebel. Aktives Gitter zur Simulation atmosphärischer Wind- felder im Windkanal. PhD thesis, Universität Oldenburg, 2011.

41. R. Stresing, J. Peinke, R. E. Seoud, and J. C. Vassilicos. Defining a new class of turbulent flows. Phys. Rev. Lett., 104:194501, 2010.

42. P. Gaspard and S. A. Rice. Exact quantization of the scattering from a classically chaotic repellor. J. Chem. Phys., 90:2255, 1989.

43. J. Stein and H.-J. Stöckmann. Experimental determination of billiard wave functions. Phys. Rev. Lett., 68:2867, 1992. REFERENCES [16] H.-J. Stöckmann and J. Stein. " Quantum " chaos in billiards studied by microwave absorption. Phys. Rev. Lett., 64:2215, 1990.

44. W. E. Bies, L. Kaplan, M. R. Haggerty, and E. J. Heller. Localization of eigenfunctions in the stadium billiard. Phys. Rev. E, 63:066214, 2001. REFERENCES [43] S. Barkhofen, T. Weich, A. Potzuweit, H.-J. Stöckmann, U. Kuhl, and M. Zworski. Experimental observation of the spectral gap in microwave n-disk systems. Phys. Rev. Lett., 110:164102, 2013.

45. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini. Localization of light in a disordered medium. Nature, 390:671, 1997.

46. A. Potzuweit. Mikrowellenmessungen an n-Scheiben Streusystemen. Master's thesis, Philipps-Universität Marburg, 2009.

47. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical recipes in PASCAL. Cambridge University Press, New York, 1990.

48. P. Cvitanovi´Cvitanovi´c and B. Eckhardt. Periodic-orbit quantization of chaotic systems. Phys. Rev. Lett., 63:823, 1989.

49. H.-J. Stöckmann. Quantum Chaos -An Introduction. University Press, Cambridge, 1999.

50. R. P. Feynman and A. R. Hibbs. Quantum Mechanics and Path Integrals. McGraw-Hill, New York, 1965.

51. H. Schomerus and J. Tworzyd lo. Quantum-to-classical crossover of qua- sibound states in open quantum systems. Phys. Rev. Lett., 93:154102, 2004.

52. T. Weich. Resonances in open expanding maps and in an experimental realization of the three disk system. Master's thesis, Philipps-Universität Marburg, 2010.

53. U. Dörr, H.-J. Stöckmann, M. Barth, and U. Kuhl. Scarred and chaotic field distributions in three-dimensional Sinai-microwave res- onators. Phys. Rev. Lett., 80:1030, 1998.

54. P. Gaspard and S. A. Rice. Semiclassical quantization of the scattering from a classically chaotic repeller. J. Chem. Phys., 90:2242, 1989.

55. J. E. F. Williams and D. L. Hawkings. Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. R. Soc. Lond. A, 264:321, 1969.

56. H. P. Baltes and E. R. Hilf. Spectra of Finite Systems. BI-Wissenschafts- verlag, Mannheim, 1976.

57. Y. V. Fyodorov and D. V. Savin. Statistics of resonance width shifts as a signature of eigenfunction nonorthogonality. Phys. Rev. Lett., 108:184101, 2012. REFERENCES [70] H. J. Sommers, Y. V. Fyodorov, and M. Titov. S-matrix poles for chaotic quantum systems as eigenvalues of complex symmetric random matrices: from isolated to overlapping resonances. J. Phys. A, 32:L77, 1999.

58. M. S. Longuet-Higgins. The statistical analysis of a random, moving surface. Phil. Trans. R. Soc. Lond. A, 249:321, 1957.

59. H. Weyl. ¨ Uber das Spektrum der Hohlraumstrahlung. Journal für die reine und angewandte Mathematik, 141:163, 1912.

60. L. Bittrich. Flooding of Regular Phase Space Islands by Chaotic States. PhD thesis, Technische Universität Dresden, 2010.

61. W. Schrödinger. Quantisierung als Eigenwertproblem. 79:361, 1926.

62. J. Sjöstrand. Geometric bounds on the density of resonances for semi- classical problems. Duke Math. J., 60:1, 1990.

63. M. J. Lighthill. On the generated aerodynamically turbulence as a source of sound. Proc. R. Soc. Lond. A, 222:1148, 1954.

64. M. A. Wolfson and S. Tomsovic. On the stability of long-ragne sound propagation through a structured ocean. J. Acoust. Soc. Am., 109:2693, 2001.

65. M. Ikawa. Decay of solutions of the wave equation in the exterior of several convex bodies. Ann. Inst. Fourier, 38:113, 1988.

66. Alfred Wegener. Die Entstehung der Kontinente und Ozeane, volume 66. F. Vieweg, 1920.

67. J. Unterhinninghofen, U. Kuhl, J. Wiersig, H.-J. Stöckmann, and M. Hentschel. Measurement of the Goos-Hänchen shift in a microwave cavity. New J. of Physics, 13:023013, 2011.