Publikationsserver der Universitätsbibliothek Marburg

Titel:Interaction dynamics between heterotrimeric G-proteins and type V adenylyl cyclase determine sensitivity of effector regulation
Autor:Milde, Markus
Weitere Beteiligte: Bünemann, Moritz (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0390
URN: urn:nbn:de:hebis:04-z2013-03902
DOI: https://doi.org/10.17192/z2013.0390
DDC: Medizin
Titel (trans.):Die Dynamik der Interaktion heterotrimerer G-Proteine mit der Typ V Adenylylzyklase bestimmt die Sensitivität der Effektorregulation
Publikationsdatum:2013-08-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Dynamik, Adenylylzyklase, cAMP, cAMP, interaction, G-protein, adenylyl cyclase, Interaktion, Fluoreszenz-Resonanz-Energie-Transfer, G-Protein, FRET

Summary:
The signalling pathway from G-protein-coupled receptors to the second messenger cAMP is present in virtually all cells and of major physiological and pathophysiological importance. The membrane-spanning receptors can easily be targeted by pharmaceutical compounds and therapies to treat diseases like hypertension, asthma or pain affect cellular cAMP-levels. Biochemical studies have revealed a lot of important information about the interaction of the proteins participating in this signalling cascade, namely the receptors, the G-proteins and adenylyl cyclases. The development of new microscopic methods allowed to dynamically investigate protein/protein-interactions. While these techniques have already been widely used to investigate in vivo signalling dynamics of the receptors, G-proteins and second messengers, research on adenylyl cyclases (ACs) mainly relied on in vitro methods or steady-state interaction studies. An assay, based on Förster Resonance Energy Transfer (FRET), was developed within this study, to investigate the dynamic interaction between G-proteins and ACs in living cells, thereby providing a platform for biochemical analysis in vivo. Furthermore, a protocol was established to resolve Gi protein-mediated regulation of cAMP in single living cells by means of FRET. For the assays, a fluorescently labelled AC5 was cloned. Bioluminescence-based cAMP measurements proved the constructs wild-type-like functionality with respect to stimulation through forskolin and Gs-proteins. The new protocol for FRET-based cAMP measurements verified Gs- and Gi-protein signalling competence of the labelled AC5. The new assay was used to analyse agonist-dependent interaction between AC5 and Gαs-, Gαi1- and Gβ1γ2-subunits, respectively. Although no basal interaction between the G-protein subunits and AC5 was observed, all subunits showed an increase in FRET upon agonist-stimulation of the according receptors. Interestingly, the different combinations of AC5 and G-protein subunits showed distinct FRET-signals. The agonist-dependent Gβ1γ2/AC5-FRET increase and decrease followed an exponential course, closely resembling other FRET-signals observed for G-proteins. FRET between Gαs and AC5 was characterised by a transient peak in the onset of the signal. Contrastingly, Gαi1 and AC5 showed an additional transient increase in their FRET-signal upon agonist withdrawal. The signal-phenotypes observed between Gα-subunits and AC5 possibly indicate additional conformational changes within the G-protein/AC5 complex. The onset-kinetics of the interaction between AC5 and G-protein-subunits were fast and in the same range as previously observed G-protein activation-kinetics. The interaction between Gαi1 and AC5 was found to be especially sensitive and proved to be left-shifted in comparison to the activation of the Gi1-protein itself. Downstream events of Gi-dependent regulation of AC5 and Gi-protein activity further verified this difference on a functional level. Gi-dependent inhibition of AC5-regulated cAMP levels was determined with the newly established protocol for the FRET-based cAMP sensor Epac1-camps. In comparison to GIRK currents, which reflect Gi1 protein activity, the receptor-induced Gi-protein-mediated inhibition of stimulated AC5 activity was shifted by two orders of magnitude. This was in line with previous reports on higher sensitivity of cAMP-involving over Gi-protein activity-dependent pathways. After appropriate controls ruled out confounding mechanisms that could shift the apparent sensitivity of the assay, the interaction kinetics between AC5 and Gαi1 remained as a major contributing cause. Indeed the interaction of Gαi1-subunits with AC5 was prolonged in comparison to the deactivation of the Gi1-protein and could not be accelerated by RGS4. This indicates a slow dissociation of AC5 and Gαi1, which prevents the deactivation and reassembly of the Gi1 protein, thereby affecting the dynamics of the G-protein cycle. Presumably, the balance in the G protein cycle between inactive and active G-proteins is shifted towards a higher amount of AC5-bound active G-proteins, providing the putative molecular mechanism for the high sensitivity observed in the interaction studies.

Bibliographie / References

  1. Nikolaev, V. O., M. Bunemann, E. Schmitteckert, M. J. Lohse and S. Engelhardt (2006). "Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling." Circ. Res. 99(10): 1084-1091.
  2. "G-protein signaling: back to the future." Cell. Mol. Life Sci. 62(5): 551-577.
  3. Linder, J. U. (2006). "Class III adenylyl cyclases: molecular mechanisms of catalysis and regulation." Cell. Mol. Life Sci. 63(15): 1736-1751.
  4. Hippe, H. J., M. Ludde, K. Schnoes, A. Novakovic, S. Lutz, H. A. Katus, F. Niroomand, B. Nurnberg, N. Frey and T. Wieland (2013). "Competition for Gbetagamma dimers mediates a specific cross-talk between stimulatory and inhibitory G protein alpha subunits of the adenylyl cyclase in cardiomyocytes." Naunyn-Schmiedeberg's Arch. Pharmacol.
  5. Metrich, M., M. Berthouze, E. Morel, B. Crozatier, A. M. Gomez and F. Lezoualc'h (2010). "Role of the cAMP-binding protein Epac in cardiovascular physiology and pathophysiology." Pflugers Arch. 459(4): 535-546.
  6. Tsien, R. Y. (1998). "The green fluorescent protein." Annu. Rev. Biochem. 67: 509-544.
  7. Pavan, B., C. Biondi and A. Dalpiaz (2009). "Adenylyl cyclases as innovative therapeutic goals." Drug Discov. Today 14(19-20): 982-991.
  8. Deupi, X. and J. Standfuss (2011). "Structural insights into agonist-induced activation of G-protein-coupled receptors." Curr. Opin. Struct. Biol. 21(4): 541-551.
  9. Lohse, M. J., V. O. Nikolaev, P. Hein, C. Hoffmann, J. P. Vilardaga and M. Bunemann (2008). "Optical techniques to analyze real-time activation and signaling of G- protein-coupled receptors." Trends Pharmacol. Sci. 29(3): 159-165.
  10. Tesmer, J. J. and S. R. Sprang (1998). "The structure, catalytic mechanism and regulation of adenylyl cyclase." Curr. Opin. Struct. Biol. 8(6): 713-719.
  11. Zhang, G., Y. Liu, A. E. Ruoho and J. H. Hurley (1997). "Structure of the adenylyl cyclase catalytic core." Nature 386(6622): 247-253.
  12. Ponten (2010). "Towards a knowledge-based Human Protein Atlas." Nat. Biotechnol. 28(12): 1248-1250.
  13. Pierre, S., T. Eschenhagen, G. Geisslinger and K. Scholich (2009). "Capturing adenylyl cyclases as potential drug targets." Nat. Rev. Drug Discov. 8(4): 321-335.
  14. Cooper, D. M. (2005). "Compartmentalization of adenylate cyclase and cAMP signalling." Biochem. Soc. Trans. 33(Pt 6): 1319-1322.
  15. "Regions on adenylyl cyclase that are necessary for inhibition of activity by beta gamma and Gialpha subunits of heterotrimeric G proteins." Proc. Natl. Acad.
  16. Salim, S., S. Sinnarajah, J. H. Kehrl and C. W. Dessauer (2003). "Identification of RGS2 and type V adenylyl cyclase interaction sites." J. Biol. Chem. 278(18): 15842-15849.
  17. "Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting." J. Biol. Chem. 279(32): 33390-33397.
  18. Frank, M., L. Thumer, M. J. Lohse and M. Bunemann (2005). "G Protein activation without subunit dissociation depends on a G{alpha}(i)-specific region." J. Biol. Chem. 280(26): 24584-24590.
  19. Engelman, E. and C. Marsala (2013). "Efficacy of adding clonidine to intrathecal morphine in acute postoperative pain: meta-analysis." Br. J. Anaesth. 110(1): 21-27.
  20. "IUPHAR-DB: updated database content and new features." Nucleic Acids Res. 41(Database issue): D1083-1088.
  21. Gancedo, J. M. (2013). "Biological roles of cAMP: variations on a theme in the different kingdoms of life." Biol. Rev. Camb. Philos. Soc.
  22. Becker, W. (2012). "Fluorescence lifetime imaging--techniques and applications." J. Microsc. 247(2): 119-136.
  23. "Characterization of mouse heart adenylyl cyclase." J. Pharmacol. Exp. Ther. 329(3): 1156-1165.
  24. Kimple, A. J., D. E. Bosch, P. M. Giguere and D. P. Siderovski (2011). "Regulators of G-protein signaling and their Galpha substrates: promises and challenges in their use as drug discovery targets." Pharmacol. Rev. 63(3): 728-749.
  25. Lohse, M. J., S. Nuber and C. Hoffmann (2012). "Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling." Pharmacol. Rev. 64(2): 299-336.
  26. Xie, K., I. Masuho, C. Brand, C. W. Dessauer and K. A. Martemyanov (2012). "The complex of G protein regulator RGS9-2 and Gbeta(5) controls sensitization and signaling kinetics of type 5 adenylyl cyclase in the striatum." Sci. Signal. 5(239): ra63.
  27. Gilman, A. G. (2012). "Silver spoons and other personal reflections." Annu. Rev. Pharmacol. Toxicol. 52: 1-19.
  28. Gloerich, M. and J. L. Bos (2010). "Epac: defining a new mechanism for cAMP action." Annu. Rev. Pharmacol. Toxicol. 50: 355-375.
  29. Holthoff, H. P., S. Zeibig, V. Jahns-Boivin, J. Bauer, M. J. Lohse, S. Kaab, S. Clauss, R. Jahns, A. Schlipp, G. Munch and M. Ungerer (2012). "Detection of anti- beta1-AR autoantibodies in heart failure by a cell-based competition ELISA." Circ. Res. 111(6): 675-684.
  30. Willoughby, D. and D. M. Cooper (2006). "Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP." J. Cell Sci. 119(Pt 5): 828-836.
  31. Rebois, R. V., M. Robitaille, C. Gales, D. J. Dupre, A. Baragli, P. Trieu, N. Ethier, M. Bouvier and T. E. Hebert (2006). "Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells." J. Cell Sci. 119(Pt 13): 2807-2818.
  32. Childress, A. C. and F. R. Sallee (2012). "Revisiting clonidine: an innovative add-on option for attention-deficit/hyperactivity disorder." Drugs Today (Barc) 48(3): 207-217.
  33. Kheirbek, M. A., J. P. Britt, J. A. Beeler, Y. Ishikawa, D. S. McGehee and X. Zhuang (2009). "Adenylyl cyclase type 5 contributes to corticostriatal plasticity and striatum-dependent learning." J. Neurosci. 29(39): 12115-12124.
  34. Fedorowicz, Z., M. Nasser, V. A. Jagannath, J. H. Beaman, K. Ejaz and E. J. van Zuuren (2012). "Beta2-adrenoceptor agonists for dysmenorrhoea." Cochrane Database Syst. Rev. 5: CD008585.
  35. Edwards, H. V., F. Christian and G. S. Baillie (2012). "cAMP: novel concepts in compartmentalised signalling." Semin. Cell Dev. Biol. 23(2): 181-190.
  36. Papa, S., D. D. Rasmo, Z. Technikova-Dobrova, D. Panelli, A. Signorile, S. Scacco, V. Petruzzella, F. Papa, G. Palmisano, A. Gnoni, L. Micelli and A. M. Sardanelli (2012). "Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases." FEBS Lett. 586(5): 568-577.
  37. Wu, C., C. Orozco, J. Boyer, M. Leglise, J. Goodale, S. Batalov, C. L. Hodge, J. Haase, J. Janes, J. W. Huss, 3rd and A. I. Su (2009). "BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources." Genome Biol. 10(11): R130.
  38. Vatner, S. F., L. Yan, Y. Ishikawa, D. E. Vatner and J. Sadoshima (2009). "Adenylyl cyclase type 5 disruption prolongs longevity and protects the heart against stress." Circ. J. 73(2): 195-200.
  39. Kim, K. S., H. Kim, I. S. Baek, K. W. Lee and P. L. Han (2011). "Mice lacking adenylyl cyclase type 5 (AC5) show increased ethanol consumption and reduced ethanol sensitivity." Psychopharmacology (Berl.) 215(2): 391-398.
  40. Vatner, S. F., M. Park, L. Yan, G. J. Lee, L. Lai, K. Iwatsubo, Y. Ishikawa, J. E. Pessin and D. E. Vatner (2013). "Adenylyl Cyclase Type 5 in Cardiac Disease, Metabolism and Aging." Am. J. Physiol. Heart Circ.Physiol.
  41. Ludwig, A., X. Zong, M. Jeglitsch, F. Hofmann and M. Biel (1998). "A family of hyperpolarization-activated mammalian cation channels." Nature 393(6685): 587-591.
  42. Roseberry, A. G., M. Bunemann, J. Elavunkal and M. M. Hosey (2001). "Agonist- dependent delivery of M(2) muscarinic acetylcholine receptors to the cell surface after pertussis toxin treatment." Mol. Pharmacol. 59(5): 1256-1268.
  43. Kheirbek, M. A., J. A. Beeler, W. Chi, Y. Ishikawa and X. Zhuang (2010). "A molecular dissociation between cued and contextual appetitive learning." Learn.
  44. Hebert, T. E., S. Moffett, J. P. Morello, T. P. Loisel, D. G. Bichet, C. Barret and M. Bouvier (1996). "A peptide derived from a beta2-adrenergic receptor Literature 96 transmembrane domain inhibits both receptor dimerization and activation." J.
  45. Krasel, C., M. Bunemann, K. Lorenz and M. J. Lohse (2005). "Beta-arrestin binding to the beta2-adrenergic receptor requires both receptor phosphorylation and receptor activation." J. Biol. Chem. 280(10): 9528-9535.
  46. Shcherbo, D., E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov and D. M. Chudakov (2007). "Bright far-red fluorescent protein for whole-body imaging." Nat Methods 4(9): 741-746.
  47. Bousquet, P., J. Feldman and J. Schwartz (1984). "Central cardiovascular effects of alpha adrenergic drugs: differences between catecholamines and imidazolines." J. Pharmacol. Exp. Ther. 230(1): 232-236.
  48. Lyons, M. Caffrey, S. H. Gellman, J. Steyaert, G. Skiniotis, W. I. Weis, R. K. Sunahara and B. K. Kobilka (2011). "Crystal structure of the beta2 adrenergic receptor-Gs protein complex." Nature 477(7366): 549-555.
  49. Rasmussen, S. G., H. J. Choi, D. M. Rosenbaum, T. S. Kobilka, F. S. Thian, P. C. Edwards, M. Burghammer, V. R. Ratnala, R. Sanishvili, R. F. Fischetti, G. F. Schertler, W. I. Weis and B. K. Kobilka (2007). "Crystal structure of the human beta2 adrenergic G-protein-coupled receptor." Nature 450(7168): 383-387.
  50. Essayan, D. M. (2001). "Cyclic nucleotide phosphodiesterases." J. Allergy Clin. Immunol. 108(5): 671-680.
  51. Rebois, R. V., K. Maki, J. A. Meeks, P. H. Fishman, T. E. Hebert and J. K. Northup (2012). "D2-like dopamine and beta-adrenergic receptors form a signaling complex that integrates Gs-and Gi-mediated regulation of adenylyl cyclase." Cell. Signal. 24(11): 2051-2060.
  52. Nasman, J., J. P. Kukkonen, T. Holmqvist and K. E. Akerman (2002). "Different roles for Gi and Go proteins in modulation of adenylyl cyclase type-2 activity." J. Neurochem. 83(6): 1252-1261.
  53. Wolters, V. and M. Bünemann (2013). "Dynamics of interaction between Gq subunits and GRK2." Naunyn-Schmiedeberg's Arch. Pharmacol. 386(Suppl 1): S93.
  54. Blumenthal, S. A. (2012). "Earl Sutherland (1915-1974) [corrected] and the discovery of cyclic AMP." Perspect. Biol. Med. 55(2): 236-249.
  55. Patschan, D., S. Patschan, J. T. Wessels, J. U. Becker, S. David, E. Henze, M. S. Goligorsky and G. A. Muller (2010). "Epac-1 activator 8-O-cAMP augments renoprotective effects of syngeneic [corrected] murine EPCs in acute ischemic kidney injury." Am. J. Physiol. Renal Physiol. 298(1): F78-85.
  56. Shimomura, O., F. H. Johnson and Y. Saiga (1962). "Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea." J. Cell. Comp. Physiol. 59: 223-239.
  57. Gessner (2013). "Galphai2 is the essential Galphai protein in immune complex- induced lung disease." J. Immunol. 190(1): 324-333.
  58. Ross, E. M. (2011). "Galpha(q) and phospholipase C-beta: turn on, turn off, and do it fast." Sci. Signal. 4(159): pe5.
  59. Smrcka, A. V. (2008). "G protein betagamma subunits: central mediators of G protein- coupled receptor signaling." Cell. Mol. Life Sci. 65(14): 2191-2214.
  60. Lavine, N., N. Ethier, J. N. Oak, L. Pei, F. Liu, P. Trieu, R. V. Rebois, M. Bouvier, T. E. Hebert and H. H. Van Tol (2002). "G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase." J. Biol. Chem. 277(48): 46010-46019.
  61. Currie, K. P. (2010). "G protein modulation of CaV2 voltage-gated calcium channels." Channels (Austin) 4(6): 497-509.
  62. Hommers, L. G., C. Klenk, C. Dees and M. Bunemann (2010). "G proteins in reverse mode: receptor-mediated GTP release inhibits G protein and effector function." J. Biol. Chem. 285(11): 8227-8233.
  63. Hein, P., F. Rochais, C. Hoffmann, S. Dorsch, V. O. Nikolaev, S. Engelhardt, C. H. Berlot, M. J. Lohse and M. Bunemann (2006). "Gs activation is time-limiting in initiating receptor-mediated signaling." J. Biol. Chem. 281(44): 33345-33351.
  64. Santoro, B., D. T. Liu, H. Yao, D. Bartsch, E. R. Kandel, S. A. Siegelbaum and G. R. Tibbs (1998). "Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain." Cell 93(5): 717-729.
  65. "Interaction of Gsalpha with the cytosolic domains of mammalian adenylyl cyclase." J. Biol. Chem. 272(35): 22265-22271.
  66. Dessauer, C. W., M. Chen-Goodspeed and J. Chen (2002). "Mechanism of Galpha i- mediated inhibition of type V adenylyl cyclase." J. Biol. Chem. 277(32): 28823- 28829.
  67. Chen-Goodspeed, M., A. N. Lukan and C. W. Dessauer (2005). "Modeling of Galpha(s) and Galpha(i) regulation of human type V and VI adenylyl cyclase." J. Biol. Chem. 280(3): 1808-1816.
  68. Vatner, S. F., D. E. Vatner and L. Yan (2012). "Models of longevity (calorie restriction and AC5 KO): result of three bad hypotheses." Aging (Albany NY) 4(10): 662- 663.
  69. "Novel single chain cAMP sensors for receptor-induced signal propagation." J. Biol. Chem. 279(36): 37215-37218.
  70. Wunder, F., A. Rebmann, A. Geerts and B. Kalthof (2008). "Pharmacological and kinetic characterization of adrenomedullin 1 and calcitonin gene-related peptide 1 receptor reporter cell lines." Mol. Pharmacol. 73(4): 1235-1243.
  71. Phylogenetic analysis, paralogon groups, and fingerprints." Mol. Pharmacol. 63(6): 1256-1272.
  72. Sinnarajah, S., C. W. Dessauer, D. Srikumar, J. Chen, J. Yuen, S. Yilma, J. C. Dennis, E. E. Morrison, V. Vodyanoy and J. H. Kehrl (2001). "RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase III." Nature 409(6823): 1051-1055.
  73. Watson, N., M. E. Linder, K. M. Druey, J. H. Kehrl and K. J. Blumer (1996). "RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha- subunits." Nature 383(6596): 172-175.
  74. Doupnik, C. A., N. Davidson, H. A. Lester and P. Kofuji (1997). "RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels." Proc. Natl. Acad. Sci. U. S. A. 94(19): 10461-10466.
  75. Robinson, S. W. and M. G. Caron (1997). "Selective inhibition of adenylyl cyclase type V by the dopamine D3 receptor." Mol. Pharmacol. 52(3): 508-514.
  76. Mou, T. C., N. Masada, D. M. Cooper and S. R. Sprang (2009). "Structural basis for inhibition of mammalian adenylyl cyclase by calcium." Biochemistry (Mosc.) 48(15): 3387-3397.
  77. Baldwin, J. M. (1994). "Structure and function of receptors coupled to G proteins." Curr. Opin. Cell Biol. 6(2): 180-190.
  78. Chruscinski, A. J., D. K. Rohrer, E. Schauble, K. H. Desai, D. Bernstein and B. K. Kobilka (1999). "Targeted disruption of the beta2 adrenergic receptor gene." J. Biol. Chem. 274(24): 16694-16700.
  79. Sassone-Corsi, P. (2012). "The cyclic AMP pathway." Cold Spring Harb. Perspect. Biol. 4(12).
  80. Fredriksson, R., M. C. Lagerstrom, L. G. Lundin and H. B. Schioth (2003). "The G- protein-coupled receptors in the human genome form five main families.
  81. Sutherland, E. W. and G. A. Robison (1966). "The role of cyclic-3',5'-AMP in responses to catecholamines and other hormones." Pharmacol. Rev. 18(1): 145-161.
  82. Berlin, S., V. A. Tsemakhovich, R. Castel, T. Ivanina, C. W. Dessauer, T. Keren- Raifman and N. Dascal (2011). "Two distinct aspects of coupling between Galpha(i) protein and G protein-activated K+ channel (GIRK) revealed by fluorescently labeled Galpha(i3) protein subunits." J. Biol. Chem. 286(38): 33223-33235.
  83. Hein, L., J. D. Altman and B. K. Kobilka (1999). "Two functionally distinct alpha2- adrenergic receptors regulate sympathetic neurotransmission." Nature 402(6758): 181-184.
  84. Tesmer, J. J., R. K. Sunahara, R. A. Johnson, G. Gosselin, A. G. Gilman and S. R. Sprang (1999). "Two-metal-Ion catalysis in adenylyl cyclase." Science 285(5428): 756-760.
  85. Yan, L., D. E. Vatner, J. P. O'Connor, A. Ivessa, H. Ge, W. Chen, S. Hirotani, Y. Ishikawa, J. Sadoshima and S. F. Vatner (2007). "Type 5 adenylyl cyclase disruption increases longevity and protects against stress." Cell 130(2): 247-258.
  86. Hughes, T. E., H. Zhang, D. E. Logothetis and C. H. Berlot (2001). "Visualization of a functional Galpha q-green fluorescent protein fusion in living cells. Association with the plasma membrane is disrupted by mutational activation and by elimination of palmitoylation sites, but not be activation mediated by receptors or AlF4." J. Biol. Chem. 276(6): 4227-4235.
  87. "Analysis of receptor oligomerization by FRAP microscopy." Nat. Methods 6(3): 225-230.
  88. Peschke, E. (2008). "Melatonin, endocrine pancreas and diabetes." J. Pineal Res. 44(1): 26-40.
  89. Tesmer, J. J., R. K. Sunahara, A. G. Gilman and S. R. Sprang (1997). "Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS." Science 278(5345): 1907-1916.
  90. Palczewski, K., T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto and M. Miyano (2000). "Crystal structure of rhodopsin: A G protein-coupled receptor." Science 289(5480): 739-745.
  91. Sunahara, R. K., C. W. Dessauer and A. G. Gilman (1996). "Complexity and diversity of mammalian adenylyl cyclases." Annu. Rev. Pharmacol. Toxicol. 36: 461-480.
  92. "Identification of the predominant substrate for ADP-ribosylation by islet activating protein." J. Biol. Chem. 258(4): 2072-2075.
  93. Dessauer, C. W., J. J. Tesmer, S. R. Sprang and A. G. Gilman (1998). "Identification of a Gialpha binding site on type V adenylyl cyclase." J. Biol. Chem. 273(40): 25831-25839.
  94. "Activation and deactivation kinetics of alpha 2A-and alpha 2C-adrenergic receptor-activated G protein-activated inwardly rectifying K+ channel currents." J. Biol. Chem. 276(50): 47512-47517.
  95. Gao, X., R. Sadana, C. W. Dessauer and T. B. Patel (2007). "Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits." J. Biol. Chem. 282(1): 294-302.
  96. Timofeyev, V., R. E. Myers, H. J. Kim, R. Woltz, P. Sirish, J. Heiserman, N. Li, A. Singapuri, T. Tang, V. Yarov-Yarovoy, E. N. Yamoah, K. Hammond and N. Chiamvimonvat (2013). "Adenylyl Cyclase Subtype-Specific Compartmentalization: Differential Regulation of L-type Ca2+ Current in Ventricular Myocytes." Circ. Res.
  97. Wise, A., M. A. Watson-Koken, S. Rees, M. Lee and G. Milligan (1997). "Interactions of the alpha2A-adrenoceptor with multiple Gi-family G-proteins: studies with pertussis toxin-resistant G-protein mutants." Biochem. J. 321 ( Pt 3)(3): 721- 728.
  98. Hein, P., M. Frank, C. Hoffmann, M. J. Lohse and M. Bunemann (2005). "Dynamics of receptor/G protein coupling in living cells." EMBO J. 24(23): 4106-4114.
  99. Kim, K. S., K. W. Lee, K. W. Lee, J. Y. Im, J. Y. Yoo, S. W. Kim, J. K. Lee, E. J. Nestler and P. L. Han (2006). "Adenylyl cyclase type 5 (AC5) is an essential mediator of morphine action." Proc. Natl. Acad. Sci. U. S. A. 103(10): 3908- 3913.
  100. Holz, G. G., G. Kang, M. Harbeck, M. W. Roe and O. G. Chepurny (2006). "Cell physiology of cAMP sensor Epac." J. Physiol. 577(Pt 1): 5-15.
  101. Li, Y., R. Hanf, A. S. Otero, R. Fischmeister and G. Szabo (1994). "Differential effects of pertussis toxin on the muscarinic regulation of Ca2+ and K+ currents in frog cardiac myocytes." J. Gen. Physiol. 104(5): 941-959.
  102. Murakoshi, H., S. J. Lee and R. Yasuda (2008). "Highly sensitive and quantitative FRET-FLIM imaging in single dendritic spines using improved non-radiative YFP." Brain Cell Biol. 36(1-4): 31-42.
  103. Pinto, C., M. Hubner, A. Gille, M. Richter, T. C. Mou, S. R. Sprang and R. Seifert (2009). "Differential interactions of the catalytic subunits of adenylyl cyclase with forskolin analogs." Biochem. Pharmacol. 78(1): 62-69.
  104. Jensen, J. B., J. S. Lyssand, C. Hague and B. Hille (2009). "Fluorescence changes reveal kinetic steps of muscarinic receptor-mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels." J. Gen. Physiol. 133(4): 347-359.
  105. Fan, P., Z. Jiang, I. Diamond and L. Yao (2009). "Up-regulation of AGS3 during morphine withdrawal promotes cAMP superactivation via adenylyl cyclase 5 and 7 in rat nucleus accumbens/striatal neurons." Mol. Pharmacol. 76(3): 526- 533.
  106. Tang, W. J. and Q. Guo (2009). "The adenylyl cyclase activity of anthrax edema factor." Mol. Aspects Med. 30(6): 423-430.
  107. Sadana, R., N. Dascal and C. W. Dessauer (2009). "N terminus of type 5 adenylyl cyclase scaffolds Gs heterotrimer." Mol. Pharmacol. 76(6): 1256-1264.
  108. Chung, C. T., S. L. Niemela and R. H. Miller (1989). "One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution." Proc. Natl. Acad. Sci. U. S. A. 86(7): 2172-2175.
  109. Willoughby, D., N. Masada, S. Wachten, M. Pagano, M. L. Halls, K. L. Everett, A. Ciruela and D. M. Cooper (2010). "AKAP79/150 interacts with AC8 and regulates Ca2+-dependent cAMP synthesis in pancreatic and neuronal systems." J. Biol. Chem. 285(26): 20328-20342.
  110. Halls, M. L. and D. M. Cooper (2011). "Regulation by Ca2+-signaling pathways of adenylyl cyclases." Cold Spring Harb. Perspect. Biol. 3(1): a004143.
  111. Bünemann, M., M. Frank and M. J. Lohse (2003). "Gi protein activation in intact cells involves subunit rearrangement rather than dissociation." Proc. Natl. Acad. Sci. U. S. A. 100(26): 16077-16082.
  112. Kritzer, M. D., J. Li, K. Dodge-Kafka and M. S. Kapiloff (2012). "AKAPs: the architectural underpinnings of local cAMP signaling." J. Mol. Cell. Cardiol. 52(2): 351-358.
  113. Edwards, H. V., J. D. Scott and G. S. Baillie (2012). "PKA phosphorylation of the small heat-shock protein Hsp20 enhances its cardioprotective effects." Biochem. Soc. Trans. 40(1): 210-214.
  114. Northup, J. K., P. C. Sternweis, M. D. Smigel, L. S. Schleifer, E. M. Ross and A. G. Gilman (1980). "Purification of the regulatory component of adenylate cyclase." Proc. Natl. Acad. Sci. U. S. A. 77(11): 6516-6520.
  115. Rinne, A., A. Birk and M. Bunemann (2013). "Voltage regulates adrenergic receptor function." Proc. Natl. Acad. Sci. U. S. A. 110(4): 1536-1541.
  116. Dessauer, C. W. (2002). "Kinetic analysis of the action of P-site analogs." Methods Enzymol. 345: 112-126.
  117. Ishikawa-Ankerhold, H. C., R. Ankerhold and G. P. Drummen (2012). "Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM." Molecules 17(4): 4047-4132.
  118. Milligan, G. (2013). "The Prevalence, Maintenance and Relevance of GPCR Oligomerization." Mol. Pharmacol.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten