Molecular biological and biochemical investigations on the biosynthetic enzymes of prenylated indole alkaloids from fungi

Molekularbiologische und biochemische Untersuchungen zu Enzymen in der Biosynthese von prenylierten Indolalkaloiden aus Pilzen

DISSERTATION
zur
Erlangung des Doktorgrades
der Naturwissenschaften
(Dr. rer. nat.)

dem Fachbereich Pharmazie
der Philipps-Universität Marburg

vorgelegt von

Xia Yu
aus Hunan, China

Marburg/Lahn, 2013

Erstgutachter: Prof. Dr. Shu-Ming Li
Zweitgutachter: Prof. Dr. Michael Keusgen

Tag der mündlichen Prüfung am 11. Juli 2013
Dedicated to
my parents
Contents

Publications and presentations ...1
Abbreviations ..3
Summary ..6
Zusammenfassung ..8
1 Introduction ...10
 1.1 Prenylated aromatic compounds ..10
 1.1.1 Prenylated indole alkaloids ..10
 1.1.2 Prenylated flavonoids ..14
 1.1.3 Prenylated xanthones ..15
 1.1.4 Prenylated naphthalenes and quinones ..16
 1.2 Biosynthetic pathways of prenylated indole alkaloids in Aspergillus ..17
 1.2.1 Biosynthetic pathways of prenylated indole alkaloids derived from cyclic dipeptides17
 1.2.2 Biosynthetic pathway of ergot alkaloids in Aspergillus fumigatus ..21
 1.3 Aromatic prenyltransferases ...22
 1.3.1 Prenyltransferases of the DMATS superfamily ..22
 1.3.2 Prenyltransferases of the LtxC group ..24
 1.3.3 Prenyltransferases of the CloQ/NphB group ..24
 1.3.4 Prenyltransferases of the UbiA superfamily ...25
 1.3.5 Chemoenzymatic synthesis of prenylated derivatives by using aromatic
 prenyltransferases ...26
 1.3.6 Relationship of aromatic prenyltransferases ..28
2 Aims of this thesis ..30
3 Materials and methods ...32
 3.1 Chemicals ...32
 3.2 Bacterial and yeast strains, plasmids and oligonucleotides ..33
 3.3 Gene cloning ..36
 3.3.1 PCR amplification ..36
 3.3.2 DNA sequencing and sequence analysis ..37
 3.4 Protein overproduction ..37
 3.4.1 Growth media ...37
 3.4.2 Gene expression in Escherichia coli and purification of proteins ..38
 3.4.3 Gene expression in Saccharomyces cerevisiae and purification of proteins38
 3.5 Enzyme assays ..39
 3.5.1 Assays with prenyltransferases ...39
3.5.2 Assays with the putative methyltransferase HasC.......................... 40
3.5.3 Assays with the putative cytochrome P450 enzyme HasH.................. 40
3.6 Analytic methods... 40
3.6.1 HPLC methods.. 40
3.6.2 NMR spectroscopic analysis and high-resolution mass spectrometry... 40

4 Results and discussion.. 42
4.1 Biochemical characterization of a cyclic dipeptide prenyltransferase CdpC3PT from *Neosartorya fischeri*... 42
4.2 Biochemical characterization of a 5-dimethylallyltryptophan synthase from *Aspergillus clavatus*... 43
4.3 Biochemical characterization of a brevianamide F reverse prenyltransferase BrePT from *Aspergillus versicolor*... 44
4.4 Production of enantiomers of cis-configured prenylated pyrroloindoline diketopiperazines by fungal indole prenyltransferases................................. 45
4.5 Production of prenylated indolocarbazoles by using 5-DMATS and FgaPT2 from *Aspergillus*.. 46
4.6 Production of prenylated hydroxynaphthalenes by using fungal indole prenyltransferases... 48
4.7 Production of prenylated flavonoids by using 7-DMATS from *Aspergillus fumigatus*.... 49
4.8 Prenyltransferases of the dimethylallyltryptophan synthase superfamily......... 50
4.9 Cloning and overexpression of a putative methyltransferase gene *hasC* from *Aspergillus fumigatus*... 51
4.9.1 Cloning of *hasC* from *Aspergillus fumigatus*................................. 51
4.9.2 Overexpression of *hasC* in *Escherichia coli*..................................... 52
4.10 Cloning of a putative cytochrome P450 gene *hasH* from *Aspergillus fumigatus*.... 54
4.10.1 Cloning of *hasH* from *Aspergillus fumigatus*................................. 54
4.10.2 Overexpression of *hasH* in *Saccharomyces cerevisiae*.................... 56

5 Publications and manuscript.. 58
5.1 Preparation of pyrrolo[2,3-b]indoles carrying a ß-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT.................. 58
5.2 Biochemical characterization of indole prenyltransferases: Filling the last gap of prenylation positions by a 5-dimethylallyltryptophan synthase from *Aspergillus clavatus*... 80
5.3 Identification of a brevianamide F reverse prenyltransferase BrePT from *Aspergillus versicolor* with a broad substrate specificity towards tryptophan-containing cyclic dipeptides.. 109
5.4 Complementary stereospecific synthesis of cis-configurated prenylated pyrroloindoline diketopiperazines by indole prenyltransferases of the DMATS superfamily (manuscript) ... 130
5.5 Friedel–Crafts alkylation on indolocarbazoles catalyzed by two dimethylallyltryptophan synthases from Aspergillus ... 158
5.6 Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases ... 176
5.7 Prenylation of flavonoids by using a dimethylallyltryptophan synthase 7-DMATS from Aspergillus fumigatus ... 216
5.8 Prenyltransferases of the dimethylallyltryptophan synthase superfamily... 233

6 Conclusions and future prospects .. 254
7 References ... 256
8 Acknowledgments .. 271
9 Curriculum vitae ... 272
Publications and presentations

Publications (*: equal contribution)

9. Yu, X., Xie, X. & Li, S.-M., Complementary stereospecific synthesis of cis-configured prenylated pyrroloindoline diketopiperazines by indole prenyltransferases of the DMATS superfamily. (manuscript)

Presentations at scientific meetings

1. Yu, X., Xie, X. & Li, S.-M., “Prenylation of hydroxynaphthalenes and flavonoids by indole prenyltransferases from fungi”. Poster presentation, Annual Conference of the
Association for General and Applied Microbiology (VAAM), 2012, March, Tuebingen, Germany.

Erklärung zum Eigenanteil

<table>
<thead>
<tr>
<th>Titel der Publikation</th>
<th>Autoren</th>
<th>geschätzter Eigenanteil in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of pyrrolo[2,3-b]indoles carrying a β-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT (published)</td>
<td>Yin, W.-B., Yu, X., Xie, X.-L. & Li, S.-M.</td>
<td>35</td>
</tr>
<tr>
<td>Biochemical characterization of indole prenyltransferases: Filling the last gap of prenylation positions by a 5-dimethylallyl tryptophan synthase from Aspergillus clavatus (published)</td>
<td>Yu, X., Liu, Y., Xie, X., Zheng, X.-D. & Li, S.-M.</td>
<td>70</td>
</tr>
<tr>
<td>Identification of a brevianamide F reverse prenyltransferase BrePT from Aspergillus versicolor with a broad substrate specificity towards tryptophan-containing cyclic dipeptides (published)</td>
<td>Yin, S., Yu, X., Wang, Q., Liu, X. Q. & Li, S.-M.</td>
<td>35</td>
</tr>
<tr>
<td>Complementary stereospecific synthesis of cis-configurated prenylated pyrroloindoline diketopiperazines by indole prenyltransferases of the DMATS superfamily (manuscript)</td>
<td>Yu, X., Xie, X. & Li, S.-M.</td>
<td>72</td>
</tr>
<tr>
<td>Friedel–Crafts alkylation on indolocarbazoles catalyzed by two dimethylallyltryptophan synthases from Aspergillus (published)</td>
<td>Yu, X., Yang, A., Lin, W. & Li, S.-M.</td>
<td>70</td>
</tr>
<tr>
<td>Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases (published)</td>
<td>Yu, X., Xie, X. & Li, S.-M.</td>
<td>72</td>
</tr>
<tr>
<td>Prenylation of flavonoids by using a dimethylallyltryptophan synthase 7-DMATS from Aspergillus fumigatus (published)</td>
<td>Yu, X., Li, S.-M.</td>
<td>75</td>
</tr>
<tr>
<td>Prenyltransferases of the dimethylallyltryptophan synthase superfamily (published review)</td>
<td>Yu, X., Li, S.-M.</td>
<td>75</td>
</tr>
</tbody>
</table>

Kandidatin

Unterschrift Betreuer
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>two-dimensional</td>
</tr>
<tr>
<td>4-DMATS</td>
<td>4-dimethylallyltryptophan synthase</td>
</tr>
<tr>
<td>A. clavatus</td>
<td>Aspergillus clavatus</td>
</tr>
<tr>
<td>A. flavus</td>
<td>Aspergillus flavus</td>
</tr>
<tr>
<td>A. fumigatus</td>
<td>Aspergillus fumigatus</td>
</tr>
<tr>
<td>A. nidulans</td>
<td>Aspergillus nidulans</td>
</tr>
<tr>
<td>Ar</td>
<td>aromatic ring</td>
</tr>
<tr>
<td>A. terreus</td>
<td>Aspergillus terreus</td>
</tr>
<tr>
<td>A. versicolor</td>
<td>Aspergillus versicolor</td>
</tr>
<tr>
<td>BAC</td>
<td>bacterial artificial chromosome</td>
</tr>
<tr>
<td>BLAST</td>
<td>basic local alignment search tool</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>Da</td>
<td>dalton</td>
</tr>
<tr>
<td>dd</td>
<td>double doublet</td>
</tr>
<tr>
<td>DMA</td>
<td>dimethylallyl</td>
</tr>
<tr>
<td>DMAPP</td>
<td>dimethylallyl diphosphate</td>
</tr>
<tr>
<td>DMATS</td>
<td>dimethylallyltryptophan synthase</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>EI</td>
<td>electron ionization</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>FPLC</td>
<td>fast protein liquid chromatography</td>
</tr>
<tr>
<td>FPP</td>
<td>farnesyl diphosphate</td>
</tr>
<tr>
<td>gDNA</td>
<td>genomic DNA</td>
</tr>
<tr>
<td>GPP</td>
<td>geranyl diphosphate</td>
</tr>
<tr>
<td>HAS</td>
<td>hexadehydroastechrome</td>
</tr>
<tr>
<td>His₆</td>
<td>hexahistidine</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HMBC</td>
<td>heteronuclear multiple-bond correlation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HR</td>
<td>high-resolution</td>
</tr>
<tr>
<td>HSQC</td>
<td>heteronuclear single-quantum correlation</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl β-thiogalactopyranoside</td>
</tr>
<tr>
<td>k_{cat}</td>
<td>turnover number</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base pairs</td>
</tr>
<tr>
<td>K_M</td>
<td>Michaelis-Menten constant</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>$L. \text{maculans}$</td>
<td>Leptosphaeria maculans</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge ratio</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>$N. fischeri$</td>
<td>Neosartorya fischeri</td>
</tr>
<tr>
<td>Ni-NTA</td>
<td>nickel-nitrilotriacetic acid</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOESY</td>
<td>nuclear overhauser effect spectroscopy</td>
</tr>
<tr>
<td>NRPS</td>
<td>nonribosomal peptide synthetase</td>
</tr>
<tr>
<td>OD$_{600}$</td>
<td>optical density at 600 nm</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PPI</td>
<td>pyrophosphate</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RP</td>
<td>reverse phase</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>SAM</td>
<td>S-adenosyl methionine</td>
</tr>
<tr>
<td>$S. cerevisiae$</td>
<td>Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>SCU</td>
<td>synthetic medium devoid of uracil</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>TB</td>
<td>Terrific-Broth</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
<tr>
<td>× g</td>
<td>gravitational acceleration</td>
</tr>
</tbody>
</table>
Summary

Prenylated indole alkaloids are widely distributed in plants, fungi and bacteria, especially in the family of Clavicipitaceae and Trichocomaceae of Ascomycota, and commonly exhibit interesting biological and pharmaceutical activities. In the biosynthetic pathway of prenylated indole alkaloids, prenylation catalyzed by prenyltransferases contributes significantly to the large structure diversity of these compounds in nature. Investigation on indole prenyltransferases would help to understand the construction of prenylated indole alkaloids in nature and also be useful for structural modification of indole derivatives and other substances to produce analogues of prenylated derivatives.

Three indole prenyltransferases belonging to the dimethylallyltryptophan synthase (DMATS) superfamily were biochemically identified and characterized in vitro, including CdpC3PT from Neosartorya fischeri (N. fischeri), BrePT from Aspergillus versicolor (A. versicolor) and 5-DMATS from Aspergillus clavatus (A. clavatus). The responsible genes cdpC3PT and brePT were cloned into expression vector and heterologously expressed in Escherichia coli (E. coli). These works were carried out by Dr. Wen-Bing Yin, Suqin Yin and Qing Wang, respectively. In this thesis, CdpC3PT was confirmed to catalyze the formation of C3-prenylated products with a characteristic 6/5/5/6-fused tetracyclic ring system from tryptophan-containing cyclic dipeptides in one-step reaction. The NotF homologue BrePT showed much higher flexibility towards its aromatic substrates than NotF, and was proven to catalyze the highly regiospecific reverse prenylation at C-2 of the indole nucleus. The cloning of 5-dmats was carried out by Yan Liu. Functional proof of this gene was provided within this thesis by heterologous expression in E. coli and subsequent structure elucidation of enzyme products by mass spectrometry (MS) and nuclear magnetic resonance (NMR) analyses. 5-DMATS established high regiospecific activity to catalyze C5-prenylation on indole derivatives.

Given the importance of prenylation in structure diversity and bioactivity enhancement, CdpC3PT, BrePT, 5-DMATS and other known prenyltransferases of the DMATS superfamily were applied for the chemoenzymatic synthesis of prenylated compounds. By using AnaPT, CdpC3PT and CdpNPT, eight and six stereoisomers of cis-configured prenylated pyrroloindoline diketopiperazines from cyclo-Trp-Ala and cyclo-Trp-Pro isomers were produced, respectively. The stereospecificity of AnaPT and CdpC3PT depended mainly on the configuration of tryptophanyl moiety in cyclo-Trp-Ala and cyclo-Trp-Pro isomers, while CdpNPT showed lower stereoselectivity, but higher conversion ability towards most tested substrates.

5-DMATS and FgaPT2 from Aspergillus were used for chemoenzymatic synthesis of prenylated indolocarbazoles. Reconstitution of enzyme activity of 5-DMATS and FgaPT2 in
Summary

vitro revealed that they catalyzed regiospecific prenylation of indolocarbazoles at the para-position of the indole N-atom. This is the first report for prenylated indolocarbazoles. Subsequently, some indole prenyltransferases of the DMATS superfamily were found to accept also hydroxynaphthalenes and flavonoids, which were substrates for enzymes from the CloQ/NphB group and the UbiA superfamily, respectively. Nine prenylated flavonoids and twenty prenylated hydroxynaphthalenes have been isolated, and their structures were elucidated by MS and NMR analyses. It has been shown that, for an accepted hydroxynaphthalene, different enzymes produced usually the same major prenylated product, i.e. with a regular C-prenyl moiety at para- or ortho-position to a hydroxyl group. For flavonoids accepted by 7-DMATS, C-6 between two hydroxyl groups was the favorable prenylation position. The Michaelis-Menten constants (K_M) and turnover numbers (k_{cat}) of some prenyltransferases towards selected hydroxynaphthalenes are comparable to those obtained by using indole derivatives.

In addition to indole prenyltransferases, other genes in the biosynthetic cluster of prenylated indole alkaloids were also investigated. A putative O-methyltransferase gene $hasC$ and a putative cytochrome P450 gene $hasH$ involved in the biosynthesis of hexadehydroastechrome (HAS) in Aspergillus fumigatus (A. fumigatus) were cloned into pQE60 and pESC-URA, respectively. Soluble His$_6$-HasC was successfully overproduced in E. coli SG13009 and purified to near homogeneity by Ni-NTA. Constructs for co-expression with the reductase gene $NFIA_083630$ from N. fischeri in pESC-URA and for expression as His$_6$-tagged protein in pESC-URA were also prepared for the putative cytochrome P450 gene $hasH$.
Zusammenfassung

Vergleich dazu, zeigte CdpNPT eine geringere Stereoäselektivität, aber eine höhere Umsetzungsrate gegenüber den getesteten Substraten.

Ergänzend zu Prenyltransferasen wurden noch weitere Gene aus einem putativen Biosynthesecluster für ein prenyliertes Indolalkaloid, das Hexadehydroastechrom (HAS) untersucht. Ein putatives O-Methyltransferasegen *hasC* und ein putatives Cytochrome P450-Gen *hasH*, welche in dessen Biosynthese in *Aspergillus fumigatus* (A. fumigatus) involviert sind. Sie wurden jeweils in die Expressionsvektoren pQE60 und pESC-URA kloniert. Das lösliche His$_6$-HasC wurde erfolgreich in *E.coli* SG13009 überexprimiert und über Ni-NTA aufgereinigt. Konstrukte für die Co-Expression mit dem Reduktasegen NFIA_083630 aus *N. fischeri* in pESC-URA und für die Expression als His$_6$-getaggtes Protein in pESC-URA wurden auch für das putative Cytochrome P450-Gen *hasH* angefertigt.
1 Introduction

1.1 Prenylated aromatic compounds

Prenylated aromatic compounds are hybrid natural products containing an aromatic scaffold and one or more prenyl moieties derived from prenyl diphosphates. These compounds are widely distributed in nature and often possess impressive better biological activities than their non-prenylated precursors (Li, 2010; Botta et al., 2005b; Schardl et al., 2006; El-Seedi et al., 2010; Sunassee and Davies-Coleman, 2012). Considering the various types of precursors, the prenylated aromatic compounds represent a broad range of structural diversity, such as prenylated indole alkaloids, flavonoids, xanthones, naphthalenes and quinones. According to the connection patterns of the prenyl moiety to the aromatic ring, these compounds can be classified into two types, i.e. “regularly” and “reversely” prenylated derivatives. The prenyl moiety is substituted to the aromatic ring via C-1’ in a regularly prenylated derivative, while reverse prenylation represents the bridge between C-3’ of the prenyl moiety and the aromatic ring (Figure 1-1).

Figure 1-1: Regular and reverse prenyl moieties. Ar: aromatic ring.

1.1.1 Prenylated indole alkaloids

Prenylated indole alkaloids represent a group of compounds with diverse chemical structures and are widely distributed in nature, especially in the family of Clavicipitaceae and Trichocomaceae of Ascomycota (Li, 2010; Ruiz-Sanchis et al., 2011). Due to their impressive pharmacological and biological activities as drugs or toxins (Li, 2010; Wallwey and Li, 2011), prenylated indole alkaloids attract attention of scientists from different scientific disciplines including chemistry, ecology, biology, pharmacology and biochemistry (Lindel et al., 2012; Williams et al., 2000; Li, 2010; Schardl et al., 2006; Uhlig et al., 2009). This thesis deals with enzymes for C2-, C3- and C5-prenylation of indole alkaloids. Therefore more details on C2-, C3- and C5-prenylated indole alkaloids are described below.

1.1.1.1 C2-prenylated indole alkaloids

Prenylated indole alkaloids in this group carry one prenyl moiety at position C-2 on the indole ring (Figure 1-2). A series of C2-prenylated cyclic dipeptides were isolated. For example, echinulin (1) with antitubercular activity was isolated from several Aspergillus strains and
other sources (Stipanovic and Schroeder, 1976; Wang et al., 2007a; Kanokmedhakul et al., 2002). The anticancer agent tryprostatin A (2) from A. fumigatus is the methoxylated derivative of regularly C2-prenylated cyclo-L-Trp-L-Pro (Cui et al., 1996; Wang et al., 2008; Cui et al., 1995; Jain et al., 2008; Zhao et al., 2002). Cyclo-L-Trp-L-Trp is the precursor of fellutanine B (3) from *Penicillium fellutanum* (Kozlovsky et al., 2000; Kozlovsky et al., 2001). Another example is variecolorotide B (4) from *Aspergillus variecolor*, which contains an additional anthraquinone molecule (Wang et al., 2007b).

In addition to C2-prenylated cyclic dipeptides, derivatives of other indole alkaloids were also reported. Ergot alkaloid (8S,9S)-fumigaclavine C (5) with a reverse prenyl moiety at C-2 of the indole ring was identified in *A. fumigatus* (Ge et al., 2009). The prenylated bisindolyl benzoquinone asterriquinone CT5 (6) from *A. terreus* bears a regular prenyl moiety at position C-2 on both indole rings (Mocek et al., 1996; Kaji et al., 1994).

![Figure 1-2: Examples of C2- and C3-prenylated indole alkaloids.](image)

1.1.1.2 C3-prenylated indole alkaloids

C3-prenylated indole alkaloids represent a characteristic fused multicyclic ring system with the prenyl moiety at the position C-3 on the indoline ring (Figure 1-2). Most of these compounds are reversely C3-prenylated derivatives of cyclic dipeptides. For example, roquefortine C (7) identified in *Penicillium* strains is a cyclic dipeptide derivative of tryptophan and histidine (Ohmomo et al., 1977; O’Brien et al., 2006). Another example is fructigenine A (8) from *Penicillium fructigenum* (Arai et al., 1989). This compound is a derivative of cyclo-L-
Trp-L-Phe and was reported to be a plant growing inhibitor (Arai et al., 1989). The mycotoxin acetylaszonalenin (9) and its non-acetylated form aszonalenin (10) were identified in various fungal strains, e.g. *N. fischeri* (Wakana et al., 2006; Yin et al., 2009; Ellestad et al., 1973). Their stereoisomers epi-aszonalenins A and C were isolated from *Aspergillus novofumigatus* (Rank et al., 2006). These four compounds are derived from the amino acids tryptophan and anthranilic acid. The cytotoxic compound 5-N-acetylardeemin (11) identified in *N. fischeri* represents a cyclo-Trp-Ala derivative connected with an anthranilic acid moiety (Hochlowski et al., 1993; Ge et al., 2010).

A detailed database search showed that only one regularly C3-prenylated cyclic dipeptide nocardioazine B (12) was found in nature. Nocardioazine B (12) from *Nocardiosis* sp. is derived from cyclo-L-Trp-L-Trp (Raju et al., 2011). Besides prenylated derivatives of cyclic dipeptides, a series of C3-prenylated simple indole derivatives with the C3-regular or reverse prenyl moieties were isolated from the bryozoan *Flustra foliacea* (Peters et al., 2002; Peters et al., 2003; Rochfort et al., 2009). One example is flustramine L (13) with regular prenyl moieties at positions C-3 and C-5 (Rochfort et al., 2009). Antimicrobial activity was reported for this compound (Rochfort et al., 2009).

1.1.1.3 C5-prenylated indole alkaloids

A number of biologically active indole alkaloids carrying a regular prenyl moiety at position C-5 were discovered (Figure 1-3). The regularly C5-prenylated bisindolyl benzoquinones were derived from two tryptophan molecules like semicochliodinol A (14) from the fungus *Chrysosporium merdarium* (Fredenhagen et al., 1997) and petromurin B (15) from the fungus *Petromyces muricatus* (Ooike et al., 1997). Semicochliodinol A (14) was reported to inhibit HIV-1 protease (Fredenhagen et al., 1997). Regularly C5-prenylated derivatives were also found for tryptophan-containing cyclic dipeptides like cyclo-L-Trp-L-Ala, e.g. echinulin (1) from *Aspergillus* strains or tardioxopiperazine A (16) from the fungus *Microascus tardificiens* (Fujimoto et al., 1999). Immunosuppressive activity has been observed with tardioxopiperazine A (16) (Fujimoto et al., 1999). Another type of C5-prenylated indole alkaloids are derived from indole diterpenes. These compounds carry one prenyl moiety at C-5, e.g. 21-isopentenylpaxilline (17) from *Eupenicillium shearii* (Belofsky et al., 1995), or more prenyl moieties, e.g. shearinine K (18) from *Penicillium* sp. (Xu et al., 2007). 21-isopentenylpaxilline showed antinsectant activity in a previous report (Belofsky et al., 1995). Only a few reversely C5-prenylated indole alkaloids have been found in nature, such as lansai B (19) from *Streptomyces* sp. (Tuntiwachwuttikul et al., 2008).
1.1.1.4 Other prenylated indole alkaloids

Besides positions C-2, C-3 and C-5, the prenyl moiety can be connected to positions N-1, C-4, C-6 and C-7 on the indole ring in nature (Figure 1-3). N1-prenylated indole alkaloids were found in various fungi. The mycotoxin fumitremorgin B (20) identified in a number of Aspergillus and Penicillium strains bears two prenyl moieties at positions N-1 and C-2 of the indole ring (Yamazaki et al., 1974; Yamazaki and Suzuki, 1986; Gallagher and Latch, 1977; Sabater-Vilar et al., 2003). Asterriquinone (21) isolated from A. terreus contains one reverse prenyl moiety at the position N-1 on each tryptophanyl moiety (Yamamoto et al., 1976b). This compound showed inhibitory activity against tumour cells (Yamamoto et al., 1976a). Another example of N1-prenylated benzoquinone is isoasterriquinone from A. terreus, which contains reversely N1-prenylated and regularly C2-prenylated tryptophanyl moieties (Kaji et al., 1994). 4-dimethylallyltryptophan (22) firstly isolated from Claviceps fusiformis (Barrow and Quigley, 1975) is the precursor of ergot alkaloids in many strains (Wallwey and Li, 2011). A further example of C4-prenylated indole alkaloids is the tremorgenic mycotoxin aflatrem (23) from Aspergillus flavus (A. flavus) (Cole et al., 1981; Gallagher and Wilson, 1978), which is a monoprenylated derivative of the indole diterpene. The potent antiflea agent nodulisporic acid E containing two prenyl moieties at both positions C-5 and C-6 of the indole diterpene scaffold was isolated from Nodulisporium sp. mutant MF6227 (ATCC74473) (Singh et al., 2004). Semicochliodinol B (24) from Chrysosporium merdarium (Fredenhagen et al., 1997) and isocochliodinol from Chaetomium sp. (Sekita, 1983) are prenylated bisindolyl benzoquinone with prenyl moieties substituted at position C-6 on one and both indole rings,
respectively. Semicochliodinol B (24) exhibits inhibitory activity against HIV-1 protease (Fredenhagen et al., 1997). Terezine D (25) from fungi Sporormiella teretispora and Aspergillus sydowi is a C7-prenylated derivative of cyclo-L-Trp-L-Ala (Wang et al., 1995; Zhang et al., 2008), which is very likely the precursor of the tryptophan-derived iron(III)-complex HAS (see section 1.2.1.3) (Yin et al., 2013b).

1.1.2 Prenylated flavonoids

Prenylated flavonoids are a group of compounds consisting of one or more prenyl moieties on the flavonoid nucleus (C6-C3-C6). They are mainly distributed in the plant kingdom, especially in the family Leguminosae and Moraceae (Botta et al., 2005b; Botta et al., 2009; Tahara, 2007; Barron and Ibrahim, 1996). These compounds are well known for their numerous pharmacological effects (Botta et al., 2005b; Botta et al., 2009). According to their chemical structures, they can be classified into prenylated flavones, flavonols, flavanones, flavanonols, isoflavones, isoflavanones, isoflavans, chalcones and so on. An example of prenylated flavones is kuwanon C (26) isolated from various species of the genera Morus and Artocarpus (Cho et al., 2011; Yang et al., 2011; Arung et al., 2006; Ko et al., 1997).

Inhibitory activities against β-secretase, melanin biosynthesis and nitric oxide production were reported for kuwanon C (26) (Cho et al., 2011; Yang et al., 2011; Arung et al., 2006). The diprenylated isoflavanone papyriflavonol A (27) was isolated from Broussonetia papyrifera and Broussonetia kazinoki and showed inhibitory activities against 5-LOX, 12-LOX and α-glucosidase (Zhang et al., 2001; Ryu et al., 2010; Chi et al., 2001). The prenylated flavanone 8-prenylnaringenin (28) was purified from diverse plants, e.g. Azadirachta indica and Macaranga conifera (Nakahara et al., 2003; Jang et al., 2002; Lukaseder et al., 2009; Akazawa et al., 2012; Sasaki et al., 2012; Versiani et al., 2011). This compound exhibits ABCG2 inhibitory, estrogenic, antibacterial and antitumor activities (Akazawa et al., 2012; Sasaki et al., 2012; Versiani et al., 2011; Overk et al., 2005).

Wighteone (29) is the prenylated derivative of the isoflavone genistein and has been isolated from many plants, especially from the species of the genus Erythrina (Morikawa et al., 2006; Wang et al., 2005; Erasto et al., 2004; Bankeu et al., 2011; Tanaka et al., 2001; El-Masry et al., 2002; Djigoue et al., 2009). Broad biological activities, including antifungal, antibacterial, nitric oxide production inhibitory and β-glucuronidase inhibitory activities, were observed for wighteone (29) (Morikawa et al., 2006; Wang et al., 2005; Erasto et al., 2004; Bankeu et al., 2011). The prenylated isoflavan (3S)-(+) -7-methoxymanuifolin K (30) was found in the plant Dalea aurea and exhibits antiprotozoal activity (Belofsky et al., 2006). Xanthohumol (31) is the main prenylated flavonoid of hops and represents a wide range of biological activities, especially well known for the potential cancer chemopreventive activity (Gerhauser et al., 2002; Stevens and Page, 2004; Albini et al., 2006). The distribution, chemistry and biological
activities of xanthohumol (31) were reviewed (Stevens and Page, 2004; Magalhaes et al., 2009; Gerhauser, 2005).

1.1.3 Prenylated xanthones

Xanthones are a group of secondary metabolites found in higher plants, fungi and lichens (El-Seedi et al., 2009; Vieira and Kijjoa, 2005). The key structure feature of these compounds is the 9H-xanthen-9-one nucleus (Figure 1-4). Prenylated xanthones are emerged as an important subgroup of naturally occurring xanthones and exhibit interesting biological and pharmaceutical activities (El-Seedi et al., 2010; Pinto et al., 2005). Xanthon derivatives with prenyl moieties at diverse positions were reported. In most cases, regular prenyl moieties were found in prenylated xanthones, for example, the antihypotensive agent guanandin (32). The compound found in various species of the plant genus Calophyllum is a dioxygenated xanthon carrying a regular prenyl moiety at the para-position to the carbonyl moiety in the structure (Iinuma et al., 1996; Gunasekera et al., 1977; Oku et al., 2005). Another example of C-prenylated xanthon is 2-isoprenyl-1,7-dihydroxy-3-methoxy xanthon (33). This compound was isolated from various species of the plant genus Garcinia (Huang et al., 2001; Deachathai et al., 2005; Rukachaisirikul et al., 2003) and showed inhibitory effect towards human leukemia HL60 cells (Matsumoto et al., 2003). Isocudraniaxanthon B (34) isolated from the plants Cratoxylum formosum and Cudrania tricuspidata is a reversely prenylated tetraoxygenated xanthon derivative (Park et al., 2006; Boonnak et al., 2006; Lee et al., 2006).
Introduction

2005). Park et al. reported significant antioxidant activity of isocudraniaxanthone B (34) (Park et al., 2006).

Besides C-prenylated xanthones, O-prenylated derivatives were also reported, e.g. variecoxanthone A (35) from fungi A. nidulans and A. variecolor (Schelach and Hertweck, 2006; Cheval et al., 1975). In addition, several prenylated xanthones with more than one prenyl moiety were found in nature, such as the diprenylated xanthone α-mangostin (36) and triprenylated xanthone garcinone E (37). The compound α-mangostin (36) isolated from the plant genera Garcinia, Cratoxylum and Pentadesma (Ren et al., 2011; Lenta et al., 2011a; Ryu et al., 2011; Kikuchi et al., 2010) carries one regular prenyl moiety on each aromatic ring and was reported to have broad biological activities, such as inhibiting and dissociating the Aβ aggregation, which indicated that α-mangostin is a potential candidate for treatment of Alzheimer’s disease, as well as significant anti-inflammatory activity (Wang et al., 2012; Chen et al., 2008). Garcinone E (37) isolated from various species of the plant genus Garcinia as well as the species Pentadesma byractea (Na and Xu, 2010; Jung et al., 2006; Lenta et al., 2011b) also exhibits a wide range of biological activities, e.g. antiproliferative and antiplasmodial activities (Han et al., 2008; Lenta et al., 2011b; Ho et al., 2002).

1.1.4 Prenylated naphthalenes and quinones

In comparison to the large number of prenylated indole alkaloids, flavonoids and xanthones, database search showed that the number of natural occurring prenylated naphthalenes is limited. Known prenylated naphthalenes with intact prenyl moieties were mostly isolated from plants (Hussein et al., 2004; Monache et al., 1985; Hussein et al., 2003). Vismione E (38) and adenaflorin C (39) are two examples of prenylated naphthalenes. Vismione E (38) containing one prenyl moiety at the aromatic ring was isolated from Cratoxylum cochinchinense, Cratoxylum formosum and Psorospermum febrifugum (Boonnak et al., 2007; Botta et al., 1983; Laphookhieo et al., 2009). Vismione E (38) has antimalarial and antibacterial activities (Boonnak et al., 2007; Laphookhieo et al., 2009). Adenaflorin C (39) from Adenaria floribunda exhibits moderate cytotoxic activity (Hussein et al., 2004).

Prenylated quinones are widely distributed in plants, microorganisms as well as animals and have broad biological activities (Sunasse and Davies-Coleman, 2012). For example, the bis-prenylated quinone (40) isolated from the brown algae Perithalia capiliaris and Sporochnus comosus represents anti-inflammatory and antiproliferative properties (Sansom et al., 2007; Ovenden et al., 2011). The naphthoquinone lapachol (41) containing one prenyl moiety on the quinone ring has been found from dozens of plants. A wide range of pharmacological activities were reported for lapachol (41), e.g. anticancer, anti-inflammatory and antiviral activities. The occurrence, biological activities, synthesis and biosynthesis of lapachol (41) has been reviewed (Hussain et al., 2007; Epifano et al., 2013). Another
example is the prenylated anthraquinone 1-methyl-2-(3'-methyl-but-2'-enyloxy)-anthraquinone (42). This compound was isolated from the plant Aegle marmelos and showed antifungal activity (Mishra et al., 2010a; Mishra et al., 2010b). The antioxidative agent naphterpin (43) derived from a hybrid structure containing a naphthoquinone unit and a geranyl side chain has been isolated from the bacteria Streptomyces aeriouvier and Streptomyces sp. (Shin-Ya et al., 1990b; Seto et al., 1996). 1,3,6,8-tetrahydroxynaphthalene is the precursor for the biosynthesis of naphterpin (43) in Streptomyces (Shin-Ya et al., 1990a).

1.2 Biosynthetic pathways of prenylated indole alkaloids in Aspergillus

Recently, significant progress has been achieved in the discovery of gene clusters responsible for the biosynthesis of prenylated indole alkaloids in Aspergillus. Several biosynthetic genes were identified by feeding experiments, gene deletion experiments and biochemical characterization in vitro. Gene clusters related to enzymes used in this thesis are described below.

1.2.1 Biosynthetic pathways of prenylated indole alkaloids derived from cyclic dipeptides

1.2.1.1 The biosynthesis of fumitremorgins/verruculogen

In A. fumigatus, a gene cluster for the biosynthesis of fumitremorgins/verruculogen was identified. The end product of this cluster is verruculogen (Steffan et al., 2009b), while three tryprostatins together with three fumitremorgins are synthesized as intermediates (Figure 1-
The biosynthesis of these compounds starts with the formation of brevianamide F from L-tryptophan and L-proline by the nonribosomal peptide synthetase (NRPS) FtmPS, followed by a prenylation reaction catalyzed by FtmPT1 to produce tryprostatin B (Maiya et al., 2006; Grundmann and Li, 2005). The genes ftmPT1 and ftmPS were overexpressed in E. coli and Aspergillus, respectively. The cytochrome P450 enzyme FtmP450-1 and the putative methyltransferase FtmMT catalyze the addition of small functional groups, i.e. hydroxyl and methyl groups, resulting in the formation of tryprostatin A (Kato et al., 2009). The second cytochrome P450 enzyme FtmP450-2 is responsible for cyclization of tryprostatin A, and next the hydroxylation is catalyzed by the third cytochrome P450 enzyme FtmP450-3 consequently for the production of 12,13-dihydroxyfumitremorgin C (Kato et al., 2009). The identification of three cytochrome P450 genes was carried out by gene disruption (Kato et al., 2009). The second prenyltransferase FtmPT2 was proven to catalyze the conversion of 12,13-dihydroxyfumitremorgin C to fumitremorgin B (Grundmann et al., 2008). The non-heme Fe(II) α-ketoglutarate-dependent dioxygenase FtmOx1 catalyzes the formation of verruculogen from fumitremorgin B (Steffan et al., 2009b).

Figure 1-6: The biosynthesis of fumitremorgins/verruculogen in A. fumigatus.

1.2.1.2 The biosynthesis of notoamides

A gene cluster for the biosynthesis of notoamides was found in a marine-derived strain Aspergillus sp. MF297-2 (Ding et al., 2010). Similar to verruculogen, the biosynthesis of notoamides also begins with the formation of brevianamide F from L-tryptophan and L-proline (Figure 1-7). The prenyltransferase NotF catalyzes the prenylation of brevianamide F to yield deoxybrevianamide E (Ding et al., 2010). Another prenyltransferase NotC generates a regularly C7-prenylated derivative of 6-hydroxy-deoxybrevianamide E (Ding et al., 2010). NotB was reported to catalyze the indole 2,3-oxidation of notoamide E through an apparent
pinacol-like rearrangement to produce notoamides C and D (Li et al., 2012). The biochemical characterization of NotF, NotC and NotB has been carried out in vitro (Ding et al., 2010; Li et al., 2012). Feeding experiment with doubly 13C-labeled racemic stephacidin A carried out in Aspergillus sp. MF297-2 showed that (+)-stephacidin A was converted into (-)-notoamide B in the biosynthetic pathway of notoamides (Finefield et al., 2011b). The biosynthesis of notoamides in A. versicolor was also reported, which was demonstrated by feeding experiments with isotope-labelled precursors (Finefield et al., 2011b; Finefield et al., 2011c; Finefield et al., 2011a).

Figure 1-7: The biosynthesis of notoamides in Aspergillus sp. MF297-2.

1.2.1.3 The biosynthesis of hexadehydroastechrome

Figure 1-8: The proposed biosynthetic pathway of HAS in A. fumigatus (Yin et al., 2013b).

Gene disruption experiments of the HAS cluster in A. fumigatus revealed that the end product of this cluster is a tryptophan-derived iron(III)-complex, HAS (Figure 1-8) (Yin et al., 2013b). Five putative biosynthetic genes are proposed to be involved in this pathway, including one NRPS gene hasD, one 7-dimethylallyltryptophan synthase gene hasE (also named 7-dmats) (Kremer et al., 2007), one putative FAD binding protein gene hasG, one putative O-methyltransferase gene hasC and one putative cytochrome P450 gene hasH. In
addition, two putative C6 transcription factor genes $hasA$ and $hasF$ and one putative transporter gene $hasB$ are also located in this cluster. It was suggested that the intermediates produced by this cluster are all in a NRPS-bound mode (Figure 1-8) (Yin et al., 2013b). However, C7-prenylated L-tryptophan and C7-prenylated cyclo-L-Trp-L-Ala (terezine D) were isolated as precursors for HAS. Orthologues of these genes (Table 1-1) were also found in *N. fischeri* and *A. terreus* (Kremer et al., 2007).

Table 1-1: Orthologous proteins of HasA-HasH.

<table>
<thead>
<tr>
<th>Protein</th>
<th>A. fumigatus Af293</th>
<th>N. fischeri NRRL181</th>
<th>A. terreus NIH2624</th>
</tr>
</thead>
<tbody>
<tr>
<td>HasA (EAL92294)</td>
<td>EAW21279</td>
<td>93</td>
<td>EAU31597</td>
</tr>
<tr>
<td>HasB (EAL92293)</td>
<td>EAW21278</td>
<td>96</td>
<td>EAU31598</td>
</tr>
<tr>
<td>HasC (EAL92292)</td>
<td>EAW21277</td>
<td>96</td>
<td>EAU31599</td>
</tr>
<tr>
<td>HasD (EAL92291)</td>
<td>EAW21276</td>
<td>93</td>
<td>EAU31600</td>
</tr>
<tr>
<td>HasE (EAL92290, i.e. 7-DMATS)</td>
<td>EAW21275</td>
<td>95</td>
<td>EAU31601</td>
</tr>
<tr>
<td>HasF (EAL92289)</td>
<td>EAW21274</td>
<td>96</td>
<td>EAU31602</td>
</tr>
<tr>
<td>HasG (EAL92288)</td>
<td>EAW21273</td>
<td>95</td>
<td>-</td>
</tr>
<tr>
<td>HasH (EAL92287)</td>
<td>EAW21272</td>
<td>92</td>
<td>EAU31603</td>
</tr>
</tbody>
</table>

*: the identity to the orthologous protein from *A. fumigatus* Af293.

Figure 1-9: Biosynthetic clusters of HAS in different strains (A-C). A: *A. fumigatus*; B: *N. fischeri*; C: *A. terreus*.

In a previous work in our group, 7-DMATS was overproduced in *E. coli* and characterized biochemically (Kremer et al., 2007). However, the biochemical functions of HasC and HasH are still unknown. In this thesis, $hasC$ and $hasH$ were cloned from *A. fumigatus* and overexpressed in *E. coli* and *Saccharomyces cerevisiae* (S. cerevisiae), respectively.
1.2.2 Biosynthetic pathway of ergot alkaloids in *Aspergillus fumigatus*

Another subgroup of prenylated indole alkaloids in *A. fumigatus* are ergot alkaloids. The biosynthesis of ergot alkaloids (Figure 1-10) starts with the conversion of L-tryptophan to 4-dimethylallyltryptophan by the 4-dimethylallyltryptophan synthase (4-DMATS), *i.e.* FgaPT2 (Unsöld and Li, 2005). Formation of the 4-dimethylallyl-L-abrine is catalyzed by the methyltransferase FgaMT (Rigbers and Li, 2008), followed by the production of chanoclavine-I (Coyle *et al.*, 2010). FgaDH has been proven to catalyze the formation of chanoclavine-I aldehyde from chanoclavine-I (Wallwey *et al.*, 2010a). The conversion of chanoclavine-I aldehyde to festuclavine needs two enzymes, *i.e.* FgaOx3 and FgaFS (Wallwey *et al.*, 2010b). Subsequently, a further hydroxylation reaction leads to the formation of (8S,9S)-fumigaclavine B, and this reaction was speculated to be catalyzed by the cytochrome P450 enzyme FgaP450-2 (Wallwey and Li, 2011). FgaAT was proven to catalyze the next step, which produces (8S,9S)-fumigaclavine A by an acetylation reaction (Liu *et al.*, 2009). Finally, the second prenyltransferase FgaPT1 catalyzes the formation of (8S,9S)-fumigaclavine C from (8S,9S)-fumigaclavine A (Unsöld and Li, 2006). The biochemical characterization of FgaPT2, FgaMT, FgaDH, FgaOx3, FgaFS, FgaAT and FgaPT1 has been carried out *in vitro* after overexpression of the encoding genes in *E. coli* or *S. cerevisiae* (Unsöld and Li, 2005; Rigbers and Li, 2008; Wallwey *et al.*, 2010a; Wallwey *et al.*, 2010b; Liu *et al.*, 2009; Unsöld and Li, 2006).

![Figure 1-10: The biosynthesis of fumigaclavine C in *A. fumigatus*.](image)

1.3 Aromatic prenyltransferases

Aromatic prenyltransferases are responsible for the attachment of prenyl moieties to an aromatic ring and contribute significantly to the structural and biological diversity of prenylated compounds in nature. In the last decade, significant progress has been achieved
in the molecular biological, biochemical and structural biological investigation of the aromatic prenyltransferases, since a vast volume of sequences from genome projects were released.

1.3.1 Prenyltransferases of the DMATS superfamily
As mentioned above, 4-DMATS was identified as the first pathway-specific enzyme in the biosynthesis of ergot alkaloids (Tsai et al., 1995; Unsöld and Li, 2005). It catalyzes the prenylation of L-tryptophan at C-4 of the indole ring and therefore functions as an indole prenyltransferase (Unsöld and Li, 2005; Steffan et al., 2009a). Genes with sequence homology to 4-DMATS are classified as prenyltransferase genes of the dimethyallyltryptophan synthase (DMATS) superfamily. Prenyltransferases of the DMATS superfamily are involved in the biosynthesis of fungal secondary metabolites and mainly catalyze prenylation of diverse indole derivatives, including tryptophan and tryptophan-containing cyclic dipeptides.

Figure 1-11: Known examples of fungal indole prenyltransferases of the DMATS superfamily prior to this thesis.

Biochemical characterization of the encoded enzymes began in summer 2004 after availability of the genome sequence for A. fumigatus (Unsöld and Li, 2005). A number of indole prenyltransferases have been biochemically identified and characterized from that
time (Figure 1-11). For example, FtmPT2 from *A. fumigatus* catalyzes the regular N1-prenylation of 12,13-dihydroxyfumitremorgin C (Grundmann *et al*., 2008). An additional example of N1-prenyltransferase is CTrpPT from *Aspergillus oryzae*, which uses cyclo-L-Trp-L-Trp as the best substrate (Zou *et al*., 2010). The regular and reverse C2-prenylations were observed for FtmPT1 (Grundmann and Li, 2005) and NotF (Ding *et al*., 2010) from *Aspergillus* strains, respectively. C3-prenylations of cyclic dipeptides by AnaPT from the fungus *N. fischeri* (Yin *et al*., 2009) and CdpNPT from *A. fumigatus* (Schuller *et al*., 2012), lead to the formation of indoline derivatives with a reverse prenyl moiety at opposite sides. As described above, FgaPT2 and its orthologues from different fungi catalyze the regular prenylation of L-tryptophan at position C-4 (Unsöld and Li, 2005; Wallwey and Li, 2011). CpaD from *Aspergillus* sp. catalyzes regular C4-prenylation as well, but uses cyclo-acetoacetyl-L-tryptophan as natural substrate (Liu and Walsh, 2009). 7-DMATS from *A. fumigatus* was reported to prenylate L-tryptophan at position C-7 (Kremer *et al*., 2007). Another C7-prenyltransferase NotC from a marine-derived *Aspergillus* sp. catalyzes the prenylation of 6-hydroxy-deoxybrevianamide E (Ding *et al*., 2010).

In addition to the indole prenyltransferases, some members of the DMATS superfamily catalyze prenylations of other substances (Figure 1-12). VrtC from *Penicillium aethiopicum*, and its homologues NscD from *N. fischeri*, Mc03599 from *Microsporum canis* as well as Tt06703 from *Trichophyton tonsurans* transfer a geranyl and a dimethylallyl moiety to tetracyclic naphthacenedione compounds, respectively (Figure 1-12) (Chooi *et al*., 2012; Chooi *et al*., 2013). XptB from *A. nidulans*, SirD from *Leptosphaeria maculans* (*L. maculans*) and PAPT from *Phomopsis amygdali* are O-prenyltransferases. XptB uses 1,7-dihydroxy-6-
methyl-8-hydroxymethyl-xanthone (Pockrandt et al., 2012), while SirD and PAPT accept L-tyrosine and fusicoccin P as natural substrates, respectively (Kremer and Li, 2010; Noike et al., 2012).

1.3.2 Prenyltransferases of the LtxC group
Prenyltransferases from the LtxC group are soluble proteins from bacteria. Although the enzymes from this group show very low sequence similarity to the members of the DMATS superfamily, they also utilize indole derivatives as common substrates (Figure 1-13). CymD from Salinispora arenicola, SCO7467 from Streptomyces coelicolor and IptA from Streptomyces sp. SN-593 prenylate L-tryptophan at positions N-1, C-5 and C-6, respectively (Schultz et al., 2010; Subramanian et al., 2012; Ozaki et al., 2013; Takahashi et al., 2010). The results on SCO7467 were published after those of 5-DMATS in this thesis. MpnD from Marinactinospora thermotolerans catalyzes the reverse C7-prenylation of (-)-indolactam-Ile (Ma et al., 2012). LtxC is the first known member of this group and responsible for transfer of a geranyl group to (-)-indolactam V to give lyngbyatoxin A in Lyngbya majuscula (Edwards and Gerwick, 2004).

1.3.3 Prenyltransferases of the CloQ/NphB group
Prenyltransferases of the CloQ/NphB group catalyze the prenylation of naphthalenes, quinones, simple phenols and phenazines (Figure 1-14) (Heide, 2009). These enzymes are mainly found in bacterial, but also in some fungi. NphB from Streptomyces sp. and the homologue SCO7190 from Streptomyces coelicolor accept 1,6-dihydroxynaphthalene as substrate, and catalyze the transfer of a geranyl and a dimethylallyl group to the substrate, respectively (Kuzuyama et al., 2005; Kumano et al., 2008). Fur7 from Streptomyces sp. and Fnq26 from Streptomyces cinnamonensis transfer the geranyl groups to 2-methoxy-3-
methylflaviolin and flaviolin, respectively (Kumano et al., 2010; Haagen et al., 2007). CloQ from *Streptomyces roseochromogenes*, which is the first known member of this group, and its homologue NovQ from *Streptomyces niveus* were reported to prenylate 4-hydroxyphenylpyruvic acid (Metzger et al., 2010; Ozaki et al., 2009). Both EpzP from *Streptomyces cinnamonensis* and PpzP from *Streptomyces anulatus* catalyze the C-prenylation of 5,10-dihydrophenazine-1-carboxylic acid (Seeger et al., 2011; Saleh et al., 2009).

Figure 1-14: Prenyltransferases of the CloQ/NphB group.

1.3.4 Prenyltransferases of the UbiA superfamily

Prenyltransferases of the UbiA superfamily are membrane-bound proteins and widely distributed in bacteria, fungi and plants. These enzymes accept diverse aromatic compounds as substrates (Figure 1-15). Four plant flavonoid prenyltransferases of the UbiA superfamily have been identified and characterized. LaPT1 from *Lupinus albus* and SfG6DT from *Sophora flavescens* are responsible for the prenylation of genistein to produce isowighteone and wighteone, respectively (Shen et al., 2012; Sasaki et al., 2011). SfN8DT-1 identified from *Sophora flavescens* transfers the dimethylallyl group to position C-8 of naringenin (Sasaki et al., 2008), while G4DT from *Glycine max* shows activity to prenylate (-)-glycinol (Akashi et al., 2009). Three enzymes LePGT1, Coq2p and UbiA, which were identified from the medicinal plant *Lithospermum erythrorhizon*, *S. cerevisiae* and *E. coli*, respectively, catalyze the transfer of a short or long-chain prenyl moiety to 4-hydroxybenzoic acid (Ohara et al., 2009;...
AuaA from the bacterium *Stigmatella aurantiaca* is responsible for transfer of a farnesyl group to 2-methyl-4-hydroxyquinoline to yield aurachin D in the biosynthetic pathway of aurachin A (Stec *et al.*, 2011). The plant prenyltransferase HIPT-1 from *Humulus lupulus* has the ability to prenylate phlorisovalerophenone (Tsurumaru *et al.*, 2012).

Figure 1-15: Prenyltransferases of the UbiA superfamily

1.3.5 Chemoenzymatic synthesis of prenylated derivatives by using aromatic prenyltransferases

Prenylation improves often the affinity of a compound to biomembranes and the interaction of the substance with proteins (Botta *et al.*, 2005b), leading to dramatically increased biological activities. Therefore, it is attractive for scientists to use prenyltransferases as strategies for regioselective chemoenzymatic synthesis of prenylated derivatives. Aromatic prenyltransferases, especially the soluble indole prenyltransferases of the DMATS superfamily, show promising flexibility towards their aromatic substrates and catalyze highly regio- and stereoselective prenyltransfer reactions. These features provided evidence for the potential of aromatic prenyltransferases as biocatalysts for chemoenzymatic synthesis. Many series of prenylated derivatives have been successfully synthesized by these enzymes. Details are described below.
1.3.5.1 Chemoenzymatic synthesis of prenylated indole alkaloids

Dimethylallyltryptophan synthases 7-DMATS, FgaPT2, MaPT and IptA showed noble substrate flexibility towards simple indole derivatives (Kremer and Li, 2008; Steffan et al., 2007; Ding et al., 2008; Takahashi et al., 2010) (Figure 1-16). Eleven C7-prenylated, ten C4-prenylated, four C4-prenylated and five C6-prenylated simple indole derivatives were successfully produced by 7-DMATS, FgaPT2, MaPT and IptA, respectively (Kremer and Li, 2008; Steffan et al., 2007; Takahashi et al., 2010; Ding et al., 2008; Unsöld and Li, 2005). At higher enzyme concentration, FgaPT2 accepted as well tryptophan-containing cyclic dipeptides and five C4-prenylated derivatives were obtained (Figure 1-17) (Steffan and Li, 2009). CpaD showed substrate promiscuity towards tryptophan-containing diketopiperazines and catalyzed the formation of five enzyme products (Liu and Walsh, 2009). In addition, CpaD accepted three tryptophan-containing thiohydantoins and produced C4-prenylated products (Liu and Walsh, 2009). Cyclic dipeptide prenyltransferase FtmPT1 catalyzed high efficient prenylation of fourteen tryptophan-containing cyclic dipeptides to produce regularly C2-prenylated derivatives (Figure 1-17) (Wollinsky et al., 2012a). The cytotoxic study showed that prenylation at C-2 led to a significant increase of the cytotoxicity of all the fourteen tested cyclic dipeptides (Wollinsky et al., 2012a). Detailed analysis of the incubation mixtures of FtmPT1 with cyclic dipeptides revealed the presence of additional product peaks for regularly C3-prenylated hexahydropyrrolo[2,3-b]indoles in the high performance liquid chromatography (HPLC) chromatograms (Wollinsky et al., 2012b). Seven regularly C3-prenylated hexahydropyrrolo[2,3-b]indoles were obtained (Wollinsky et al., 2012b).
Introduction

As shown in Figure 1-17, the enzyme reactions catalyzed by AnaPT and CdpNPT were found to be not only regiospecific, but also stereospecific towards tryptophan-containing cyclic dipeptides (Yin et al., 2010a; Schuller et al., 2012).

1.3.5.2 Chemoenzymatic synthesis of other prenylated derivatives

The tyrosine prenyltransferase SirD (Figure 1-18) of the DMATS superfamily showed substrate promiscuity towards phenylalanine/tyrosine derivatives and has successfully applied for synthesis of eight regularly O-prenylated products (Kremer and Li, 2010; Zou et al., 2011). The xanthone prenyltransferase XptB could be applied for chemoenzymatic synthesis of O-prenylated xanthones (Pockrandt et al., 2012). Four prenylated xanthones were obtained. Six hydroxyquinolines were well accepted by AuaA as substrates and converted to the respective C3-farnesylated products (Stec et al., 2011). NphB, Fur7 and NovQ from the CloQ/NphB group showed also broad substrate promiscuity towards several substrates. However, low specificity was observed for these enzymes, since more than one enzyme products were detected for most substrates (Kumano et al., 2008; Shindo et al., 2011; Kumano et al., 2010; Ozaki et al., 2009; Macone et al., 2009).

![Figure 1-18: Chemoenzymatic synthesis of prenylated derivatives from other substrates.](image)

1.3.6 Relationship of aromatic prenyltransferases

The enzymes of the DMATS superfamily share very low sequence similarity with the members of the LtxC group and almost no sequence similarity with other known prenyltransferases, e.g. the soluble prenyltransferases of the CloQ/NphB group from bacteria and fungi as well as the membrane-bound prenyltransferases of the UbiA superfamily from bacteria, fungi and plants. Similar to enzymes of the DMATS superfamily, the members of the CloQ/NphB group don’t contain a DDxxD motif. In contrast to those enzymes, the members of the UbiA superfamily contain a NQxxDxxxD motif for prenyl diphosphate binding and are strictly dependent on Mg^{2+} or other divalent cations.
Surprisingly, structure analysis revealed that FgaPT2, FtmPT1 and CdpNPT of the DMATS superfamily contain a PT-barrel (Figure 1-19) (Metzger et al., 2009; Jost et al., 2010; Schuller et al., 2012), which has been only found in the bacterial aromatic prenyltransferases of the CloQ/NphB group (Metzger et al., 2010; Kuzuyama et al., 2005). Therefore, it is proposed that all the proteins from both the DMATS superfamily and the CloQ/NphB group share a common ancestry (Bonitz et al., 2011). It would be interesting to test the acceptance of substrates for the members of the CloQ/NphB group by the prenyltransferases of the DMATS superfamily. An acceptance of hydroxynaphthalenes by a member of the DMATS superfamily was not reported previously. Correspondingly, substrates tyrosine or indole derivatives for the DMATS superfamily were not prenylated by enzymes of the CloQ/NphB group. In vitro assays were carried out in this thesis to test the enzyme activity of prenyltransferases of the DMATS superfamily towards hydroxynaphthalenes. Furthermore, the acceptance of flavonoids by members of the DMATS superfamily was also tested in this thesis.

Figure 1-19: The structures of NphB (also named Orf2, PDB 1ZB6) and FtmPT1 (PDB 3O2K) in cartoon representation (Kuzuyama et al., 2005; Jost et al., 2010).
2 Aims of this thesis

The following issues have been addressed in this thesis:

Functional proof of putative indole prenyltransferase genes in Neosartorya and Aspergillus
Blast search in GenBank indicated two proteins which showed significant sequence similarity to members of the DMATS superfamily: 5-DMATS from A. clavatus and CdpC3PT from N. fischeri. 5-DMATS and CdpC3PT showing 52% identity with FgaPT2 and 53% identity with CdpNPT, respectively, indicated similar roles. BrePT from A. versicolor is an orthologue of NotF from Aspergillus sp. MF297-2 and was expected to compensate for low substrate promiscuity of NotF. In order to characterize 5-DMATS, BrePT and CdpC3PT biochemically, the following experiments were carried out:

- Overproduction of cdpC3PT, 5-dmats and brePT in E. coli.
- Enzyme assays with CdpC3PT, 5-DMATS and BrePT. Analysis and isolation of enzyme products by HPLC.
- Structure elucidation of enzyme products by NMR and MS.
- Kinetic study of CdpC3PT, 5-DMATS and BrePT reactions.

Chemoenzymatic synthesis of prenylated indole derivatives by indole prenyltransferases of the DMATS superfamily
AnaPT, CdpC3PT and CdpNPT were reported to catalyze reverse prenylation at opposite sides in tryptophan-containing cyclic dipeptides to produce cis-configured prenylated pyrroloindoline diketopiperazines in previous studies (Yin et al., 2010a; Yin et al., 2010b; Schuller et al., 2012). In this thesis, the stereoselectivity of these three enzymes was demonstrated by analysis of product formation from four cyclo-Trp-Ala and four cyclo-Trp-Pro isomers. In addition, indolocarbazoles, a class of natural products with well known remarkable biological inhibitory effects against protein kinases, were tested for the acceptance by indole prenyltransferases. The following experiments were carried out:

- Synthesis of stereoisomers of several cyclic dipeptides and indolocarbazoles.
- Enzyme assays of cyclic dipeptides and indolocarbazoles with indole prenyltransferases. Analysis and isolation of enzyme products by HPLC.
- Structure elucidation of enzyme products by NMR and MS.
- Kinetic study of the enzyme reactions.

Chemoenzymatic synthesis of prenylated hydroxynaphthalenes and flavonoids by indole prenyltransferases of the DMATS superfamily
Aims of this thesis

As mentioned previously, indole prenyltransferases of the DMATS superfamily showed no sequence similarity and catalytic activity to known aromatic prenyltransferases of the CloQ/NphB group and the UbiA superfamily. However, recent studies indicated that prenyltransferases of the DMATS superfamily share structure similarity with those of the CloQ/NphB group. Therefore, it is interesting to prove if the members of the DMATS superfamily could also accept the substrates for enzymes of the CloQ/NphB group, e.g. hydroxynaphthalenes. In addition, it is also interesting to know if the members of the DMATS superfamily could catalyze the prenylation of substrates for other known aromatic prenyltransferases, e.g. flavonoids accepted by the members of the UbiA superfamily. In order to investigate the acceptance of hydroxynaphthalenes and flavonoids by the members of the DMATS superfamily, the following experiments were carried out:

- Enzyme assays of hydroxynaphthalenes and flavonoids with indole prenyltransferases. Analysis and isolation of enzyme products by HPLC.
- Structure elucidation of enzyme products by NMR and MS.
- Kinetic study of the enzyme reactions.

Biosynthetic genes other than prenyltransferases involved in the biosynthesis of a prenylated indole alkaloid in *A. fumigatus*

A gene cluster for the biosynthesis of HAS was identified in *A. fumigatus*. One NRPS, one putative transporter, two putative C6 transcription factors, one 7-dimethylallyltryptophan synthase (7-DMATS), one putative FAD binding protein, one putative O-methyltransferase (HasC) and one putative cytochrome P450 (HasH) were proposed to be involved in the biosynthesis (Yin *et al.*, 2013b). HasC and HasH were expected to catalyze the O-methylation and N-hydroxylation, respectively. In order to elucidate the biochemical function of HasC and HasH in the biosynthesis of HAS, the following experiments were carried out:

- Cloning of *hasC* and *hasH* into cloning vector pGEM-T easy.
- Preparing the expression vector of *hasC* in pQE60.
- Preparing expression constructs containing *hasH*: expression vectors of *hasH* in pESC-URA with or without His6-tag, and the co-expression vector of *hasH* with a reductase gene *NFIA_083630* in pESC-URA.
- Overproduction of *hasC* in *E. coli* and *hasH* in *S. cerevisiae*.
- Enzyme assays with HasC and HasH.
3 Materials and methods

3.1 Chemicals

Dimethylallyl diphosphate (DMAPP), geranyl diphosphate (GPP) and farnesyl diphosphate (FPP)

DMAPP, GPP and FPP were prepared according to the method described for GPP (Woodside et al., 1988). DMAPP was prepared by Lena Ludwig and Dr. Marco Matuschek (Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg), while GPP and FPP were synthesized by Dr. Edyta Stec.

Cyclic dipeptides

Cyclo-L-Trp-L-Pro and cyclo-L-Trp-D-Pro were synthesized in this thesis, while cyclo-D-Trp-L-Pro and cyclo-D-Trp-D-Pro were synthesized by Beate Wollinsky. The four isomers of cyclo-Trp-Ala were synthesized by Lena Ludwig. These compounds were synthesized from tryptophan methyl ester and N-Boc protected proline according to the method published previously (Cacciatore et al., 2005; Caballero et al., 1998). Cyclo-L-Trp-L-Pro and cyclo-L-Trp-D-Pro were synthesized from H-L-Trp-OMe·HCl and N-Boc-D-Pro-OH, cyclo-D-Trp-L-Pro and cyclo-D-Trp-D-Pro from H-D-Trp-OMe·HCl and N-Boc-D-Pro-OH. Similarly, the two pairs H-L-Trp-OMe·HCl and N-Boc-D-Ala-OH as well as H-D-Trp-OMe·HCl and N-Boc-D-Ala-OH were used for the preparation of the four stereoisomers of cyclo-Trp-Ala.

Cyclo-L-Trp-L-His was synthesized in this thesis from N-Boc-L-Trp-OH and H-L-His-OMe·HCl according to the literature (Bivin et al., 1993; Cacciatore et al., 2005). Other cyclic dipeptides were purchased from Bachem (Bubendorf, Switzerland).

Synthesis of indolocarbazoles in this thesis

Treatment of indole-3-acetamide with methyl indolyl-3-glyoxylate in the presence of KOBu' afforded the intermediate arcyriarubin A (Faul et al., 1998), which was converted to N-methylarcyriarubin A by treatment with methyl iodide (Nakazono et al., 2007). Arcyriaflavin A and its N6-methylated derivative were obtained after oxidative cyclization of the two bisindolylmaleimides arcyriarubin A and N-methylarcyriarubin A, respectively (Burtin et al., 2000; Wilson et al., 2007). Reduction of arcyriaflavin A with tin metal in AcOH/HCl and LiAlH4 in THF resulted in the formation of K252c (Wilson et al., 2007) and 7-hydroxy-K252c (Harris et al., 1993), respectively.

Simple indole derivatives, hydroxynaphthalenes and flavonoids
These substrates were purchased from Fluka, TCI, Acros Organics, Aldrich, Roth, Sigma, Bachem and Alfa Aesar.

3.2 Bacterial and yeast strains, plasmids and oligonucleotides

Table 3-1: Overview of the used *E. coli* and *S. cerevisiae* strains.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Supplier/Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli XL1 Blue MRF’</td>
<td>(\Delta(mcrA)183 \Delta(mcrCB-hsdSMR-mrr)173) endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F’ proAB lacFΔM15 Tn10 (Tet’)]</td>
<td>Agilent (Waldbronn)</td>
</tr>
<tr>
<td>E. coli BL21 (DE3) pLysS</td>
<td>F(^{-})ompT hsdSe(rB-mB) gal dcm (DE3) pLysS (Cam(^{R}))</td>
<td>Novagen (Darmstadt)</td>
</tr>
<tr>
<td>E. coli M15 [pREP4]</td>
<td>Nai(^{R}), Str(^{R}), Rif(^{S}), Thi(^{-}), Lac(^{+}), Ara(^{+}), Gal(^{+}), Mtl(^{-}), F(^{-}), RecA(^{+}), Uvr(^{+}), Lon(^{+}).</td>
<td>Qiagen (Hilden)</td>
</tr>
<tr>
<td>E. coli SG13009 [pREP4]</td>
<td>Nai(^{R}), Str(^{R}), Rif(^{S}), Thi(^{-}), Lac(^{+}), Ara(^{+}), Gal(^{+}), Mtl(^{-}), F(^{-}), RecA(^{+}), Uvr(^{+}), Lon(^{+}).</td>
<td>Qiagen (Hilden)</td>
</tr>
<tr>
<td>S. cerevisiae INVSc1</td>
<td>MATa/α his3Δ1/his3Δ1 leu2/leu2 trp1-289/trp1-289 ura3-52/ura3-52</td>
<td>Invitrogen (Karlsruhe)</td>
</tr>
</tbody>
</table>

Table 3-2: Commercial cloning and expression vectors.

<table>
<thead>
<tr>
<th>Vector</th>
<th>Description</th>
<th>Supplier/Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>pESC-URA</td>
<td>Expression vector for S. cerevisiae, GAL1 and GAL10 promoters, URA3, with epitope tags</td>
<td>Agilent (Waldbronn)</td>
</tr>
<tr>
<td>pGEM(^{®})-T easy</td>
<td>Cloning vector with T-overhangs for PCR cloning</td>
<td>Promega (Mannheim)</td>
</tr>
<tr>
<td>pQE60</td>
<td>Expression vector for E. coli, T5-promoter, Amp(^{R}), with C-terminal His(_{6})-tag</td>
<td>Qiagen (Hilden)</td>
</tr>
</tbody>
</table>
Table 3-3: List of plasmids used in this work.

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAG012</td>
<td>Construct of fitmPT1 from A. fumigatus B5233 in pQE70 for expression in E. coli.</td>
<td>(Grundmann and Li, 2005)</td>
</tr>
<tr>
<td>pAK2</td>
<td>Construct of sirD from L. maculans M1 in pQE70 for expression in E. coli.</td>
<td>(Kremer and Li, 2010)</td>
</tr>
<tr>
<td>pHL5</td>
<td>Construct of cdpNPT from A. fumigatus B5233 in pQE60 for expression in E. coli.</td>
<td>(Yin et al., 2007)</td>
</tr>
<tr>
<td>pIU18</td>
<td>Construct of fgaPT2 from A. fumigatus B5233 in pHis8 for expression in E. coli.</td>
<td>(Steffan et al., 2007)</td>
</tr>
<tr>
<td>pLW40</td>
<td>Construct of 7-dmats from A. fumigatus B5233 in pQE60 for expression in E. coli.</td>
<td>(Kremer et al., 2007)</td>
</tr>
<tr>
<td>pSY1</td>
<td>Construct of brePT from A. versicolor NRRL573 in pET28a for expression in E. coli.</td>
<td>(Yin et al., 2013a)</td>
</tr>
<tr>
<td>pVW41</td>
<td>Construct of NFIA_083630 from N. fischeri NRRL181 in pESC-URA for expression in S. cerevisiae.</td>
<td>Viola Wohlgemuth, unpublished</td>
</tr>
<tr>
<td>pWY22</td>
<td>Construct of anaPT from N. fischeri NRRL181 in pQE70 for expression in E. coli.</td>
<td>(Yin et al., 2009)</td>
</tr>
<tr>
<td>pWY25</td>
<td>Construct of cdpC3PT from N. fischeri NRRL181 in pQE60 for expression in E. coli.</td>
<td>(Yin et al., 2010b)</td>
</tr>
<tr>
<td>pXY01</td>
<td>AFUA_3G12910 in pGEM-T easy, containing the PCR product (10-1296 under the accession number XM_749237.1 at GenBank) amplified from gDNA from the bacterial artificial chromosome (BAC) AfB28B10 (616042-693705 under the accession number AAHF01000002.1 at GenBank) of A. fumigatus Af293 by using fusion PCR. In the first round, primers AFUA_3G12910_1 and AFUA_3G12910_4 were used for amplification of the first exon of hasC, and AFUA_3G12910_2 and AFUA_3G12910_3 for the second exon of hasC. In the second round, primers AFUA_3G12910_1 and AFUA_3G12910_2 were used.</td>
<td>this thesis</td>
</tr>
<tr>
<td>pXY02</td>
<td>904 bp BamHI-BgIII fragment from pXY01 in the same sites of pQE60, containing the sequence of 394-1296 under the accession number XM_749237.1 at GenBank.</td>
<td>this thesis</td>
</tr>
<tr>
<td>pXY03</td>
<td>AFUA_3G12910 from A. fumigatus Af293 between the sites BamHI and BgIII of pQE60 for expression in E. coli, containing the entire coding sequence of AFUA_3G12910 (10-1296 under the accession number XM_749237.1 at GenBank). 389 bp BamHI-BamHI fragment from pXY01 was cloned into the site BamHI in pXY02 to give pXY03.</td>
<td>this thesis</td>
</tr>
<tr>
<td>pXY11</td>
<td>AFUA_3G12960 from A. fumigatus B5233 in pGEM-T easy, containing the PCR product (58-1228, 1262-1653 under the accession number XM_749232.1 at GenBank) by using cDNA from a cDNA library of A. fumigatus B5233 as template and AFUA_3G12960_1 as well as</td>
<td>this thesis</td>
</tr>
</tbody>
</table>
AFUA_3G12960_2 as primers.

pXY12

Construct of AFUA_3G12960 from A. fumigatus B5233 in pESC-URA for expression in S. cerevisiae, containing the entire coding sequence of AFUA_3G12960 (58-1228, 1262-1653 under the accession number XM_749232.1 at GenBank). 1569 bp Xhol-Nhel fragment from pXY11 was cloned into the same sites in pESC-URA to give pXY12.

pXY13

Co-expression construct of AFUA_3G12960 from A. fumigatus B5233 with NFIA_083630 from N. fischeri in pESC-URA for S. cerevisiae, containing the entire coding sequence of AFUA_3G12960 (58-1228, 1262-1653 under the accession number XM_749232.1 at GenBank). 1569 bp Xhol-Nhel fragment from pXY11 was cloned into the same sites in pVW41 to give pXY13.

pXY14

Construct of AFUA_3G12960 (58-1228, 1262-1653 under the accession number XM_749232.1 at GenBank) with six His residues, obtained by inserting a double-stranded oligonucleotide (prepared from PXY12-1 and PXY12-2) into the sites BamHI and Xhol of the plasmid pXY12 to give pXY14.

pYL09

Construct of 5-dmats from A. clavatus NRRL1 between the sites Sphl and BglII of pQE70 for expression in E. coli. (Yu et al., 2012)

Table 3-4: List of oligonucleotides used in this thesis.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’→3’)</th>
<th>Plasmid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFUA_3G12910_1</td>
<td>TGGGATCCGAACTTGGACATTTGA (BamHI)</td>
<td>pXY01</td>
</tr>
<tr>
<td>AFUA_3G12910_2</td>
<td>CCAGATCTCAACTCAGACTCCCAT (BglIII)</td>
<td>pXY01</td>
</tr>
<tr>
<td>AFUA_3G12910_3</td>
<td>GGTAGATGGAGTTTTTGGTTTTTACGAACAGGA</td>
<td>pXY01</td>
</tr>
<tr>
<td>AFUA_3G12910_4</td>
<td>CCTTGCTGTTCCGAAAGCAAACATCCAGCATCATCT</td>
<td>pXY01</td>
</tr>
<tr>
<td>AFUA_3G12960_1</td>
<td>AACTCGAGGATTCGCTCAACCTA (Xhol)</td>
<td>pXY11</td>
</tr>
<tr>
<td>AFUA_3G12960_2</td>
<td>TAGCTAGCTCAAGACTCTCTTGGCA (Nhel)</td>
<td>pXY11</td>
</tr>
<tr>
<td>PXY12-1</td>
<td>GATTCATCAGTACATCATCATCATCATCATCAGTAC (BamHI + ATG + CAT×6 + BspEI + Xhol)</td>
<td>pXY14</td>
</tr>
<tr>
<td>PXY12-2</td>
<td>TCGGATCCGGAATGATGATGATGATGATGATGAC (Xhol + BspEI + ATG×6 + CAT + BamHI)</td>
<td>pXY14</td>
</tr>
</tbody>
</table>
3.3 Gene cloning

3.3.1 PCR amplification

Table 3-5: Standard components for PCR amplification from gDNA or cDNA. Expand High Fidelity Kit (Roche, Mannheim) was used.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>gDNA or cDNA</td>
<td>ca. 3 nmol/μl</td>
</tr>
<tr>
<td>primers (10 pmol/μl)</td>
<td>each 0.2 pmol/μl</td>
</tr>
<tr>
<td>dNTPs (each 10 mM)</td>
<td>each 0.2 mM</td>
</tr>
<tr>
<td>Expand High Fidelity Buffer (10×)</td>
<td>1 ×</td>
</tr>
<tr>
<td>Expand High Fidelity Enzyme mix (3.3 U/μl)</td>
<td>0.05 U/μl</td>
</tr>
<tr>
<td>final volume</td>
<td>50 μl</td>
</tr>
</tbody>
</table>

Table 3-6: Components for the second round PCR to amplify hasC. Expand High Fidelity Kit (Roche, Mannheim) was used.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR products of the two exons</td>
<td>a molar ratio of 1:1</td>
</tr>
<tr>
<td>primer AFUA_3G12910_1</td>
<td>0.2 pmol/μl</td>
</tr>
<tr>
<td>primer AFUA_3G12910_2</td>
<td>0.2 pmol/μl</td>
</tr>
<tr>
<td>dNTPs (each 10 mM)</td>
<td>each 0.2 mM</td>
</tr>
<tr>
<td>Expand High Fidelity Buffer (10×)</td>
<td>1 ×</td>
</tr>
<tr>
<td>Expand High Fidelity Enzyme mix (3.3 U/μl)</td>
<td>0.05 U/μl</td>
</tr>
<tr>
<td>final volume</td>
<td>50 μl</td>
</tr>
</tbody>
</table>

Table 3-7: Conditions used for PCR amplification.

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Duration</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>initialization</td>
<td>94 °C</td>
<td>5 min</td>
<td>1 x</td>
</tr>
<tr>
<td>denaturation</td>
<td>94 °C</td>
<td>45 sec</td>
<td></td>
</tr>
<tr>
<td>annealing</td>
<td>60 °C for hasC</td>
<td>1 min</td>
<td>30 x</td>
</tr>
<tr>
<td></td>
<td>52 °C for hasH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>elongation</td>
<td>72 °C</td>
<td>1 min 30 sec for hasC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 min for hasH</td>
<td></td>
</tr>
<tr>
<td>final elongation</td>
<td>72 °C</td>
<td>10 min</td>
<td>1 x</td>
</tr>
<tr>
<td>final hold</td>
<td>4 °C</td>
<td>forever</td>
<td>final temperature</td>
</tr>
</tbody>
</table>

The coding regions of hasC and hasH were amplified by using gDNA from the BAC AfB28B10 of A. fumigatus Af293 and cDNA from a cDNA library of A. fumigatus B5233 as templates, respectively. Fusion PCR consisting of two rounds was used for amplification of hasC from gDNA. In the first round, primers AFUA_3G12910_1 and AFUA_3G12910_4 were used for amplification of the first exon of hasC (239 bp), and AFUA_3G12910_2 and AFUA_3G12910_3 for the second exon of hasC (1099 bp). Then the PCR products of the two exons from the first round PCR were used as templates (in a molar ratio of 1:1) for the second round PCR in the presence of primers AFUA_3G12910_1 and AFUA_3G12910_2 to
obtain the entire coding region of hasC (1303 bp). Amplification of hasH (1579 bp) was performed with primers AFUA_3G12960_1 and AFUA_3G12960_2. The components and conditions for PCR reactions are listed in Tables 3-5, 3-6 and 3-7.

3.3.2 DNA sequencing and sequence analysis
DNA sequencing of the plasmids were performed by Eurofins MWG Operon (Ebersberg) and Sequence Laboratories Göttingen GmbH (Göttingen) by using Chain-termination methods. Sequence identities were obtained by alignments of amino acid sequences using the program “BLAST 2 SEQUENCES” (www.ncbi.nlm.nih.gov). Multiple sequence alignments at the amino acid level were carried out with ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2). The hydrophobic transmembrane domains of the putative cytochrome P450 protein HasH were analyzed by the SOSUI server (http://bp.nuap.nagoya-u.ac.jp/sosui/) and the TMHMM server v.2.0 (http://www.cbs.dtu.dk/services/TMHMM/).

3.4 Protein overproduction

3.4.1 Growth media
All growth media were sterilized at 121 °C for 20 min.

Luria-Bertani (LB) medium
LB medium contains 1.0% (w/v) tryptone, 1.0% (w/v) NaCl and 0.5% (w/v) yeast extract.
Add the corresponding antibiotics before use.
Solid medium for agar plates contains 2% (w/v) agar.

Terrific-Broth (TB) medium
TB medium contains 12 g tryptone, 24 g yeast extract and 4 ml glycerol for per 900 ml medium.
Add 100 ml sterile potassium phosphate buffer (0.17 M KH₂PO₄ and 0.72 M K₂HPO₄) and the corresponding antibiotics to per 900 ml medium before use.
Solid medium for agar plates contains 2% (w/v) agar.

SCU (synthetic medium devoid of uracil) minimal medium
SCU minimal medium contains 0.67% (w/v) yeast nitrogen base (without amino acids but with ammonium sulfate), 0.01% each of adenine, arginine, cysteine, leucine, lysine,
threonine and tryptophan, 0.005% each of aspartic acid, histidine, isoleucine, methionine, phenylalanine, proline, serine, tyrosine and valine. Add filter-sterilized carbon source after cooling down, i.e. glucose and galactose with a final concentration of 2% and 3% in medium, respectively. Solid medium for agar plates contains 2% (w/v) agar.

3.4.2 Gene expression in *Escherichia coli* and purification of proteins

E. coli cells harboring an expression plasmid were cultivated in 2000 ml Erlenmeyer flasks containing 1000 ml liquid TB or LB medium supplemented with the respective antibiotics, and then grown at 37 °C to an adsorption of approximate 0.6 at 600 nm. For induction, isopropyl β-thiogalactopyranoside (IPTG) was added to a final concentration of 0.1-1.0 mM and the cells were cultivated for further 6-16 h at 22-37 °C before harvest. The cells were collected by centrifugation and stored at -20 °C.

Protein purification was performed at 4 °C. The cell pellets were resuspended in lysis buffer (10 mM imidazole, 50 mM NaH₂PO₄ and 300 mM NaCl, pH 8.0) at 2-5 ml per gram wet weight. After addition of lysozyme to a final concentration of 1 mg·ml⁻¹ and incubation for 30 min, the cells were sonicated six times for 10 s each at 200 W, with 10 s for cooling after each burst. To separate soluble proteins from cellular debris, the lysate was centrifuged at 13,000 rpm for 30 min. The supernatant was mixed with nickel-nitrioltriacetic acid (Ni-NTA) agarose resin (Qiagen, Hilden) according to the manufacturer’s instruction and then stirred for 1 h. The mixture was then loaded to an 8 ml empty column with bottom sieve. The obtained residue was washed with 4 ml wash buffer (20 mM imidazole, 50 mM NaH₂PO₄ and 300 mM NaCl, pH 8.0) for twice, followed by elution of protein with 2.5 ml elution buffer (250 mM imidazole, 50 mM NaH₂PO₄ and 300 mM NaCl, pH 8.0). Finally, the protein was obtained after buffer changing by using a PD-10 column with Sephadex G-25 (GE Healthcare, Freiburg), which has been equilibrated with PD-10 buffer (50 mM Tris-HCl containing 15% (v/v) glycerol, pH 7.5). The aliquots of purified protein were stored at -80 °C for enzyme assays and the purity was proven by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).

3.4.3 Gene expression in *Saccharomyces cerevisiae* and purification of proteins

S. cerevisiae cells harboring an expression plasmid were grown in 2000 ml Erlenmeyer flasks with 400 ml SCU minimal medium containing 2% (w/v) glucose at 30°C and 300 rpm for 24 h. Then the cells were washed with SCU minimal medium without glucose for twice and subsequently cultivated in 2000 ml Erlenmeyer flasks with 400 ml SCU liquid medium containing 3% (w/v) galactose for further 23 h before harvest by centrifugation (5 min, 3,000 x g, 4°C).
Protein purification was performed at 4 °C. The cell pellets were resuspended in 250 μl 50 mM Tris-HCl (pH 7.5) for per 100 ml culture. After transfer of the suspension into a mortar with liquid nitrogen by using an injection syringe, the frozen suspension was grinded into fine powder. Then per volume of the powder was resuspend in 2 volumes buffer containing 50 mM Tris-HCl pH 7.5, 15 % (v/v) glycerol, 1 mM DTT, 1 mM EDTA, 1 μM FAD, 1 μM FMN and 1 mM PMSF (add freshly before use), and the mixture was stirred on ice for 1h. After centrifugation at a low speed (20,000 × g, 20 min, 4°C), the obtained supernatant was centrifuged at a high speed (200,000 × g, 1 h 30 min, 4°C) to separate “microsomes” (pellet) from the “soluble proteins” (supernatant). The “microsomes” was resuspended in 50 mM Tris-HCl (with 15 % glycerol, pH 7.5). For the recombinant His6-tagged fusion protein, affinity chromatography with Ni-NTA agarose resin (Qiagen, Hilden) was used for purification after centrifugation at the low speed. “Soluble proteins”, “microsomes” and “purified His6-tagged protein” were detected on SDS-PAGE gel by using Western Blot for the myc epitope tagged proteins and Coomassie Brilliant Blue dye staining for the His6-tagged protein. All these proteins were stored at -80 °C and used for further experiments.

3.5 Enzyme assays

3.5.1 Assays with prenyltransferases

The enzyme reaction mixtures (100 μl) for determination of the relative activities with different aromatic substrates contained 50 mM Tris-HCl (pH 7.5), 5 or 10 mM CaCl2, 0.5-1 mM aromatic substrate, 1-2 mM DMAPP, GPP or FPP, 0.15-5% (v/v) glycerol, 0-5% (v/v) DMSO and 1-20 μg of purified recombinant protein. The reaction mixtures were incubated at 30 or 37 °C for 0.5-24 h. The enzyme reactions were terminated by addition of 100 μl methanol per 100 μl reaction mixture or extraction with ethyl acetate for three times. For determination of kinetic parameters, protein amount and incubation time in the linear region of reactions were used.

To isolate the enzyme products, reactions were carried out in large scales (5-50 ml) with the same condition described above. After incubation for overnight, reaction mixtures were treated in different ways due to solubility difference of the enzyme products. For assays with simple indoles, the reactions were terminated by addition of 1 volume of methanol each. After removal of the precipitated protein by centrifugation at 13,000 rpm for 20 min, the reaction mixtures were concentrated on a rotating vacuum evaporator at 30 °C to a final volume of 1 ml before injection onto HPLC. For assays with tryptophan-containing cyclic dipeptides, indolocarbazoles, hydroxynaphthalenes or flavonoid aglycones, the reaction mixtures were extracted three times with ethyl acetate. After evaporation of the solvent, the
residues of the ethyl acetate phase containing both substrate and enzyme products were dissolved in methanol before injection onto HPLC.

3.5.2 Assays with the putative methyltransferase HasC
The enzyme reaction mixtures (100 µl) contained 50 mM Tris-HCl (pH 7.5), 5 mM MgCl₂ or KCl, 1 mM aromatic substrate, 0.5 mM S-adenosyl methionine (SAM), 0.15-5% (v/v) glycerol, 0-5% (v/v) DMSO and 10 µg of purified recombinant protein. The enzyme reactions were terminated by addition of 100 µl methanol. The proteins were removed by centrifugation at 13,000 rpm for 20 min.

3.5.3 Assays with the putative cytochrome P450 enzyme HasH
The enzyme reaction mixtures (100 µl) contained 50 mM Tris-HCl (pH 7.5), 0.1-1 mM aromatic substrate, 1 mM freshly prepared NADPH and NADH, 0-5 mM MgCl₂, 0-5 mM freshly prepared Fe(NH₄)₂(SO₄)₂, 5-15% glycerol and different fractions of proteins (see section 3.4.3). The enzyme reactions were terminated by addition of 100 µl methanol or extraction with ethyl acetate for three times.

3.6 Analytic methods
3.6.1 HPLC methods
HPLC on an Agilent series 1200 with a Multospher 120 RP-18 column (250 x 4 mm, 5 µm, C+S Chromatographie Service, Langenfeld) at a flow rate of 1 ml•min⁻¹ was used for analysis of incubation mixtures. A non-gradient HPLC method with acetonitrile and water as solvents was used for analysis of incubation mixtures of four cyclo-Trp-Ala and four cyclo-Trp-Pro isomers with AnaPT, CdpC3PT and CdpNPT, while different gradient HPLC methods by increasing methanol (with or without 0.5% TFA) in water (with or without 0.5% TFA) were used for analysis of those with other aromatic substrates. For isolation of enzyme products, the same HPLC equipment with a Multospher 120 RP-18 column (250×10 mm, 5 µm, C+S Chromatographie) was used at a flow rate of 2.5 ml•min⁻¹. Enzyme products were purified by using gradient methods by increasing methanol in water or acetonitrile in water.

3.6.2 NMR spectroscopic analysis and high-resolution mass spectrometry
NMR spectra were recorded on a JEOL ECX-400, JEOL ECX-500, Bruker Avance 500 MHz or Bruker Avance 600 MHz spectrometer. Chemical shifts were referenced to the signal of acetone-d₆ at 2.05 ppm, CDCl₃ at 7.26 ppm, CD₃OD at 3.31 ppm or DMSO-d₆ at 2.50 ppm.
All spectra were processed with MestReNova 5.2.2. The isolated products were also analyzed by mass spectroscopy on a Q-Trap Quantum (Applied Biosystems) using a high resolution electron spray ionization (HR-ESI) mode or on an Auto SPEC with an electron impact (HR-EI) mode.
4 Results and discussion

4.1 Biochemical characterization of a cyclic dipeptide prenyltransferase CdpC3PT from Neosartorya fischeri

Based on the bioinformatic analysis of prenyltransferase genes from the genome sequence of *N. fischeri* NRRL181, one putative gene *NFIA_074280* was found. Its deduced product, EAW17508, showed significant sequence similarity to known indole prenyltransferases of the DMATS superfamily. To identify its function, the coding sequence of *NFIA_074280*, termed *cdpC3PT*, was amplified from gDNA by fusion PCR through three rounds reactions. The PCR fragment consisting exclusively of the two exons was cloned via pGEM-T easy vector into pQE60, resulting in the expression construct pWY25. The plasmid pWY25 was transformed into *E. coli* for protein overproduction. The soluble His₆-tagged protein CdpC3PT was purified with Ni-NTA agarose to near homogeneity as judged by SDS-PAGE. HPLC analysis of incubation mixtures of CdpC3PT with tryptophan-containing cyclic dipeptides in the presence of DMAPP showed clearly the formation of enzyme products. The parts of works described above were carried out by Dr. Wen-Bing Yin. In this thesis, enzyme products of CdpC3PT were isolated on HPLC and their structures were elucidated by HRESI-MS and NMR analyses, including ¹H- and ¹³C-NMR analyses as well as by long-range ¹H-¹³C connectivities in heteronuclear multiple-bond correlation (HMBC) spectra. ¹H-¹H spatial correlations in nuclear overhauser effect spectroscopy (NOESY) were used to determine absolute configuration.

The results showed that CdpC3PT catalyzed regio- and stereospecific reverse prenylations of cyclo-L-Trp-L-Leu, cyclo-L-Trp-L-Trp, cyclo-L-Trp-L-Phe, cyclo-L-Trp-L-Tyr as well as cyclo-L-Trp-Gly and meanwhile the formation of a five-membered ring between the original indole and diketopiperazine rings with a *cis*-configuration between H-2 and C3-dimethylallyl moiety in one-step reaction. To understand the biochemical behavior of CdpC3PT, kinetic parameters were determined for DMAPP and all the five aromatic substrates. The range of *K_m* as well as the *k_{cat}* values indicated different preference of CdpC3PT towards these substrates. Comparing the enzyme activity of CdpC3PT with AnaPT, both enzymes catalyzed the formation of reversely C3-prenylated cyclic dipeptides, however, they introduced the prenyl moiety from opposite sides, so that two compounds with different stereochemistry at position C-2 and C-3 can be obtained from one substrate. They therefore complement to each other regarding the prenylation and the results expand their potential usage for chemoenzymatic synthesis.

For details of this work see please the publication (section 5.1):
4.2 Biochemical characterization of a 5-dimethylallyltryptophan synthase from *Aspergillus clavatus*

Before we started this work, a literature search of indole prenyltransferases showed that 20 enzymes from bacteria and fungi have been characterized biochemically (Li, 2010; Yin et al., 2010b; Zou et al., 2010; Schultz et al., 2010; Takahashi et al., 2010; Ding et al., 2010; Li, 2009). These enzymes catalyzed the transfer of prenyl moieties onto positions N-1, C-2, C-3, C-4, C-6 or C-7 at the indole ring resulting in the formation of “regularly” or “reversely” prenylated derivatives (Figures 1-11 and 1-13). However, a prenyltransferase being responsible for transferring a prenyl moiety onto position C-5 of the indole ring has not been reported. Database searching revealed, on the other hand, the presence of a number of biologically active indole alkaloids carrying a prenyl moiety at position C-5 in nature (see section 1.1.1.3). The discrepancy between the natural occurrence of a large number of C5-prenylated indole derivatives on one hand and undiscovered C5-prenyltransferases on the other hand prompted us to search for such enzymes. One putative prenyltransferase EAW08391, encode by the *ACLA_031240* from the genome sequence of *A. clavatus* NRRL1 raised our attention. EAW08391 shares on the amino acid level sequence identity 52% with 4-dimethylallyltryptophan synthase FgaPT2, therefore it can be expected that EAW08391 catalyzes a similar reaction as FgaPT2. To prove the function of EAW08391, the coding region of *ACLA_031240*, termed 5-dmats, was amplified by PCR from cDNA synthesized from mRNA. The PCR product was cloned via pGEM-T easy vector into pQE70, resulting in the expression construct pYL09. The works described above were carried out by Yan Liu. In this thesis, the plasmid pYL09 was transformed into *E. coli* for overproduction of His₆-5-DMATS. The soluble His₆-tagged protein 5-DMATS was purified to near homogeneity and used for biochemical investigation with diverse aromatic substrates in the presence of different prenyl diphosphates.

Due to the high sequence similarity with tryptophan C4-prenyltransferase FgaPT2 mentioned above, L-tryptophan and 17 simple indole derivatives were firstly incubated with 5-DMATS in the presence of DMAPP. With the exception for C5-substituted derivatives, the most tested simple indole derivatives with modifications at the indole ring or side chain have been well accepted by 5-DMATS with L-tryptophan as the best substrate. A previous study showed that FgaPT2 accepted also tryptophan-containing cyclic dipeptides as substrates (Steffan and Li, 2009). 5-DMATS was therefore assayed with five such cyclic dipeptides in the presence of DMAPP. It has been shown that these compounds were also substrates for 5-DMATS, but
accepted with significantly lower yields than most of the simple indole derivatives in the presence of DMAPP. In addition, 5-DMATS was also incubated with L-tyrosine in the presence of DMAPP or with L-tryptophan in the presence of GPP or FPP. However, no formation of any enzyme product was detected in these assays.

To confirm the prenylation position, enzyme products of 12 well accepted substrates were isolated on HPLC and subjected to HR-ESI-MS and NMR analyses. The results revealed unequivocally the highly regioselective regular prenylation at C-5 of the indole nucleus of the 12 enzyme products. 5-DMATS was therefore a 5-dimethylallyltryptophan synthase and filled therewith the last gap in the toolbox of indole prenyltransferases regarding their prenylation positions. To study the behavior of 5-DMATS towards indole derivatives and DMAPP, kinetic parameters including \(K_m \) and \(k_{cat} \) values, were determined. \(K_m \) values of 5-DMATS were found for L-tryptophan and DMAPP at 34 \(\mu \)M and 76 \(\mu \)M, respectively. Average \(k_{cat} \) value at 1.1 s\(^{-1}\) was calculated from kinetic data of L-tryptophan and DMAPP. Catalytic efficiencies of 5-DMATS were detected for L-tryptophan at 25,588 s\(^{-1}\)M\(^{-1}\) and for other 11 simple indole derivatives up to 1,538 s\(^{-1}\)M\(^{-1}\). It can be therefore expected that 5-DMATS could serve as an effective biocatalyst for chemoenzymatic synthesis of prenylated derivatives in the program of drug discovery and development.

For details of this part see please the publication (section 5.2):

4.3 Biochemical characterization of a brevianamide F reverse prenyltransferase BrePT from Aspergillus versicolor

A prenyltransferase NotF involved in the biosynthesis of notoamides in Aspergillus sp. MF297-2 was reported by the work group of Prof. Sherman from University of Michigan (Ding et al., 2010). NotF is responsible for the reverse prenylation of brevianamide F at position C-2 of the indole ring resulting in the formation of deoxybrevianamide E and uses a limited number of compounds as clearly favorable prenylation substrates. The low flexibility of NotF towards aromatic substrates prohibits its usage as biocatalyst for production of desired compounds. It was necessary to find a NotF homologue with broad substrate specificity and to be used as biocatalyst for synthesis of reversely C2-prenylated indole derivatives.

Literature search revealed that several A. versicolor strains produced brevianamides or notoamides, which are very likely derived from deoxybrevianamide E and therefore a notF homologue must be involved in their biosynthesis. To amplify the notF homologue brePT from A. versicolor NRRL573, the PCR reaction using primers deduced from notF sequence was performed. The PCR fragment was cloned into pET28a via pGEM-T easy vector to
create the expression construct pQW2 with a C-terminal His6-tag. After failed expression with pQW2, brePT was recloned in pET28a by introducing five histidine residues directly connected to the C-terminus of the overproduced protein. The new expression vector pSY1 was transformed and overexpressed in E. coli. The His6-BrePT was obtained after one-step purification on Ni-NTA agarose. HPLC analysis of incubation mixtures of BrePT with 14 tryptophan-containing cyclic dipeptides in the presence of DMAPP showed clearly the formation of enzyme products. The works described above were carried out by Qing Wang and Suqin Yin. In this thesis, the enzyme products were isolated and their structures were identified by 1H-NMR and MS analyses. The data proved unequivocally the attachment of the reverse prenyl (tert-prenyl) moiety at C-2 of the indole ring and the regiospecific C2-prenylation catalyzed by BrePT. BrePT showed much higher substrate flexibility than NotF. To study the behavior of BrePT towards DMAPP and twelve different cyclic dipeptides, kinetic parameters including \(K_M \) and \(k_{cat} \) values, were measured. Average turnover number \((k_{cat}) \) at 0.4 s\(^{-1}\) was calculated from kinetic data of brevianamide F and DMAPP. \(K_M \) values in the range of 0.082-2.9 mM and \(k_{cat} \) values from 0.003 to 0.15 s\(^{-1}\) were determined for other eleven cyclic dipeptides. To test the acceptance of other prenyl donors, GPP or FPP instead of DMAPP was used in the reaction mixtures of the 14 tryptophan-containing cyclic dipeptides and His6-BrePT. Similar to known fungal indole prenyltransferases, BrePT did not accept GPP or FPP as a prenyl donor for its prenylation.

For details of this work see please the publication (section 5.3):

4.4 Production of enantiomers of cis-configured prenylated pyrroloindoline diketopiperazines by fungal indole prenyltransferases

Previously, three C3-prenyltransferases belonging to the DMATS superfamily were identified and characterized biochemically in our group (Yin et al., 2009; Yin et al., 2010b; Schuller et al., 2012), i.e., AnaPT and CdpC3PT from N. fischeri and CdpNPT from A. fumigatus. They could introduce a dimethylallyl moiety to position C-3 of the tryptophanyl moiety and catalyze the formation of a five-membered ring between the original indole and diketopiperazine rings with a cis-configuration between H-2 and C3-dimethylallyl moiety to produce prenylated pyrroloindoline diketopiperazines. However, the used cyclic dipeptides usually contained only L-configured amino acid moieties, and little was known about their behavior on substrates with D-configured amino acid moieties. This feature prohibits their usage as biocatalysts for
producing stereoisomers of prenylated pyrroloindoline diketopiperazines. In order to understand the different stereoselectivity of AnaPT, CdpC3PT and CdpNPT, four cyclo-Trp-Ala and four cyclo-Trp-Pro isomers were synthesized and incubated with these enzymes in the presence of DMAPP.

HPLC analysis showed that all the substrates were accepted by AnaPT, CdpC3PT and CdpNPT in the incubation mixtures. The enzyme products were isolated on HPLC from incubation mixtures and their structures were elucidated by NMR and MS analyses as prenylated pyrroloindoline diketopiperazines. The results showed that AnaPT always transfer the prenyl moiety to C-3 at the opposite side to the carbonyl moiety at C-11 to produce anti-cis configured prenylated pyrroloindoline diketopiperazines, while CdpC3PT transfer it to C-3 at the same side as the carbonyl moiety at C-11 to produce syn-cis configured prenylated pyrroloindoline diketopiperazines. Therefore, it could be concluded that the stereospecificity of AnaPT and CdpC3PT depends largely on the configuration of tryptophanl moiety in cyclic dipeptides. CdpNPT was reported to catalyze the same reaction as CdpC3PT in the previous study (Schuller et al., 2012). However, we found in this thesis that CdpNPT could also produce enzyme products catalyzed by AnaPT. CdpNPT could catalyze the formation of both anti-cis and syn-cis configured prenylated pyrroloindoline diketopiperazines but showed different stereoselectivity towards isomers of cyclo-Trp-Ala and cyclo-Trp-Pro. It is likely that not the configuration of amino acids moiety in cyclic dipeptides, but the structure of the second amino acid moiety plays an important role for the stereoselectivity of CdpNPT.

The enzyme reactions with tested substrates catalyzed by AnaPT and CdpC3PT always complemented to each other, and the stereoselectivity of both enzymes were approximately 100%. Although CdpNPT showed lower stereoselectivity compared to AnaPT and CdpC3PT, higher conversion ability towards most tested substrates was observed. Thereby CdpNPT could be useful for prenylation of poor substrates of AnaPT and CdpC3PT. These results expand the usage of the three C3-prenyltransferases as biocatalysts for production of stereoisomers of prenylated pyrroloindoline diketopiperazines.

For details of this work see please the manuscript (section 5.4):

Yu, X., Xie, X. & Li, S.-M., Complementary stereospecific synthesis of cis-configured prenylated pyrroloindoline diketopiperazines by indole prenyltransferases of the DMATS superfamily. (manuscript)

4.5 Production of prenylated indolocarbazoles by using 5-DMATS and FgaPT2 from Aspergillus

Indolocarbazoles are a class of natural products with well known remarkable biological activities, especially their inhibitory effects against protein kinases in various organisms (Sánchez et al., 2006; Nakano and Ômura, 2009). However, prenylated indolocarbazoles
have been reported, neither from natural sources, nor from chemical synthetic approaches, although diverse prenylated carbazoles have been isolated from different sources (Schmidt et al., 2012). In this thesis, we used prenyltransferases of the DMATS superfamily to catalyze regiospecific prenylation of indolocarbazoles.

For this purpose, four indolocarbazoles arcyriaflavin A, N6-methylarcyriaflavin A, K252c and 7-hydroxy-K252c and two non-bridged intermediates arcyriarubin A and N-methylarcyriarubin A were synthesized. The six synthesized compounds together with two indolocarbazole glycosides staurosporine and K252d, which had been isolated from Streptomyces nitrosoporeus CQT14-24, were incubated with nine prenyltransferases of the DMATS superfamily in the presence of DMAPP. The tested enzymes included five cyclic dipeptide prenyltransferases AnaPT, BrePT, CdpC3PT, CdpNPT and FtmPT1, three dimethylallyltryptophan synthases FgaPT2, 5-DMATS and 7-DMATS and one tyrosine O-prenyltransferase SirD (Yin et al., 2010a; Yin et al., 2013a; Yin et al., 2010b; Schuller et al., 2012; Grundmann and Li, 2005; Steffan et al., 2007; Yu et al., 2012; Kremer and Li, 2008; Kremer and Li, 2010). HPLC analysis showed that 5-DMATS from A. clavatus and FgaPT2 from A. fumigatus displayed more substrate flexibilities towards the tested substances than other enzymes and were studied in details.

Arcyriaflavin A was poor substrates for both 5-DMATS and FgaPT2, while other three indolocarbazoles were clearly accepted. The two non-bridged intermediates of indolocarbazoles were not accepted by 5-DMATS and FgaPT2, indicating the importance of the presence of the indolocarbazole skeleton. Glycosides of indolocarbazoles were also not substrates for the enzymes of the DMATS superfamily.

The enzyme products were isolated and their structures were elucidated by NMR and MS analyses. C3-prenylated products were isolated from the incubation mixtures of K252c and 7-hydroxy-K252c with both 5-DMATS and FgaPT2 as well as the incubation mixture of N6-methylatedarcyriaflavin A with 5-DMATS. In addition to those products, C9-prenylation and diprenylation at both C-3 and C-9 were also catalyzed by 5-DMATS in the incubation mixture with K252c. This proved that both 5-DMATS and FgaPT2 catalyzed regiospecific C-prenylation on the indolocarbazole system, i.e. the para-position to the indole N-atom (C3, C9 or both) and function therefore as biocatalysts for Friedel-Crafts alkylations. To elucidate the behavior of 5-DMATS and FgaPT2 towards indolocarbazoles, kinetic parameters were determined for the best accepted substrate 7-hydroxy-K252c with both enzymes. \(K_M\) values were calculated to be at 87 and 136 \(\mu\)M for 5-DMATS and FgaPT2, respectively, while \(k_{cat}\) values were found at 6.8 and 7.3 min\(^{-1}\). This work expands the potential usage of enzymes of the DMATS superfamily in the structural modifications. To best of our knowledge, this is the first reported on the (chemoenzymatic) synthesis of prenylated indolocarbazoles.

For details of this work see please the publication (section 5.5):

4.6 Production of prenylated hydroxynaphthalenes by using fungal indole prenyltransferases

As described in section 1.3.6, fungal prenyltransferases of the DMATS superfamily share no sequence, but structure similarity with prenyltransferases of the CloQ/NphB group. However, an acceptance of substrates for CloQ/NphB group by a member of the DMATS superfamily was not reported previously. This prompted us to investigate the acceptance of hydroxynaphthalenes by enzymes of the DMATS superfamily.

For initial investigation, eight prenyltransferases of the DMATS superfamily including five cyclic dipeptide prenyltransferases AnaPT, CdpC3PT, CdpNPT, CTrpPT and FtmPT1, two dimethylallyltryptophan synthases FgaPT2 and 7-DMATS and one tyrosine O-prenyltransferase SirD (Yin et al., 2010a; Yin et al., 2010b; Schuller et al., 2012; Grundmann and Li, 2005; Zou et al., 2010; Steffan et al., 2007; Kremer and Li, 2008; Kremer and Li, 2010) were incubated with the simple naphthalene derivative 1-naphthol in the presence of DMAPP. HPLC analysis showed clear formation of one additional peak each in all the incubation mixtures with an exception of SirD. The intriguing results obtained with 1-naphthol encouraged us to test the acceptance of more hydroxynaphthalenes by the members of the DMATS family. Five enzymes including AnaPT, CdpC3PT, CdpNPT, 7-DMATS and SirD were selected for incubation with naphthalene and 11 hydroxynaphthalenes in the presence of DMAPP. HPLC analysis showed that non-hydroxylated naphthalene was not accepted by the tested enzymes, indicating the importance of an activation of the naphthalene ring, *e.g.* by hydroxylation. Most of the 11 hydroxynaphthalenes were accepted by AnaPT, 7-DMATS, CdpNPT and CdpC3PT, while they were very poor substrates for SirD. The enzyme activities and preference of the tested prenyltransferases towards hydroxynaphthalenes differed clearly from each other.

For structure elucidation, enzyme products were isolated on HPLC and sent for NMR and MS analyses. Inspection of the structures of the enzyme products revealed clearly that different enzymes catalyzed usually the formation of the same major prenylated product. The prenylation has preferentially taken place at *para*-position of the hydroxyl group at C-1. If this was impossible, the *ortho*-position to the hydroxyl group at C-2 was prenylated. Regularly O-prenylated and diprenylated derivatives were also identified as enzyme products of substrates with low conversion rates and regioselectivity. To get information on the catalytic efficiencies of indole prenyltransferases towards hydroxynaphthalenes, kinetic parameters of AnaPT, CdpNPT, CdpC3PT and 7-DMATS with six selected substrates were determined.
The K_M and k_{cat} values were determined to be in the range of 0.064-2.8 mM and 0.038-1.30 s$^{-1}$, respectively. These data are in the similar concentration range as those for indole derivatives. In this study, we have shown that the substrate specificity of the members of the DMATS superfamily towards hydroxynaphthalene derivatives doesn’t correlate with those obtained for tyrosine or indole derivatives, and provided experimental evidence for their potential application as biocatalysts for chemoenzymatic synthesis of prenylated hydroxynaphthalenes.

For details of this work see please the publication (section 5.6):

4.7 Production of prenylated flavonoids by using 7-DMATS from *Aspergillus fumigatus*

Prenylated flavonoids are a group of compounds predominantly found in plants (Botta *et al.*, 2009; Botta *et al.*, 2005b). Due to their broad pharmacological activities (Botta *et al.*, 2009; Botta *et al.*, 2005b; Wätjen *et al.*, 2007), various strategies have been developed for both regioselective chemical and chemoenzymatic synthesis of prenylated flavonoids, especially for C-prenylated derivatives (Tischer and Metz, 2007; Hossain *et al.*, 2006; Yazaki *et al.*, 2009). In previous studies, many prenylated flavonoids have been produced by using recombinant enzymes (Sasaki *et al.*, 2011; Sasaki *et al.*, 2008; Ozaki *et al.*, 2009; Kumano *et al.*, 2008). However, only a few of such derivatives carry a dimethylallyl moiety at position C-6. Our studies in section 4.6 have shown that several members of the DMATS superfamily accepted also hydroxynaphthalene derivatives. These results encouraged us to test the acceptance of flavonoids including chalcones, flavanones and isoflavonoids by the members of the DMATS superfamily.

For initial investigation, seven fungal prenyltransferases including 7-DMATS, AnaPT, CdpC3PT, CdpNPT, SirD, FtmPT1 and FgaPT2 (Yin *et al.*, 2010a; Yin *et al.*, 2010b; Schuller *et al.*, 2012; Grundmann and Li, 2005; Steffan *et al.*, 2007; Kremer and Li, 2008; Kremer and Li, 2010) were incubated with up to thirty flavonoids in the presence of DMAPP. HPLC analysis showed that 7-DMATS has a more flexible substrate specificity towards these compounds than other enzymes. Detailed study was therefore carried out with 7-DMATS from *A. fumigatus*. 7-DMATS was then incubated with 16 flavonoids and analogues in the presence of DMAPP. Product formation was detected for 14 substrates after incubation with 14 µg protein per 100 µl assay at 37°C for 16 h. Six of them, *i.e.* genistein, biochanin A, naringenin, eriodictyol, hesperetin and phloretin, represented a yield of more than 12% and were selected for further research.
For structure elucidation, enzyme products of the six substrates were isolated on HPLC and sent for NMR and MS analyses. The results showed that C6-prenylated products were found in all the six incubation mixtures. In cases of eriodictyol and hesperetin, products with prenylation at ring B were also isolated from the incubation mixtures. From the structures of the enzyme products, it is obviously that the favorable prenylation position for 7-DMATS was C-6 between the two hydroxyl groups. To get information on the catalytic efficiencies of 7-DMATS towards flavonoids, kinetic parameters were determined for the six substrates. The K_M and k_{cat} values for flavonoids were determined to be in the range of 0.07-1.26 mM and 0.02-0.4 s$^{-1}$, respectively. These data provided evidence that the tryptophan prenyltransferase 7-DMATS can also be used for production of prenylated flavonoids, especially for C6- or ring B-prenylated flavanones and isoflavonoids by chemoenzymatic approach and therefore complements the production gap of other reported prenyltransferases for prenylated flavonoids (Kumano et al., 2008; Ozaki et al., 2009; Sasaki et al., 2011; Botta et al., 2005a).

For details of this work see please the publication (section 5.7):

4.8 Prenyltransferases of the dimethylallyltryptophan synthase superfamily

Besides the experimental works on prenyltransferases of the DMATS superfamily, general methods for biochemical characterization of these enzymes were summarized in a review article. The first part in this review was devoted to a general introduction of prenyltransferases of the DMATS superfamily. Subsequently the procedures for spore preparation as well as cultivation of fungi were described. RNA and DNA isolation and cDNA synthesis were followed by gene cloning, in which both normal PCR amplification from cDNA and fusion PCR amplification from gDNA were described. Protein overproduction in *E. coli* as well as *S. cerevisiae* and protein purification were detailed after gene cloning.

The next part described details on carrying enzyme assays. General procedures for biochemical characterization of prenyltransferases were then described, including test of enzyme activities and determination of kinetic parameters. For chemoenzymatic synthesis of prenylated compounds, protocols of enzyme reactions and sample preparation before product isolation on HPLC were presented. HPLC components and conditions used for assays with diverse types of substrates were then shown in this review.

For details of this review see please the publication (section 5.8):

4.9 Cloning and overexpression of a putative methyltransferase gene hasC from Aspergillus fumigatus

4.9.1 Cloning of hasC from Aspergillus fumigatus

The putative methyltransferase gene hasC is proposed to be involved in the biosynthesis of a prenylated indole alkaloid HAS in A. fumigatus (see section 1.2.1.3). In order to identify the function of hasC, the coding sequence of hasC was cloned from A. fumigatus.

This gene consists of two exons of 223 and 1079 bp interrupted by one intron of 60 bp. The whole coding sequence of hasC was amplified from gDNA from the BAC AFB28B10 of A. fumigatus Af293 by using two rounds fusion PCR (see section 3.3.1). Primers AFUA_3G12910_1 and AFUA_3G12910_4 as well as AFUA_3G12910_2 and AFUA_3G12910_3 were used for amplification of the first and second exons in the first round PCR, respectively. In the second round of PCR, a PCR fragment of 1303 bp containing the entire coding sequence of hasC was obtained by using two PCR products from the first
round as templates in the presence of primers AFUA_3G12910_1 and AFUA_3G12910_2 (Figure 4-1).

The PCR product (1303 bp) was cloned into pGEM-T easy vector resulting in plasmid pXY01 (Figure 4-1), which was subsequently confirmed to be correct by sequencing. The plasmid pXY01 was digested with BamHI alone or together with BglII to obtain BamHI-BamHI fragment of 389 bp and BamHI-BglII fragment of 904 bp, respectively. In order to get the expression construct pXY03 (Figure 4-1), the two fragments were cloned into pQE60 subsequently.

4.9.2 Overexpression of hasC in Escherichia coli

Table 4-1: Induction conditions tested for expression of hasC (pXY03) in E. coli XL1 Blue, M15 and SG13009.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Medium</th>
<th>Temperature (°C)</th>
<th>IPTG (mM)</th>
<th>Induction time (h)</th>
<th>Speed (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL1 Blue</td>
<td>LB, TB</td>
<td>37, 30, 22</td>
<td>0.05, 0.1, 0.2, 0.4, 0.6, 0.8</td>
<td>0, 1, 3, 4, 5, 6, 9, 16</td>
<td>0, 1, 3, 4, 5, 6, 9, 16, 24, 48, 72</td>
</tr>
<tr>
<td>M15</td>
<td>LB, TB</td>
<td>37, 30, 22</td>
<td>0.1, 0.8</td>
<td>1, 2, 3, 16</td>
<td>220</td>
</tr>
<tr>
<td>SG13009</td>
<td>TB</td>
<td>37, 30, 22</td>
<td>0.05, 0.1, 0.3, 0.5</td>
<td>3, 6, 16</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.1</td>
<td>5, 16</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>0.1</td>
<td>5, 16</td>
<td>150</td>
</tr>
</tbody>
</table>

Figure 4-2: SDS-PAGE analysis of hasC overexpression in the absence of IPTG.

Figure 4-3: Analysis of purified His₆-HasC on SDS-PAGE.
For overexpression of hasC, pXY03 was firstly transformed into E. coli XL1 Blue. The cells were induced with IPTG at different conditions (Table 4-1). A high yield of insoluble protein was detected instead of soluble protein. Comparison of the total protein obtained before induction and after induction on SDS-PAGE showed that IPTG was not necessary for gene expression (Figure 4-2, lane 3). Therefore, different induction conditions in the absence of IPTG were tested (Table 4-1). Unfortunately, no soluble protein was obtained. Then another two E. coli host strains, i.e. M15 and SG13009, were used for overexpression of hasC. After condition optimization (Table 4-1), the best condition was found to be 16 h induction in TB medium with 0.1 mM IPTG at 22 °C and 150 rpm by using E. coli SG13009 cells (Figure 4-3, lane 2). A yield of 500 µg of purified protein was achieved from 100 ml of bacterial culture. A significant band with migration near the 45.0 kDa size marker was observed on SDS-PAGE of the purified protein, corresponding to the calculated mass of 49.6 kDa for His6-HasC (Figure 4-3, lane 2).

Table 4-2: Conditions of enzyme assays with HasC.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Ion</th>
<th>Other components</th>
</tr>
</thead>
<tbody>
<tr>
<td>terezine D</td>
<td>5 mM MgCl₂ 5 mM KCl</td>
<td>50 mM Tris-HCl (pH 7.5), 0.5 mM SAM, 1 mM tryptophan derivatives, 10 µg protein, in 100 µl assay, 37 °C incubation, 19 h</td>
</tr>
<tr>
<td>7-dimethylallyl-L-tryptophan</td>
<td>5 mM MgCl₂ 5 mM KCl</td>
<td></td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Ala</td>
<td>5 mM KCl</td>
<td></td>
</tr>
<tr>
<td>L-tryptophan</td>
<td>5 mM MgCl₂ 5 mM KCl</td>
<td></td>
</tr>
</tbody>
</table>

Motif search of amino acid sequences revealed the presence of motif I of SAM-dependent methyltransferases in HasC: VVDVGAGVG (238-246 amino acids under the accession number EAL92292 at GenBank). SAM is therefore probably the methyl donor for the reaction catalyzed by HasC (Kagan and Clarke, 1994). HasC doesn’t possess the typical CxxxCxxC motif for [4Fe-4S] cluster nucleating (Sofia et al., 2001), indicating that HasC is likely a normal SAM-dependent protein rather than a radical SAM-dependent protein. Enzyme reactions of HasC were carried out with several possible precursors of HAS in the presence of SAM (Table 4-2). Unfortunately, no product formation was observed.
4.10 Cloning of a putative cytochrome P450 gene hasH from Aspergillus fumigatus

4.10.1 Cloning of hasH from Aspergillus fumigatus

As described in section 1.2.1.3, the putative cytochrome P450 gene hasH is proposed to be involved in the biosynthesis of a prenylated indole alkaloid HAS (Figure 1-8) in A. fumigatus. For functional proof of hasH, this gene was cloned from A. fumigatus.

Sequence analysis showed that hasH comprises six exons of 192, 185, 631, 220, 206 and 219 bp, interrupted by five introns of 51, 76, 59, 31 and 56 bp. Multiple alignments of HasH with the two orthologues EAW21272 and EAU31603 (Table 1-1), showed that HasH from A. fumigatus contains one additional fragment of 18 amino acids at the N-terminus of the sequence (Figure 4-4), which could be due to a prediction error. So we decided to start the amplification of the coding sequence at the 58th base pair in the sequence.

![Multiple alignment of HasH with the two orthologues EAW21272 and EAU31603.](image)

Figure 4-4: Multiple alignment of HasH with the two orthologues EAW21272 and EAU31603.

The whole coding sequence of hasH was amplified by using cDNA from a cDNA library of A. fumigatus B5233 as template and primers AFUA_3G12960_1 and AFUA_3G12960_2. A PCR fragment with a size of about 1.6 kb was observed on the agarose gel, corresponding to the calculated size of 1612 bp. The PCR fragment was cloned into pGEM-T easy vector resulting in plasmid pXY11 (Figure 4-6), which was subsequently sequenced to confirm the sequence.

![The entire coding sequence of hasH obtained after PCR reaction.](image)

Figure 4-5: The entire coding sequence of hasH obtained after PCR reaction. Lane M: DNA ladder; lane 1: the PCR product.

<table>
<thead>
<tr>
<th>Expected size</th>
<th>Observed size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1612 bp</td>
<td>1.6 kb</td>
</tr>
</tbody>
</table>
Results and discussion

Lane	plasmid	Restriction enzyme	Expected sizes (bp)	Observed sizes (kb)
1 | pXY11 | - | - | -
2 | pXY11 | PstI | 677/3909 | 0.7/4.0
3 | pXY12 | PstI | 3256/4922 | 3.3/4.9
4 | pXY13 | NcoI | 2930/7386 | 2.9/7.4
5 | pXY14 | BspEI | 8141 | 8.1

Figure 4-6: Cloning and expression construction of hasH. Lane M: DNA ladder.

Comparing the sequencing results with the sequence of hasH obtained from NCBI under the accession number XM_749232.1, one additional gap of 33 bp was found in the PCR product (Figure 4-7, pXY11). This gap was directly connected to one intron in the genome sequence, therefore it could be speculated that the gap was also a part of the intron. Interestingly, the gap was also observed in the homologue gene NFIA_064360 from N. fischeri under the accession number XM_001263168.1 (Figure 4-7), which provided an evidence for our speculation. The true size of the PCR product was calculated to be 1579 bp.

Figure 4-7: Multiple alignment of sequence of pXY11 with the sequence of hasH from A. fumigatus Af293 and NFIA_064360 from N. fischeri NRRL 181.
Plasmid pXY11 was digested with XhoI and NheI to obtain a fragment of 1569 bp. The XhoI-NheI fragment was cloned into pESC-URA vector to give the single expression vector pXY12 (Figure 4-6). For construct of co-expression vector with a reductase gene, the XhoI-Nhel fragment was inserted into pVW41 containing the coding sequence of NFIA_083630 from N. fischeri to give pXY13 (Figure 4-6).

Amino acid sequence analysis by using SOSUI and TMHMM servers predicted that HasH is a membrane-bound protein (Figure 4-8). However, due to little information on fungal cytochrome P450 enzymes on these servers, the solubility of HasH remains unclear. We would like to prepare one additional expression vector with His\textsubscript{6}-tag for purification of HasH from crude extracts, in case that HasH is a soluble protein. Therefore, the expression plasmid pXY14 was obtained after insertion of a double-stranded oligonucleotide containing amino acid codons for six His residues and BspEI restriction site for validation between BamHI and XhoI sites in the plasmid pXY12, which was digested with BamHI and XhoI previously (Figures 4-6 and 4-9). The double-stranded oligonucleotide was prepared by heating primers PXY12-1 and PXY12-2 and gradually cooling.

4.10.2 Overexpression of hasH in Saccharomyces cerevisiae
For protein overproduction, the plasmids pXY12, pXY13 and pXY14 were transformed into S. cerevisiae INVSc-1 separately. The resulting transformants were proven by yeast colony
PCR reactions with primers AFUA_3G12960_1 and AFUA_3G12960_2. The PCR reaction with *S. cerevisiae* INVSc-1 cells was used as negative control.

Both “soluble proteins” and “microsomes” (see section 3.4.3) from the transformants of *S. cerevisiae* cells harbouring pXY12 or pXY13 and “purified His₆-tagged protein” (see section 3.4.3) from cells harbouring pXY14 after induction with 3% galactose at 30 °C for 23 h were obtained and analyzed by SDS-PAGE. A Western Blot and Coomassie Brilliant Blue dye staining were used for detection of myc epitope tagged and His₆-tagged proteins, respectively. However, no obvious band of target protein was observed on SDS-PAGE.

Allowing for the possibility of low protein yield, enzyme assays were carried out with high volume of proteins. Terezine D, 7-dimethylallyl-L-tryptophan, L-tryptophan, cyclo-L-Trp-L-Ala and tryptophan methyl ester were incubated with different fractions of HasH in the presence of NADPH and NADH at 30 or 37 °C. Unfortunately, no product formation was observed on HPLC.
5 Publications and manuscript

5.1 Preparation of pyrrolo[2,3-b]indoles carrying a β-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT
Preparation of pyrrolo[2,3-b]indoles carrying a β-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT†

Wen-Bing Yin,‡§ Xia Yu,‡§ Xiu-Lan Xie§ and Shu-Ming Li*§

Received 14th January 2010, Accepted 19th February 2010
First published as an Advance Article on the web 22nd March 2010
DOI: 10.1039/c000587h

Six β-configured reversely C3-prenylated pyrrolo[2,3-b]indoles were successfully prepared by using a recombinant prenyltransferase from Neosartorya fischeri. For this purpose, the putative prenyltransferase gene NFIA_074280 (termed herewith cdpC3PT) was cloned into pQE60 and overexpressed in Escherichia coli. The overproduced His6-CdpC3PT was purified to near homogeneity and incubated with five cyclic tryptophan-containing dipeptides in the presence of dimethylallyldiphosphate (DMAPP). All of the substrates were accepted by CdpC3PT and converted to reversely C3-prenylated pyrrolo[2,3-b]indoles. Using cyclo-L-Trp-L-Trp as substrate, both mono- and diprenylated derivatives were obtained. The structures of the enzymatic products were confirmed by heteronuclear multiple-bond correlation (HMBC) spectra after preparative isolation. 1H-1H spatial correlations in nuclear overhauser effect spectroscopy (NOESY) were used for determination of absolute configuration. The K_m values were determined at about 1.5 mM for DMAPP and in the range from 0.22 to 5.5 mM for cyclic dipeptides. The turnover number k_cat was found in the range of 0.023 to 0.098 s⁻¹ and specificity constants k_cat/K_m from 14.2 to 122.7 M⁻¹ s⁻¹. In contrast to the products of AnaPT bearing α-configured C3-dimethylallyl residues, the C3-prenyl moieties in the products of CdpC3PT have a β-configuration. Discovery and characterisation of CdpC3PT expand the usage of the chemoenzymatic approach for stereospecific synthesis of C3-prenylated derivatives.

Introduction

A number of naturally occurring indoline alkaloids carry a reverse prenyl moiety at position C3 of the indoline ring and a five-membered ring system between the indoline and the diketopiperazine ring (Fig. 1). These compounds are mainly found in the genera Penicillium and Aspergillus of ascomycota.1 All of the known natural products from this group have a cis-configuration between H-2 and C3-prenyl moiety. Both α- and β-configured C3-dimethylallyl residues have been identified (Fig. 1). 5-N-acetyldeoxyamin2; aszonalenin and epiaszonalenin as well as their acetylated form3,4 belong to the first subgroup. Examples of β-configured derivatives are roquefortines C and D,5,6 fructigenines A and B (verrucofortine),6,7 rugulosuvines A and B,8 brevicompanines A, B and C,9,10 as well as amauromine.11 Both α- and β-configured C3-dimethylallyl residues are found in the structure of epiamauromine derived from two tryptophan molecules.12 Until now, more β-configured derivatives have been isolated from fungal strains than the α-configured ones. C3-prenylated indolines have been reported to show diverse biological activities.13 By using two indole prenyltransferases AnaPT and CdpNPT, four aszonalenin stereoisomers were synthesised successfully from (R)- and (S)-benzodiazepinedione.14 Seven C3-prenylated pyrrolo[2,3-b]indoles (2a–2f and 4) have been obtained by enzymatic conversion of six tryptophan-containing cyclic dipeptides (1a–1f) with AnaPT (Scheme 1).15 By using HPLC, one stereoisomer each was detected from the incubation mixtures with the mentioned prenyltransferases. MS, CD and NMR analyses, including nuclear overhauser effect spectroscopy (NOESY), showed clearly that all of the isolated products of AnaPT reactions carried an α-configured C3-dimethylallyl moiety. To expand the usage of prenyltransferases for chemoenzymatic synthesis, we identified an additional cyclic dipeptide C3-prenyltransferase (CdpC3PT) gene from the genome sequence of Neosartorya fischeri. In contrast to those of AnaPT, the products of CdpC3PT bear β-configured C3-dimethylallyl residues. Here, we report the gene cloning, protein overproduction and biochemical investigation of CdpC3PT.

Results and discussion

In the course of our investigation on indole prenyltransferases, one putative gene NFIA_074280 from the genome sequence of Neosartorya fischeri NRRL181 raised our attention. NFIA_074280 spans bp 569563-570866 of DS027696.1 in GenBank. Its deduced product, EAW17508, comprises 423 amino acids and showed significant sequence similarity to known indole prenyltransferases.17,18 NFIA_074280 and a putative...
non-ribosomal peptide synthetase (NRPS) gene \textit{NFIA_074300} are separated from each other by only 3.9 kb (Fig. 2) and could therefore belong to a same gene cluster for a secondary metabolite. The deduced product of \textit{NFIA_074300}, EA W17510, showed a similar domain structure as the cyclic dipeptide synthetase FtmPT1 (brevianamide F synthetase) involved in the biosynthesis of fumitremorgins, \textit{i.e.} ATCATC (A: adenylation; T: thiolation and C: condensation), and could therefore be responsible for the formation of a cyclic dipeptide. Thus, we speculated that EAW17508 would function as a cyclic dipeptide prenyltransferase. By sequence comparison and analysis, it was neither possible to propose the natural substrate for the putative prenyltransferase, nor its prenylation pattern, \textit{i.e.} regular or reverse, or prenylation position at the indole ring. The end product encoded by this cluster is also unknown. One putative cytochrome P450 oxidoreductase gene \textit{NFIA_074290} is located between the putative prenyltransferase gene \textit{NFIA_074280} and the putative NRPS gene \textit{NFIA_074300}. Orthologous genes, \textit{i.e.} \textit{pc21g15430}, \textit{pc21g15470} and \textit{pc21g15480}, with sequence identities of 67, 60 and 59\% on the amino acid level to \textit{NFIA_074280}, \textit{NFIA_074290} and \textit{NFIA_074300}, respectively, have been identified in the genome sequence of \textit{Penicillium chrysogenum} (Fig. 2). Three additional genes \textit{pc21g15440}, \textit{pc21g15450} and \textit{pc21g15460} are located between \textit{pc21g15430} and \textit{pc21g15470}, indicating that the product encoded by the cluster from \textit{P. chrysogenum} is very likely different from that in \textit{N. fischeri}.

To prove the function of EAW17508, \textit{i.e.} CdpC3PT, the coding region of \textit{NFIA_074280} was amplified by homologous recombinant DNA technique through three rounds PCR. The PCR fragment consisting exclusively of the two exons was cloned via pGEM-T easy vector into pQE60 to create the expression construct pWY25 (see Experimental section). Soluble proteins were obtained from transformants of \textit{E. coli} cells harbouring pWY25 after 6 h induction by 0.5 mM of IPTG at 37 °C. His\textsubscript{6}-CdpC3PT was purified with Ni-NTA agarose to near homogeneity as judged by SDS-PAGE (Fig. 3) and a protein yield of 7 mg of purified His\textsubscript{6}-tagged CdpC3PT per litre of cultures was obtained. A major protein band with migration near the 45 kDa size marker was observed, which corresponded well to the calculated value of 47.6 kDa for His\textsubscript{6}-CdpC3PT.

In analogy to AnaPT,15 the purified CdpC3PT (1.3 μM) was incubated with five tryptophan-containing cyclic dipeptides (1a–1d and 1f) (1 mM) in the presence of DMAPP (2 mM) for different time. HPLC analysis of the incubation mixtures (Fig. 4) showed that all of the five substrates were accepted by
verified by analysing the 1H-13C heteronuclear single-quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) spectra (Figures S1–S6, ESI†). Comparison of the 1H-NMR data of the isolated products 3a–3d and 3f (Table 2) with those of the respective substrates (data not shown) revealed clearly the presence of signals for a reverse dimethylallyl moiety in the spectra of the isolated compounds at 5.08–5.14 (d or dd) for H-1’, 5.95–5.98 (dd) for H-2’, 1.00–1.01 ppm (s) for H-4’ and 1.11–1.13 (s) for H-5’, respectively. The signals of H-2 were strongly upfield shifted from approximately 7.0–7.2 in the spectra of the substrates to 5.50–5.56 ppm in the spectra of the enzymatic products (Figures S1–S6, ESI†). This indicated that the prenylation has very likely taken place at position C3 of the cyclic dipeptides and pyrrolo[2,3-b]blindole derivatives were formed during the enzymatic reactions. Cross peaks in the HSQC spectra of 3a–3d and 3f revealed that the singlets of H-2 at 5.5 ppm correlated with the signals of C-2 at 77.5–77.6 ppm, proving the disappearance of the double bonds between C-2 and C-3 of the indole rings in the structures of 3a–3d and 3f. HMBC spectra showed clear connectivity from H-2 to C-1, which is conducted by the formation of a chemical bond between C-2 and N-12 of the diketopiperazine ring. Furthermore, HMBC spectra showed strong connectivities from H2 to C3, C4’ to C3, and H5’ to C3. These results proved that the structures of 3a–3d and 3f are indeed C3-prenylated indolines with a fused five-membered ring between the indoline and diketopiperazine ring. This means that CdpC3PT catalysed, in analogy to AnaPT,15 the reverse C3-prenylation of tryptophan-containing cyclic dipeptides and meanwhile the formation of a pyrrolo[2,3-b]indolole structure.

The 1H-NMR spectra and the assigned chemical shifts of 3a–3d and 3f (Table 2) are similar to those of 2a–2d and 2f (Scheme 1) reported previously.15 Without considering the NOESY spectra, however, clear differences of chemical shifts were found for H-2 and H-10syn. The chemical shifts of H-2 in 3a–3d and 3f were detected at approximately 5.5 ppm, while those of 2a–2d and 2f with α-configured C3-prenyl moieties at approximately 5.4 ppm.18 The chemical shifts of H-10syn in 3a–3d and 3f are found from 2.52 to 2.56 ppm, about 0.3 ppm upfield shifted in comparison to those of 2a–2d and 2f at 2.79 to 2.84 ppm.15 These data indicated that the structures of 3a–3d and 3f differ from those of 2a–2d and 2f very likely by different configurations at C-2 and C-3 of the indoline rings.

Unambiguous proof of the stereochemistry was provided by NOESY experiments for 3a–3d and 3f (Table 3). Strong NOE correlations between H-2 and the protons of the prenyl moiety, i.e. H-2’, H-4’ and H-5’, proved the cis-configuration between H-2 and C3-prenyl moieties of the indoline rings.

For compounds 3a–3d and 3f, only very weak NOE correlation was observed between H-2 and H-11. In the cases of 2a–2d and 2f, the NOE correlation for these protons was determined as...
Fig. 4 HPLC chromatograms of incubation mixtures of five tryptophan-containing cyclic dipeptides with recombinant CdpC3PT. Detection was carried with a diode array detector and illustrated for absorption at 254 nm.

medium. Moreover, H-10\textsubscript{syn} in 3a–3d and 3f as well as 2a–2d and 2f showed strong correlation with H-11. The correlations observed for 2a–2d and 2f between H-12 and those of the prenyl group were not detected in 3a–3d and 3f. From the results of NOE correlations, we concluded that H-2 and C3-prenyl moiety must be substituted on the opposite side to H-11. This demonstrated that, in contrast to 2a–2d and 2f, 3a–3d and 3f carry \(\beta\)-configured C3-dimethylallyl moieties as illustrated in Table 2 and Scheme 1. The steric hindrance of the \(\beta\)-configured prenyl residue makes the indoline ring bend in opposite direction and causes a spatial proximity between H4 and H10\textsubscript{syn}. This is confirmed by the observation of strong NOE correlation between these two protons (Table 3).

The NMR data of 3a and 3c corresponded also well to those reported for brevicompanine B22 and rugulosuvine A,23 respectively.

The second product peak 4b of cyclo-L-Trp-L-Trp (1b) (Fig. 4) was also isolated by repeated chromatography and subjected to MS analysis. The positive HR-ESI-MS of 4b showed an ion at \(m/z\) 509.2920 (Table 1), which could be interpreted as [M+H]+ of a diprenylated derivative with a molecular mass 136 daltons larger than that of the substrate.

The \(^1\text{H}-\text{NMR}\) spectrum of 4b showed signals of two identical tryptophanyl moieties, which are reversely prenylated at position C3 of the indole rings. C3-diprenylated derivatives of cyclo-L-Trp-L-Trp containing two pyrrolo[2,3-b]indole systems have been reported, e.g. amauromine (Fig. 1) from \textit{Amauroascus sp}13 and epiamauromine (Fig. 1) from \textit{Aspergillus ochraceus}14.

\(^1\text{H}-\text{NMR}\) data of 4b (Table 2) corresponded perfectly to those of amauromine,13 indicating that 4b has an identical structure as amauromine or both compounds are enantiomers. The absolute configuration of 4b was not determined in this study. However, it can be expected that the symmetrical 4b was formed by a second prenylation and cyclisation of 3b under the catalysis of CdpC3PT (Scheme 1). Therefore, both tryptophanyl moieties must have the same configuration as in 3b. Therefore, 4b and amauromine have same configuration as illustrated in Fig. 1 and Scheme 1.

The results provided in this study proved that both AnaPT and CdpC3PT catalyse the formation of indoline derivatives carrying fused five-membered rings with a \(cis\)-configuration. However, they introduced the ring system from opposite sides. Similar as observed with AnaPT,15,16 the reaction catalysed by CdpC3PT includes at least three steps, \textit{i.e.} attachment of a reverse prenyl moiety to C3 of the indole ring, breaking of the double bond between C2 and C3 and the formation of a C–N bond between C2 and N12. The detailed mechanism of this reaction is unknown. As proposed for AnaPT,15 it can be speculated that attacking of dimethylallyl cation \textit{via} its C3 to C3 of the indole ring of the cyclic dipeptides would result in formation of an intermediate with a positive charge at C2. Formation of a C–N bond between C2 and N12 would lead to an intermediate with positive charge at N12, which is to be converted to the enzymatic products by releasing of a proton.

After structure elucidation of the enzymatic products, CdpC3PT was characterised biochemically. For determination of the dependence of the CdpC3PT activity on metal ions, incubations of 1a with DMAPP were carried out in the presence of different metal ions at a final concentration of 5 mM. Incubations with EDTA at a final concentration of 5 mM and without additives were used as controls. Our results showed that product
Table 2 1H-NMR and 13C-NMR data of enzymatic products (CDCl$_3$)

<table>
<thead>
<tr>
<th>Compound</th>
<th>3a</th>
<th>3b</th>
<th>3c</th>
<th>3d</th>
<th>3f</th>
<th>4b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>δ_C</td>
<td>δ_H, multi., J in Hz</td>
<td>δ_C</td>
<td>δ_H, multi., J in Hz</td>
<td>δ_C</td>
<td>δ_H, multi., J in Hz</td>
</tr>
<tr>
<td>2</td>
<td>77.6</td>
<td>5.50, s</td>
<td>77.5</td>
<td>5.54, s</td>
<td>77.5</td>
<td>5.54, s</td>
</tr>
<tr>
<td>3</td>
<td>61.3</td>
<td>—</td>
<td>61.3</td>
<td>—</td>
<td>61.4</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>124.9</td>
<td>7.16, d, 7.4</td>
<td>124.9</td>
<td>7.14, d, 7.4</td>
<td>125.0</td>
<td>7.14, d, 7.4</td>
</tr>
<tr>
<td>5</td>
<td>118.7</td>
<td>6.76, t, 7.5, 0.8</td>
<td>118.8</td>
<td>6.76, td, 7.5, 0.9</td>
<td>118.8</td>
<td>6.76, t, 7.7</td>
</tr>
<tr>
<td>6</td>
<td>128.7</td>
<td>7.10, t, 7.6</td>
<td>128.8</td>
<td>7.10, td, 7.6, 1.0</td>
<td>128.8</td>
<td>7.11, t, 7.5</td>
</tr>
<tr>
<td>7</td>
<td>109.1</td>
<td>6.58, d, 7.8</td>
<td>109.0</td>
<td>6.60, d, 7.6</td>
<td>109.0</td>
<td>6.60, d, 7.9</td>
</tr>
<tr>
<td>8</td>
<td>149.8</td>
<td>—</td>
<td>149.7</td>
<td>—</td>
<td>149.7</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>128.9</td>
<td>—</td>
<td>128.7</td>
<td>—</td>
<td>128.6</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>35.7</td>
<td>2.55, dd, 12.7, 6.4</td>
<td>35.7</td>
<td>2.52, dd, 12.6, 6.2</td>
<td>35.9</td>
<td>2.52, dd, 12.6, 6.1</td>
</tr>
<tr>
<td>11</td>
<td>58.6</td>
<td>3.95, m</td>
<td>58.8</td>
<td>3.92, ddd, 11.1, 6.2, 1.6</td>
<td>58.7</td>
<td>3.93, ddd, 10.7, 6.1, 2.0</td>
</tr>
<tr>
<td>12</td>
<td>166.3</td>
<td>—</td>
<td>165.8</td>
<td>—</td>
<td>165.3</td>
<td>—</td>
</tr>
<tr>
<td>13</td>
<td>53.3</td>
<td>3.95, m</td>
<td>54.4</td>
<td>4.31, ddd, 10.4, 3.3, 1.5</td>
<td>56.0</td>
<td>4.15, ddd, 8.9, 2.2</td>
</tr>
<tr>
<td>14</td>
<td>—</td>
<td>—</td>
<td>136.3</td>
<td>—</td>
<td>127.5</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td>—</td>
<td>—</td>
<td>111.9</td>
<td>—</td>
<td>111.3</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>—</td>
<td>—</td>
<td>123.4</td>
<td>—</td>
<td>123.0</td>
<td>—</td>
</tr>
<tr>
<td>17</td>
<td>—</td>
<td>—</td>
<td>135.4</td>
<td>—</td>
<td>135.1</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td>—</td>
<td>—</td>
<td>147.1</td>
<td>—</td>
<td>146.8</td>
<td>—</td>
</tr>
<tr>
<td>19</td>
<td>—</td>
<td>—</td>
<td>158.7</td>
<td>—</td>
<td>158.5</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>—</td>
<td>—</td>
<td>161.7</td>
<td>—</td>
<td>161.5</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td>—</td>
<td>—</td>
<td>164.8</td>
<td>—</td>
<td>164.6</td>
<td>—</td>
</tr>
<tr>
<td>22</td>
<td>—</td>
<td>—</td>
<td>167.9</td>
<td>—</td>
<td>167.7</td>
<td>—</td>
</tr>
<tr>
<td>23</td>
<td>—</td>
<td>—</td>
<td>171.0</td>
<td>—</td>
<td>171.0</td>
<td>—</td>
</tr>
<tr>
<td>24</td>
<td>—</td>
<td>—</td>
<td>174.1</td>
<td>—</td>
<td>174.1</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td>—</td>
<td>—</td>
<td>176.2</td>
<td>—</td>
<td>176.2</td>
<td>—</td>
</tr>
<tr>
<td>26</td>
<td>—</td>
<td>—</td>
<td>178.3</td>
<td>—</td>
<td>178.3</td>
<td>—</td>
</tr>
</tbody>
</table>

*Overlapping signals; H-10$_1$ has a cis-configuration to H-11, H-10$_{1o}$ a trans-configuration.
formation was independent of the presence of metal ions. Even in the presence of the chelating agent EDTA, no decreasing of the enzyme activity was detected, in comparison to that of incubation without additives. This finding corresponded well to the behaviour of other known prenyltransferases.\(^7\) The enhancing effect of Ca\(^{2+}\) on the activity of CdpC3PT seems stronger than other prenyltransferases. Addition of Ca\(^{2+}\), Mg\(^{2+}\) and Mn\(^{2+}\) to the reaction mixtures increased the enzyme activity to 400, 240 and 220\% of that without additives, respectively.

For comparison of the behaviour of CdpC3PT towards the cyclic dipeptides, kinetic parameters were determined for DMAPP and all of the five aromatic substrates by incubation with CdpC3PT at 37 °C for 30 min. For this purpose, the dependence of the product formation on incubation time had been proven and found to be linear up to 30 min for 1a, nearly linear up to 30 min for 1b and 45 min for 1c, 1d and 1f (see please Figure S7, ESI†). Michaelis–Menten constants (\(K_M\)) as well as the turnover numbers (\(k_{\text{cat}}\)) were determined by Hanes-Woolf analysis and are given in Table 4. The obtained values were also confirmed by Lineweaver–Burk and Eadie-Hofstee analyses.

Using 1a and 1b as aromatic substrates, comparable \(K_M\) values for DMAPP were determined at 1.4 and 1.6 mM, respectively, which are much higher than the \(K_M\) values of other cyclic dipeptide prenyltransferases for DMAPP, e.g., FtmPT1 at 56 \(\mu\)M\(^4\) and AnaPT at 156 \(\mu\)M.\(^1\) However, the natural substrates were used for determination of kinetic parameters of FtmPT1 and AnaPT. In the case of CdpC3PT, the natural substrate is still unknown. 1b and 1c were found to have similar \(K_M\) values of 0.35 and 0.22 mM and turnover numbers of 0.023 and 0.027 s\(^{-1}\), respectively (Table 4). 1a, 1d and 1f with \(K_M\) values of 2.1, 1.5 and 5.5 mM, respectively, showed much lower affinity towards CdpC3PT than 1b and 1c. Interestingly, the turnover numbers of these three substrates were two- to three-fold of those of 1b and 1c. Consequently, CdpC3PT showed similar catalytic efficiency towards 1a, 1b and 1d with specificity constants \(k_{\text{cat}}/K_M\) of 40.5, 65.7 and 40 M\(^{-1}\) s\(^{-1}\), respectively. Using 1c as substrate, CdpC3PT was found to have the best catalytic efficiency with a specificity constant of 122.7 M\(^{-1}\) s\(^{-1}\). This value is however only 1.9% of that of AnaPT at 6522 M\(^{-1}\) s\(^{-1}\) determined by using its natural substrates DMAPP and (R)-benzodiazepinedinone.\(^1\)

Conclusions

In this study, we described the cloning and biochemical investigation of a new indole prenyltransferase CdpC3PT, which catalysed the reverse prenylation of cyclic dipeptides at position C3 of the indole ring. Similar to AnaPT from the biosynthetic gene cluster of acetylaslazonalenin\(^1\) from the same fungus, \(i.e\). \(N\). \(fischeri\) NRRL181, CdpC3PT showed also broad substrate specificity and accepted all of the five tryptophan-containing cyclic dipeptides tested. Both AnaPT and CdpC3PT catalysed the formation of a five-membered ring between the original indole and diketopiperazine rings with a cis-configuration between H-2 and C3-dimethylallyl moiety. However, they introduce the prenyl moiety from different sides, \(i.e\). AnaPT from behind and CdpC3PT from the front, so that two compounds with different stereochemistry at position C2 and C3 could be obtained from one substrate. They are therefore complement to each other regarding the prenylation and expand their potential to be used for chemoenzymatic synthesis.

Experimental section

Chemicals

Dimethylallyl diphosphate was prepared according to the method described for geranyl diphosphate by Woodside.\(^25\) Cyclo-L-Trp-L-Leu (1a), cyclo-L-Trp-L-Trp (1b), cyclo-L-Trp-L-Phe (1c), cyclo-L-Trp-L-Tyr (1d) and cyclo-L-Trp-L-Gly (1f) were purchased from Bachem (Bubendorf, Switzerland).

Bacterial strains, plasmids and cultural conditions

pGEMT easy vector and pQE60 were obtained from Promega (Mannheim, Germany) and Qiagen (Hilden, Germany), respectively.

Escherichia coli XL1 Blue MRF\(^{\text{Tm}}\) (Stratagene) was used for cloning and over expression experiments and grown in liquid or on solid Luria-Bertani medium with 1.5\% (w/v) agar at 37 °C.\(^26\) Carbencillin (50 μg mL\(^{-1}\)) was used for selection of recombinant *E. coli* strains.

Neosartorya fischeri NRRL181 was kindly provided by ARS Culture Collection (Peoria, Illinois USA).

Cultivation of *N. fischeri* and DNA isolation

For DNA isolation, mycelia of *N. fischeri* from plates were inoculated into 300 mL Erlenmeyer flask containing 100 mL YES

Table 3

NOE results of C3-prenylated pyrrolo[2,3-b]indoles (with an exception for 4b)

<table>
<thead>
<tr>
<th>Protons</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-2 to H-1'</td>
<td>Weak</td>
</tr>
<tr>
<td>H-2 to H-2'</td>
<td>Strong</td>
</tr>
<tr>
<td>H-2 to H-4'</td>
<td>Strong</td>
</tr>
<tr>
<td>H-2 to H-5'</td>
<td>Strong</td>
</tr>
<tr>
<td>H-2 to H-11</td>
<td>Weak</td>
</tr>
<tr>
<td>H-10\textsubscript{a} to H-1'</td>
<td>Weak</td>
</tr>
<tr>
<td>H-10\textsubscript{a} to H-2'</td>
<td>Medium</td>
</tr>
<tr>
<td>H-10\textsubscript{a} to H-4'</td>
<td>Strong</td>
</tr>
<tr>
<td>H-10\textsubscript{a} to H-5'</td>
<td>Strong</td>
</tr>
<tr>
<td>H-10\textsubscript{a} to H-11</td>
<td>Medium</td>
</tr>
<tr>
<td>H-10\textsubscript{a} to H-11</td>
<td>Medium</td>
</tr>
<tr>
<td>H-10\textsubscript{a} to H-4</td>
<td>Strong</td>
</tr>
<tr>
<td>H-11 to H-2'</td>
<td>Not observed</td>
</tr>
<tr>
<td>H-11 to H-4'</td>
<td>Not observed</td>
</tr>
<tr>
<td>H-11 to H-5'</td>
<td>Not observed</td>
</tr>
</tbody>
</table>

*Due to low solubility, the aromatic substrates were only tested up to 1 mM (1b–1d) or 5 mM (1a and 1f). *1a as aromatic substrate. *1b as aromatic substrate.

Table 4

Preliminary parameters of the tested substrates

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(K_M)/mM</th>
<th>(k_{\text{cat}}/s^{-1})</th>
<th>(k_{\text{cat}}/K_M/M^{-1}s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>2.1</td>
<td>0.085</td>
<td>40.5</td>
</tr>
<tr>
<td>1b</td>
<td>0.35</td>
<td>0.023</td>
<td>65.7</td>
</tr>
<tr>
<td>1c</td>
<td>0.22</td>
<td>0.027</td>
<td>122.7</td>
</tr>
<tr>
<td>1d</td>
<td>1.5</td>
<td>0.06</td>
<td>40.0</td>
</tr>
<tr>
<td>1f</td>
<td>5.5</td>
<td>0.078</td>
<td>14.2</td>
</tr>
<tr>
<td>DMAPP(^a)</td>
<td>1.4</td>
<td>0.098</td>
<td>70.0</td>
</tr>
<tr>
<td>DMAPP(^b)</td>
<td>1.6</td>
<td>0.035</td>
<td>21.9</td>
</tr>
</tbody>
</table>

\(^a\) Due to low solubility, the aromatic substrates were only tested up to 1 mM (1b–1d) or 5 mM (1a and 1f). *1a as aromatic substrate. *1b as aromatic substrate.

These journal is © The Royal Society of Chemistry 2010
media consisting of yeast extract (0.6% (w/v)), sucrose 0.2% (w/v) (pH 5.8) and cultivated at 30 °C and 170 rpm for 48 h. DNA isolation from *N. fischeri* was carried out according to the protocol described by Ausubel *et al.*

DNA isolation, PCR amplification and gene cloning

Standard procedures for DNA isolation and manipulation were performed as described.

PCR amplification was carried out on an iCycler from BioRad (Munich, Germany). The entire coding sequence of *cdpC3PT* was obtained after three rounds PCR amplification by using genomic DNA as template and Expand High Fidelity Kit (Roche Diagnostics GmbH, Mannheim, Germany). The first round PCR is used for amplification of the two exons. The primers for the first exon were CdpC3PT_a1 (5'-TCGTTCTGATAAACACCTCATCCT-3') at the 5'-end and CdpC3PT_a2 (5'-TCTTGGCAATAGC-CAAGTCCTGCGAGGATATGATTG CAGATTCTCC-3') at the 3'-end. The primers for the second exon were CdpC3PT_b1 (5'-GGGTTACCCGGAAGATCTGCATTACCTGGCGGAGGACTTTGGCT-3') at the 5'-end and CdpC3PT_b2 (5'-AACAGGAAAGGCACATATAAGC-3') at the 3'-end. Bold letters represent mutations inserted at the 3'-end of the gene. The PCR products of the first and second exon were mixed in a molar ratio of 1:1 and used as template for a second round of PCR to get a fragment consisting of the two exons with help of the overlapping region. A third round PCR was then carried out by using a nested primer pair and the PCR product from the second round as template. The nested primers are CdpC3PT_for (5'-ATTCCATGGCAATGTCGACCAGCCGAGGACTTTGGCT-3') at the 5'-end and CdpC3PT_rev (5'-GAAGATCTGGTGATACATGTCGACA-3') at the 3'-end. Bold letters represent mutations inserted in comparison to the original genome sequence to give the underlined restriction sites NcoI located in the start codon in CdpC3PT_for and BglII located in the predicted stop codon in CdpC3PT_rev, respectively. A PCR fragment of 1286 bp containing the entire coding sequence of *cdpC3PT* could be amplified after the third round PCR. The PCR fragment was cloned into pGEMT easy vector resulting in plasmid pWY24, which was subsequently sequenced (Eurofins MWG Operon, Ebersberg, Germany) to confirm the sequence. To create the expression vector pWY25, pWY24 was digested with NcoI and BglII and the resulted NcoI-BglII fragment of 1278 bp was ligated into pQE60, which had been digested with the same enzymes, BglII and the resulted NcoI-BglII fragment of 1278 bp was ligated into expression vector pWY25, pWY24 was digested with NcoI and used as template for a second round of PCR to get a fragment consisting of the two exons with help of the overlapping region. A third round PCR was then carried out by using a nested primer pair and the PCR product from the second round as template. The nested primers are CdpC3PT_for (5'-ATTCCATGGCAATGTCGACCAGCCGAGGACTTTGGCT-3') at the 5'-end and CdpC3PT_rev (5'-GAAGATCTGGTGATACATGTCGACA-3') at the 3'-end. Bold letters represent mutations inserted in comparison to the original genome sequence to give the underlined restriction sites NcoI located in the start codon in CdpC3PT_for and BglII located in the predicted stop codon in CdpC3PT_rev, respectively. A PCR fragment of 1286 bp containing the entire coding sequence of *cdpC3PT* could be amplified after the third round PCR. The PCR fragment was cloned into pGEMT easy vector resulting in plasmid pWY24, which was subsequently sequenced (Eurofins MWG Operon, Ebersberg, Germany) to confirm the sequence. To create the expression vector pWY25, pWY24 was digested with NcoI and BglII and the resulted NcoI-BglII fragment of 1278 bp was ligated into pQE60, which had been digested with the same enzymes, previously.

Overproduction and purification of His₆-CdpC3PT

For *cdpC3PT* expression, *E. coli* XL1 Blue MRF' cells harbouring the plasmid pWY25 were cultivated in 300 mL Erlenmeyer flasks containing 100 mL liquid Luria-Bertani medium supplemented with carbenicillin (50 μg mL⁻¹) and grown at 37 °C to an absorption at 600 nm of 0.6. For induction, isopropyl thiogalactoside (IPTG) was added to a final concentration of 0.5 mM and the cells were cultivated for further 6 h at 37 °C before harvest. The bacterial cultures were centrifuged and the pellets were resuspended in lysis buffer (10 mM imidazole, 50 mM NaH₂PO₄, 300 mM NaCl, pH 8.0) at 2–5 mL per gram wet weight. After addition of 1 mg mL⁻¹ lysozyme and incubation on ice for 30 min, the cells were sonicated 6 times for 10 s each at 200 W. To separate the cellular debris from the soluble proteins, the lysate was centrifuged at 13,000 × g for 30 min at 4 °C. One-step purification of the recombinant His₆-tagged fusion protein by affinity chromatography with Ni-NTA agarose resin (Qiagen, Hilden, Germany) was carried out according to the manufacturer's instructions. The protein was eluted with 250 mM imidazole in 50 mM NaH₂PO₄, 300 mM NaCl, pH 8.0. In order to change the buffer, the protein fraction was passed through a NAP-5 column (GE Healthcare, Freiburg, Germany), which had been equilibrated with 50 mM Tris-HCl, 15% (v/v) of glycerol, pH 7.5, previously. CdpC3PT was eluted with the same buffer and stored frozen at −80 °C for enzyme assays.

Protein analysis and determination of molecular mass of active His₆-CdpC3PT

Proteins were analysed by SDS-PAGE according to the method of Laemmli and stained with Coomassie brilliant blue G-250.

The molecular mass of the recombinant His₆-CdpC3PT was determined by size exclusion chromatography on a HiLoad 16/60 Superdex 200 column (GE Health Care, Freiburg, Germany), which had been equilibrated with 20 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl. The column was calibrated with dextran blue 2000 (2000 kDa), ferritin (440 kDa), aldolase (158 kDa), conalbumin (75 kDa), carbonic anhydrase (29 kDa) and ribonuclease A (13.7 kDa) (GE Health Care, Freiburg, Germany). The proteins were eluted with 20 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl. The molecular mass of the recombinant His₆-CdpC3PT was determined as 130 kDa. This indicated that CdpC3PT acts likely as a homotrimer.

Assay for CdpC3PT activity

For quantitative determination of the enzyme activity, the reaction mixture (100 μL) contained 50 mM Tris-HCl (pH 7.5), 5 mM CaCl₂, 1 mM aromatic substrates, 1 mM DMAPP, 1.5% (v/v) glycerol, and 0.07 μM of purified recombinant CdpC3PT. The reaction mixtures were incubated at 37 °C and the reactions were terminated by addition of 100 μL methanol per 100 μL reaction mixtures. The protein was removed by centrifugation at 13,000 × g for 20 min. The enzymatic products were analysed by HPLC under conditions described below. For quantitative measurement of the enzyme activity, duplicate values were determined routinely. For determination of kinetic parameters of DMAPP, cyclic dipeptides at 1 mM, DMAPP at final concentrations of 0.0, 0.16, 0.40, 0.81, 1.62 and 4.05 mM were used as substrates. For determination of the kinetic parameters of cyclic dipeptides, DMAPP at a final concentration of 5 mM was used. Due to low solubility, concentrations of 1a and 1f up to 5.0 mM and 1b–1d up to 1 mM were used.

Quantification of the enzymatic products

For quantification of the enzymatic products, CdpC3PT was incubated in a large scale (10 mL) containing each of the five cyclic dipeptides (1 mM), DMAPP (2 mM), CaCl₂ (5 mM), Tris-HCl (50 mM, pH 7.5), glycerol 1.5% (v/v) and CdpC3PT (2 mg). The reaction mixtures were extracted after incubation at 37 °C for 24 h with ethyl acetate. After evaporation of the solvent, the residues of
the ethyl acetate phase containing both enzymatic products and substrates were subjected to 1H-NMR analysis. The conversion rate of a given substrate was determined by comparison of the integrals of the enzymatic product and the remained substrate in 1H-NMR spectra. The absorption coefficients of the enzymatic products were then calculated by HPLC analysis of the samples after NMR analysis.

Preparative synthesis of enzymatic products for structure elucidation

The NMR samples for quantification of the enzymatic products were then purified on HPLC under the conditions described below for structure elucidation. The isolated products were subjected to 1H-NMR, 13C-NMR, 1H–1H COSY, 1H–1C HSQC and HMBC as well as high resolution electrospray ionization mass spectrometry (HR-ESI-MS).

HPLC conditions for analysis and isolation of enzymatic products of CdpC3PT

The enzymatic products of the incubation mixtures of CdpC3PT were analysed by HPLC on an Agilent series 1200 by using a LiChrospher RP 18-5 column (250 × 4 mm, 5 µm, Agilent) at a flow rate of 1 mL min$^{-1}$. Water (solvent A) and methanol (solvent B) were used as solvents. For analysis of enzymatic products, linear gradients of 50–80% (v/v) solvent B in 10 min and then of 80–100% (v/v) solvent B in 5 min were used. The column was then washed with 100% solvent B for 5 min and equilibrated with 50% (v/v) solvent B for 5 min. Detection was carried out by a Photo Diode Array detector and illustrated at 254 nm in the figures in this paper.

For isolation, the same HPLC equipment with a Multospher 120 RP-18 column (250 × 10 mm, 5 µm, C+S Chromatographie Service, Langenfeld, Germany) was used. Linear gradients of 50–80% (v/v) solvent B in 10 min and then of 80–100% (v/v) solvent B in 5 min at a flow rate of 2.5 mL min$^{-1}$ were used. The column was then washed with 100% solvent B for 5 min and equilibrated with 50% (v/v) solvent B for 5 min.

NMR experiments

Small amount (less than 1 mg) of each sample was dissolved in 0.2 mL of CDCl$_3$. Samples were filled into Wilmad 3 mm tubes from Rototec Spintec. Spectra were recorded at room temperature on a Bruker Avance 600 MHz spectrometer equipped with an inverse probe with z-gradient. The HSQC and HMBC spectra were recorded with standard methods. Gradient-selected NOESY experiment was performed in phase-sensitive mode. For all two-dimensional spectra, 32 to 64 transients were used. For NOESY spectra, a mixing time of 1.5 s and a relaxation delay of 3.0 s. 1H spectra were acquired with 65 536 data points, while 2D spectra were collected using 4096 points in the F_1 dimension and 512 increments in the F_2 dimension. Typical experiment time for the HMBC and NOESY measurements was about 12 h. Chemical shifts were referenced to CDCl$_3$. All spectra were processed with Bruker TOPSPIN 2.1.

Mass spectrometry

The isolated products were analysed by HR-ESI-MS with a Q-Trap Quantum (Applied Biosystems). Positive HR-ESI-MS data of the enzymatic products are given in Table 1.

Nucleotide sequence accession number

The nucleotide sequence of the genomic DNA from Neosartorya fischeri NRRRL181 reported in this study is available at GenBank under accession number DSO27696. The coding sequence of cdpC3PT is available at GenBank under the name NFIA_074280.

Acknowledgements

This work was supported by a grant from the LOEWE program des Landes Hessen (SynMiKro to S.-M. Li). Xie acknowledges the Deutsche Forschungsgemeinschaft for funding the Bruker AVANCE 600 spectrometer. Xia Yu is a recipient of a fellowship from China Scholarship Council.

References

Electronic supporting information to:

Preparation of pyrrolo[2,3-b]indoles carrying a β-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT

Wen-Bing Yina,b,c, Xia Yua,b, Xiu-Lan Xied, and Shu-Ming Lia,*

a Philipps-Universität Marburg, Institut für Pharmazeutische Biologie, Deutschhausstrasse 17A, D-35037 Marburg, Germany. Email: shuming.li@Staff.uni-Marburg.de, Tel: 0049-6421-2822461 Fax: 0049-6421-2825365

b These authors contributed equally to this work

c Present address: University of Wisconsin-Madison, Medical Microbiology and Immunology, 3455 Microbial Sciences Building, 1550 Linden Drive, Madison WI 53706, USA.

d Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Strasse, 35032 Marburg, Germany.
Figure S1.1: 1H-NMR spectrum of 3a in CDCl$_3$.

Figure S1.2: HSQC spectrum of 3a in CDCl$_3$. The solvent signal is partially cut in the 1D projection for clarity.
Figure S1.3: HMBC spectrum of 3a in CDCl$_3$. The solvent signal is partially cut in the 1D projection for clarity.

Figure S1.4: NOESY spectrum of 3a in CDCl$_3$. The solvent signal is partially cut in the 1D projection for clarity.
Figure S2.1: 1H-NMR spectrum of $3b$ in CDCl$_3$. The label X indicates signal of impurity.

Figure S2.2: HSQC spectrum of $3b$ in CDCl$_3$. The label X indicates signal of impurity and the solvent signal is partially cut in the 1D projection for clarity.
Figure S2.3: HMBC spectrum of 3b in CDCl$_3$. The label X indicates signal of impurity and the solvent signal is partially cut in the 1D projection for clarity.

Figure S2.4: NOESY spectrum of 3b in CDCl$_3$. The label X indicates signal of impurity and the solvent signal is partially cut in the 1D projection for clarity.
Figure S3.1: 1H-NMR spectrum of 3c in CDCl$_3$. The label X indicates signal of impurity.

Figure S3.2: HSQC spectrum of 3c in CDCl$_3$. The label X indicates signal of impurity and the solvent signal is partially cut in the 1D projection for clarity.
Figure S3.3: HMBC spectrum of 3c in CDCl₃. The label X indicates signal of impurity and the solvent signal is partially cut in the 1D projection for clarity.

Figure S3.4: NOESY spectrum of 3c in CDCl₃. The label X indicates signal of impurity and the solvent signal is partially cut in the 1D projection for clarity.
Figure S4.1: 1H-NMR spectrum of 3d in CDCl$_3$. The label X indicates signal of impurity.

Figure S4.2: HSQC spectrum of 3d in CDCl$_3$. The label X indicates signal of impurity and the solvent signal is partially cut in the 1D projection for clarity.
Figure S4.3: HMBC spectrum of 3d in CDCl$_3$. The label X indicates signal of impurity and the solvent signal is partially cut in the 1D projection for clarity.

Figure S4.4: NOESY spectrum of 3d in CDCl$_3$. The label X indicates signal of impurity and the solvent signal is partially cut in the 1D projection for clarity.
Figure S5.1: 1H-NMR spectrum of $3f$ in CDCl$_3$. The label X indicates signals of impurity.

Figure S5.2: HSQC spectrum of $3f$ in CDCl$_3$. The label X indicates signals of impurity and the solvent signal is partially cut in the 1D projection for clarity.
Figure S5.3: HMBC spectrum of 3f in CDCl$_3$. The label X indicates signals of impurity and the solvent signal is partially cut in the 1D projection for clarity.

Figure S5.4: NOESY spectrum of 3f in CDCl$_3$. The label X indicates signals of impurity and the solvent signal is partially cut in the 1D projection for clarity.
Figure S6.1: 1H-NMR spectrum of 4b in CDCl$_3$. The label X indicates signals of impurity.

Figure S7: Time dependence of the product formation. The assay condition including components, substrate and enzyme concentrations as well as incubation temperature was identical to that for determination of the kinetic parameters.
5.2 Biochemical characterization of indole prenyltransferases: Filling the last gap of prenylation positions by a 5-dimethylallyltryptophan synthase from *Aspergillus clavatus*
Biochemical Characterization of Indole Prenyltransferases

FILLING THE LAST GAP OF PRENYLATION POSITIONS BY A 5-DIMETHYLALLYLTRYPOTHAN SYNTHASE FROM ASPERGILLUS CLAVATUS

Received for publication, October 27, 2011, and in revised form, November 26, 2011 Published, JBC Papers in Press, November 28, 2011, DOI 10.1074/jbc.M111.317982

Xia Yu, Yun Liu, Xiulan Xie, Guo-Xia Dong, and Shu-Ming Li

From the Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany, the Department of Food Science and Nutrition, Zhejiang University, 310058 Hangzhou, Zhejiang, China, and the Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany

Background: Known indole prenyltransferases catalyzed regioselective prenylations at N-1, C-2, C-3, C-4, C-6, and C-7 of the indole ring.

Results: Recombinant 5-DMATS was assayed with tryptophan and derivatives in the presence of DMAPP.

Conclusion: 5-DMATS prenylated indole derivatives at C-5.

Significance: 5-DMATS fills the last prenylation gap of indole derivatives and could be used as a potential catalyst for chemoenzymatic synthesis.

The putative prenyltransferase gene ACLA_031240 belonging to the dimethylallylttrypothan synthase superfamily was identified in the genome sequence of Aspergillus clavatus and overexpressed in *Escherichia coli*. The soluble His-tagged protein EAW08391 was purified to near homogeneity and used for biochemical investigation with diverse aromatic substrates in the presence of different prenyl diphosphates. It has shown that in the presence of dimethylallyl diphosphate (DMAPP), the recombinant enzyme accepted very well simple indole derivatives with L-tryptophan as the best substrate. Product formation was also observed for tryptophan-containing cyclic dipeptides but with much lower conversion yields. In contrast, no product formation was detected in the reaction mixtures of L-tryptophan with geranyl or farnesyl diphosphate. Structure elucidation of the enzyme products by NMR and MS analyses proved unequivocally the highly regiospecific regular prenylation at C-5 of the indole nucleus of the simple indole derivatives. EAW08391 was therefore termed 5-dimethylallylttrypothan synthase, and it filled the last gap in the toolbox of indole prenyltransferases regarding their prenylation positions. K_m values of 5-dimethylallylttryporthan synthase were determined for L-tryptophan and DMAPP at 34 and 76 μM, respectively. Average turnover number (k_{cat}) at 1.1 s$^{-1}$ was calculated from kinetic data of L-tryptophan and DMAPP. Catalytic efficiencies of 5-dimethylallylttrypothan synthase for L-tryptophan at 25,588 s$^{-1}$M$^{-1}$ and for other 11 simple indole derivatives up to 1538 s$^{-1}$M$^{-1}$ provided evidence for its potential usage as a catalyst for chemoenzymatic synthesis.

Prenylated indole alkaloids represent a group of natural products with diverse chemical structures and are widely distributed in bacteria, fungi, plants, and marine organisms (1, 2). Because of their impressive pharmacological and biological activities as drugs or as toxins (1, 3), prenylated indole alkaloids attract the attention of scientists from different scientific disciplines, including chemistry, ecology, biology, pharmacology, and biochemistry (1, 4–7). These compounds are hybrid molecules containing prenyl moieties derived from prenyl diphosphates and indole or indoline ring from tryptophan or its precursors (1, 5). Indole prenyltransferases catalyze the connection of these two characteristic structural features and contribute significantly to the structural diversity of the prenylated indole alkaloids. Significant progress has been achieved for molecular biological, biochemical, and structural biological investigations on different prenyltransferase groups, including indole prenyltransferases (1, 8, 9). By the end of October 2011, 20 indole prenyltransferases from bacteria and fungi have been characterized biochemically (1, 10–15). These enzymes catalyzed the transfer of prenyl moieties onto nitrogen or carbon atoms at the indole ring resulting in formation of "regularly" or "reversely" prenylated derivatives (15). More interestingly, indole prenyltransferases showed the usually broad substrate specificity but catalyzed regiospecific prenylation at different positions of indole or indoline rings (Fig. 1) (15). CymD from the marine actinobacterium *Salinispora arenicola* catalyzed the reverse prenylation at the indole nitrogen of L-tryptophan (12), whereas FtmPT2 from the fungus *Aspergillus fumigatus* catalyzed the regular prenylation of 12,13-dihydroxyfumitremorgin C at this position (16). Regular and reverse C2-prenylations were observed for FtmPT1 (17) and FgaPT1 (18), both from *A. fumigatus*, respectively. Prenylations at C-3 of cyclic dipeptides by AnaPT (19) and CdpC3PT (10), both from the fungus *Neosartorya fischeri*, lead to the formation of indoline derivatives with an α- and β-configured reverse...
5-DMATS from *Aspergillus clavatus*

Prenylation position

<table>
<thead>
<tr>
<th>N1</th>
<th>L-tryptophan</th>
<th>CymD</th>
<th>N-prenylated L-tryptophan</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>C2</th>
<th>brevianamide F</th>
<th>FtmPT1</th>
<th>tryprostatin B</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>C3</th>
<th>(R)-benzodiazepepineone</th>
<th>AnaPT</th>
<th>aszonalenin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>C4</th>
<th>L-tryptophan</th>
<th>FgaPT2/ DmaW/ MaPT</th>
<th>4-dimethylallyl L-tryptophan</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>C5</th>
<th>indole derivatives</th>
<th>?</th>
<th>C5-regularly prenylated indole derivatives</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>C6</th>
<th>L-tryptophan</th>
<th>IptA</th>
<th>6-dimethylallyl L-tryptophan</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>C7</th>
<th>L-tryptophan</th>
<th>7-DMATS</th>
<th>7-dimethylallyl L-tryptophan</th>
</tr>
</thead>
</table>

| | cyclo-L-Trp-L-Leu | CdpC3PT | C3B-prenylated cyclo-L-Trp-L-Leu |
| | 4-dimethylallyl L-tryptophan | CpaD | 1,4-cyclopiazonic acid |

| | indole derivatives | ? | C5-reversely prenylated indole derivatives |
| | 6-dimethylallyl L-tryptophan | CTrpPT | C7-prenylated cyclo-L-Trp-L-Trp |

FIGURE 1. Examples of indole prenyltransferases with different prenylation positions.

The abbreviations used are: 7-DMATS, 7-dimethylallyltryptophan synthase; DMAPP, dimethylallyl diphosphate; 5-DMATS, 5-dimethylallyltryptophan synthase; HMBC, heteronuclear multiple-bond correlation spectroscopy; FPP, farnesyl diphosphate; GPP, geranyl diphosphate.

Prenyl moiety, respectively. FgaPT2 and its orthologues from different fungi represent the first pathway-specific enzyme in the biosynthesis of ergot alkaloids and catalyzed the regular prenylation of L-tryptophan at C-4 (3, 20). CpaD from *Aspergillus oryzae* catalyzed regular C4-prenylation as well but used cyclo-acetoacetyl-L-tryptophan as substrate (21). IptA from a soil bacterium *Streptomyces* sp. was reported to prenylate L-tryptophan at C-6 (13) and 7-DMATS from *A. fumigatus* at C-7 (22). An additional
example of C7-prenyltransferase is CTrpPT from \emph{A. oryzae}, which used cyclo-\textit{L-Trp-L-Trp} as the best substrate (11).

In summary, indole prenyltransferases with regioselectivity for N-1, C-2, C-3, C-4, C-6, and C-7 have already been identified and characterized in detail (Fig. 1). However, a prenyltransferase responsible for transferring a prenyl moiety to C-5 of the indole ring has not been reported prior to this study. However, database searching revealed the presence of a number of biologically active indole alkaloids carrying a prenyl moiety at C-5 in nature (Fig. 2). These compounds include simple prenylated indole derivatives like the antifungal compound 3,5-hexalobine (26) or the brominated 5-dimethylallyltryptophan (27), both of which used cyclo-L-Trp-L-Trp as the best substrate (11).

EXPERIMENTAL PROCEDURES

Computer-assisted Sequence Analysis—Sequence identities were obtained by alignments of amino acid sequences using the program “BLAST 2 SEQUENCES” (www.ncbi.nlm.nih.gov). FGENESH from Softberry and the DNASIS software package (version 2.1, Hitachi Software Engineering, San Bruno, CA) were used for exon prediction and sequence analysis, respectively.

Chemicals—Dimethylallyl diphosphate (DMAPP), geranyl diphosphate (GPP), and farnesyl diphosphate (FPP) were prepared according to the method described for geranyl diphosphate by Woodside et al. (33). Indole derivatives of the highest available purity were purchased from TCI, Acros Organics, Aldrich, Sigma, Bachem, and Alfa Aesar.

Bacterial Strains, Plasmids, and Culture Conditions—pGEM-T Easy and pQE70 were obtained from Promega and Qiagen (Hilden, Germany), respectively. \emph{Escherichia coli} XL1 Blue MRF’ (Stratagene, Amsterdam, the Netherlands) and M15 [pREp4] (Qiagen) were used for cloning and expression experiments, respectively. They were grown in liquid Terrific-Broth (TB) or Luria-Bertani (LB) medium and on solid LB medium with 1.5% (w/v) agar at 37 or 22 °C. 50 μg ml\(^{-1}\) of carbenicillin were used for selection of recombinant \emph{E. coli} XL1 Blue MRF’ strains. Addition of carbenicillin at 50 μg ml\(^{-1}\) and kanamycin at 25 μg ml\(^{-1}\) was used for selection of recombinant \emph{E. coli} M15 [pREp4] strains. A relatively large indole alkaloid group are the indole diterpenes from Penicillium (30) and other Ascomycetes (31). The members of this group carry prenyl moieties at C-5 (21-isopentenylpaxilline) (32), C-6, or at both positions (shearinine K) (30), or modified structures thereof.

The discrepancy between the natural occurrence of a large number of C5-prenylated indole derivatives on the one hand and undiscovered C5-prenyltransferases on the other hand prompted us to search for such enzymes. In this study, we reported the identification and characterization of the first C5-prenyltransferase of indoles, \emph{i.e.} 5-dimethylallyltryptophan synthase (5-DMATS) from \emph{Aspergillus clavatus} and its potential usage as a catalyst for chemoenzymatic synthesis.

5-DMATS from Aspergillus clavatus

![Examples of naturally occurring C5-prenylated indole alkaloids.](image)

FIGURE 2. Examples of naturally occurring C5-prenylated indole alkaloids.
5-DMATS from Aspergillus clavatus

GCCCAGC/ATGCGCTACCACAAACAGC-3') at the 5'-end, and 5-DMATS_rev (5'-GGTGGAGAGCTCTCAATTCTCAGACTTT-3') at the 3’-end of the gene. Bold letters represent mutations inserted in comparison with the original genome sequence to give the underlined restriction site SpII at the start codon in 5-DMATS_for and BglII located at the predicted stop codon in 5-DMATS_rev. A program of 30 cycles with annealing at 58 °C for 50 s and elongation at 72 °C for 90 s was used for PCR amplification. The PCR fragment was cloned into pGEM-T easy vector resulting in plasmid pYL08, which was subsequently sequenced (Eurofins MWG Operon, Ebersberg, Germany) to confirm the sequence. Plasmid pYL08 was digested with BglII alone or together with SphI to obtain BglII-SphI fragment of 748 bp and SphI-BglII fragment of 531 bp, respectively. To get the expression construct pYL09, these two fragments were cloned into pQE70 subsequently.

Overproduction and Purification of His6-5-DMATS—For overproduction of 5-DMATS, *E. coli* M15 [pREP4] cells harboring the plasmid pYL09 were cultivated in 2000-ml Erlenmeyer flasks containing 1000 ml of liquid TB medium, supplemented with carbenicillin (50 μg·ml⁻¹) and kanamycin (25 μg·ml⁻¹), and then grown at 37 °C to an absorption of 600 nm of 0.6. For induction, isopropyl thiogalactoside was added to a final concentration of 0.4 mM, and the cells were cultivated for a further 16 h at 22 °C before harvest. The bacterial cultures were centrifuged, and the pellets were resuspended in lysis buffer (10 mM imidazole, 50 mM NaH₂PO₄, 300 mM NaCl, pH 8.0) at 2–5 ml/g wet weight. After addition of 1 mg·ml⁻¹ lysozyme and incubation on ice for 30 min, the cells were sonicated six times for 10 s each at 200 watts. To separate the cellular debris from the soluble proteins, the lysate was centrifuged at 13,000 × g for 30 min at 4 °C. One-step purification of the recombinant His₆-tagged fusion protein by affinity chromatography with nickel-nitrilotriacetic acid-agarose resin (Qiagen) was carried out according to the manufacturer’s instructions. The protein was eluted with 250 mM imidazole in 50 mM NaH₂PO₄, 300 mM NaCl, pH 8.0. To change the buffer, the protein fraction was passed through a PD-10 column (GE Healthcare), which had been equilibrated with 50 mM Tris-HCl, 15% (v/v) of glycerol, pH 7.5, previously. 5-DMATS was eluted with the same buffer and frozen at −80 °C for enzyme assays.

Protein Analysis and Determination of Relative Molecular Mass of Active His₆-5-DMATS—Proteins were analyzed by 12% (w/v) SDS-polyacrylamide gels according to the method of Laemmli (34) and stained with Coomassie Brilliant Blue G-250. The *Mₐ* value of the recombinant active His₆-5-DMATS was determined by size exclusion chromatography on a HiLoad 16/60 Superdex 200 column (GE Healthcare), which had been equilibrated with 50 mM Tris-HCl buffer, pH 7.5, containing 150 mM NaCl. The column was calibrated with dextran blue 2000 (2000 kDa), ferritin (440 kDa), aldolase (158 kDa), catalase (75 kDa), carbonic anhydrase (29 kDa), and ribonuclease A (13.7 kDa) (GE Healthcare). The proteins were eluted with the same buffer as for equilibration.

Enzyme Assays with 5-DMATS—The enzyme reaction mixtures for determination of the relative activities with different indole derivatives or L-tyrosine (100 μl) contained 50 mM Tris-HCl, pH 7.5, 5 mM CaCl₂, 1 mM aromatic substrate, 2 mM DMAPP, GPP, or FPP, 0.15–5% (v/v) glycerol, 0–5% (v/v) DMSO, and 1 μM purified recombinant protein. The reaction mixtures were incubated at 37 °C for 7 h (with DMAPP) or 24 h (with GPP or FPP). The enzyme reactions were terminated by addition of 100 μl of methanol per 100 μl reaction mixture.

For determination of kinetic parameters of DMAPP, L-tryptophan at 1 mM and DMAPP at final concentrations of up to 3 mM were used as substrates. For determination of kinetic parameters of L-tryptophan and derivatives, the assays contained 2 mM DMAPP. Because of the difference of solubility in the aqueous system, various concentrations were used for aromatic substrates as follows: for 8a and 12a up to 5 mM, for 1a–3a, 7a, and 9a–11a up to 2 mM, and for 4a–6a up to 1 mM. The protein concentration was 20 mM (1a), 40 mM (DMAPP), or 200 mM (other substrates), and the incubation time was 30 min (1a), 40 min (DMAPP) or 60 min (other substrates).

Preparative Synthesis of Enzyme Products for Structure Elucidation—For isolation of the enzyme products, reactions were carried out in large scale (10 ml) containing each of the 12 substrates 1a–12a (1 mM), DMAPP (2 mM), CaCl₂ (5 mM), Tris-HCl (50 mM, pH 7.5), glycerol 0.15–5% (v/v), and 5-DMATS (1.4 μM). After incubation for 16 h, the reactions were terminated by addition of 10 ml of methanol each. After removal of the precipitated protein by centrifugation at 6000 rpm for 30 min, the reaction mixtures were concentrated on a rotating vacuum evaporator at 30 °C to a final volume of 1 ml before injection onto HPLC.

HPLC Conditions for Analysis and Isolation of Enzyme Products—The enzyme products of the incubation mixtures were analyzed by HPLC on an Agilent series 1200 by using a Multiphase 120 RP-18 column (250 × 4 mm, 5 μM, C+S Chromatographie Service, Langerwehe, Germany) at a flow rate of 1 ml·min⁻¹. Water (solvent A) and methanol (solvent B) each with 0.5% (v/v) trifluoroacetic acid were used as solvents. For analysis of enzyme products of tryptophan, simple indole derivatives and L-tyrosine, a linear gradient of 20–100% (v/v) solvent B, for 15 min were used. The column was then washed with 100% (v/v) solvent B for 5 min and equilibrated with 20% (v/v) solvent B for 5 min. For analysis of enzyme products of tryptophan-containing cyclic dipeptides, the gradient began with 40% (v/v) solvent B, for 15 min were used. The column was then washed with 100% (v/v) solvent B for 5 min and equilibrated with 20% (v/v) solvent B for 5 min. For determination of relative molecular mass of active His₆-5-DMATS—For determination of relative molecular mass of active His₆-5-DMATS, a linear gradient of 20–100% (v/v) solvent B, for 15 min were used. The column was then washed with 100% (v/v) solvent B for 5 min and equilibrated with 20% (v/v) solvent B for 5 min. Detection was carried out with a Photo Diode Array Detector.

For isolation of the enzyme products, the same HPLC equipment with a Multospher 120 RP-18 column (250 × 10 mm, 5 μM, C+S Chromatographie Service) was used. The flow rate was 2.5 ml·min⁻¹. Water (solvent C) and methanol (solvent D) without acid were used as solvents. Gradients of 20–100% (v/v) solvent D for different times were used for isolation. The column was then washed with 100% (v/v) solvent D for 8 min and equilibrated with 20% (v/v) solvent D for 8 min.
NMR Spectroscopic Analysis and High Resolution ESI-MS—

H NMR spectra were recorded on a Bruker Avance 500 MHz spectrometer or a JEOL ECX-400 spectrometer. The HSQC and HMBC spectra were recorded with standard methods (35) on the Bruker Avance 500 MHz spectrometer. Chemical shifts were referenced to the signal of CD3OD at 3.31 ppm or DMSO-d6 at 2.50 ppm. All spectra were processed with MestReNova 5.2.2.

The isolated products were also analyzed by high resolution ESI-MS with a Q-Trap Quantum (Applied Biosystems). Positive ESI-MS data are given in supplemental Table S3.

Nucleotide Sequence Accession Number—The coding sequence of 5-dmats (ACLA_031240) is available at GenBank™ under the accession number XM_001269816.

RESULTS

Sequence Analysis and Cloning of 5-Dimethylallyltryptophan Synthase Gene 5-dmats—In the course of our search for prenyltransferases responsible for prenylation of tryptophan or indole derivatives at C-5, one putative gene ACLA_031240 from the genome sequence of A. clavatus NRRL1 raised our interest. The deduced gene product EAW08391 consists of 427 amino acids and shares high sequence similarities with C4-prenyltransferases responsible for prenylation of tryptophan or indole derivatives (20) at the amino acid level. Based on this homology, as FgaPT2, it can be expected that EAW08391 catalyzes a similar reaction.

Because of the high sequence similarity with tryptophan C4-prenyltransferases mentioned above, l-tryptophan and 17 simple indole derivatives (Table 1 and supplemental Table S1) were accepted by 5-DMATS. These results could indicate the prenylation position at C-5 of the indole rings of the accepted substrates. 5-Bromo-DL-tryptophan was not accepted by the expression construct pYL09. For overproduction of His6-5-DMATS, E. coli M15 cells harboring pYL09 were cultivated in TB medium and induced with 0.4 mM isopropyl thiogalactoside at 22 °C for 16 h. A significant band with migration near the 45-kDa size marker was observed on SDS-PAGE of the purified protein (see supplemental Fig. S1), corresponding to the calculated Mr value of 50,411 for His6-5-DMATS. The yield was calculated to be 1.8 mg of purified protein/liter of culture. The Mr value of the native recombinant His6-5-DMATS was determined by size exclusion chromatography at about 79,000. This indicated that 5-DMATS acted likely as a homodimer.

5-DMATS Accepted Well l-tryptophan and Simple Indole Derivatives as Substrates—Because of the high sequence similarity with tryptophan C4-prenyltransferases mentioned above, l-tryptophan and 17 simple indole derivatives (Table 1 and supplemental Table S1) were incubated with the purified 5-DMATS in the presence of DMAPP (2 mM). These substances included eight tryptophan derivatives with modification at the indole ring and nine at the side chain. The reaction mixtures were incubated with 5-DMATS at a final concentration of 1 μM for 7 h. HPLC analysis was used for monitoring the enzyme product formation. Assays with heat-inactivated protein by boiling for 20 min were used as negative control.

HPLC analysis of the incubation mixtures showed clear product formation for 17 of the 18 tested indole derivatives with l-tryptophan as the best substrate (Table 1 and supplemental Table S1). HPLCs of incubation mixtures of 12 substrates (1a–12a, Table 1) showed clearly the presence of one product peak for each substrate. Similar behavior was also observed for other five accepted substrates (data not shown). Under this condition, l-tryptophan was almost completely consumed, and the 11 other substrates (2a–12a) were accepted with total yields between 38 and 91%. Even in the incubation mixtures with 0.40 μM protein for 1 h, the conversion yield for l-tryptophan was calculated to be 95.4% (see supplemental Table S2).

Inspection of the activities of the tested substances (Table 1 and supplemental Table S1) revealed that, with the exceptions for C5-substituted derivatives, all of the substances with modifications by fluoro or methyl group at the indole ring were well accepted by 5-DMATS. These results could indicate the prenylation position at C-5 of the indole rings of the accepted substrates. 5-Bromo-DL-tryptophan was not accepted by
5-DMATS. The conversion yields of 5-fluoro-L-tryptophan and 5-methyl-DL-tryptophan at 7.4 and 1.7%, respectively, were significantly lower than those with substitution at other positions of the indole ring. The prenylation of these substances had very likely taken place at other positions rather than C-5 (see under “Discussion”). Modification at the side chain of tryptophan reduced enzyme activity, especially by shortening the chain length, as in the case of indole-3-acetic acid and tryptamine. In comparison, changes at the amino group such as N-methylation (L-abrine, 7a), replacement by a hydroxyl group (DL-indole-3-lactic acid, 10a), or deamination (indole-3-propionic acid, 11a) showed less influence on the enzyme activity.

A previous study (36) showed that the tryptophan C4-prenyltransferase FgaPT2 also accepted tryptophan-containing cyclic dipeptides as substrates. 5-DMATS was therefore also assayed with five such cyclic dipeptides and analyzed on HPLC. It has been shown that these compounds were also substrates for 5-DMATS but were accepted with significantly lower yields (<10%) than most of the simple indole derivatives (see supplemental Table S1). Incubations of 5-DMATS with l-tyrosine in the presence of DMAPP or with l-tryptophan in the presence of GPP or FPP did not result in the formation of any enzyme product, even after incubation with 1 μM protein for 24 h (see supplemental Table S2).

5-DMATS Catalyzed the Regular C5 Prenylation at the Indole Ring—To confirm the prenylation position, enzyme products of 12 substrates (1a–12a, Table 1) were isolated on HPLC and subjected to high resolution MS and NMR analyses. High resolution ESI-MS (see supplemental Table S3) confirmed the presence of one dimethylallyl moiety each in the products of 1a–12a by detection of masses, which are 68 daltons larger than those of the respective substrates.

In the 1H NMR spectra of all the enzyme products (taken in CD3OD or DMSO-d6), signals at H 3.34–3.47 (d, 2H-1), 5.17–5.40 (t or m, H-2), 1.71–1.78 (s, 3H-4), and 1.67–1.77 (s, 3H-5) were observed (see supplemental Table S4 and supplemental Figs. S3–S14), proving unequivocally the attachment of a regular dimethylallyl moiety to a carbon atom (37, 38). Substrates 2a and 7a–11a are derivatives of L-tryptophan (1a) with modifications at N-1 at the indole ring or at the side chain. Characteristic signals of the four coupling protons at the indole ring (H-4, -5, -6, and -7) appeared as two doublets and two triplets, all with coupling constants of 7–9 Hz in the 1H NMR spectra of 1a, 2a, and 7a–11a (data not shown). In comparison, the two triplets had disappeared in the 1H NMR spectra of their enzyme products 1b, 2b, and 7b–11b. One additional singlet or doublet with a coupling constant smaller than 2 Hz was observed instead. These changes indicated that prenylations had taken place at C-5 or C-6. As given in Table 2, the signals of the remaining three protons at H-4, H-5 or H-6 and H-7 in the 1H NMR spectra (all taken in CD3OD) were found to be in the same order, i.e. (from low to high magnetic field) doublet (1.6 Hz) or broad singlet, doublet (8.3–8.4 Hz), and double doublet (8.3–8.4 and 1.5–1.6 Hz). The singlets for H-2 were found between the doublet (8.3–8.4 Hz) and double doublet. It is plausible that the structures of these compounds have the same prenylation position.

TABLE 1

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Structure</th>
<th>Product yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-tryptophan (1a)</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1-methyl-DL-tryptophan (2a)</td>
<td></td>
<td>46.9</td>
</tr>
<tr>
<td>4-methyl-DL-tryptophan (3a)</td>
<td></td>
<td>56.6</td>
</tr>
<tr>
<td>6-methyl-DL-tryptophan (4a)</td>
<td></td>
<td>53.2</td>
</tr>
<tr>
<td>6-fluoro-DL-tryptophan (5a)</td>
<td></td>
<td>69.5</td>
</tr>
<tr>
<td>7-methyl-DL-tryptophan (6a)</td>
<td></td>
<td>57.8</td>
</tr>
<tr>
<td>L-abrine (7a)</td>
<td></td>
<td>90.9</td>
</tr>
<tr>
<td>N-acetyl-DL-tryptophan (8a)</td>
<td></td>
<td>54.4</td>
</tr>
<tr>
<td>L-β-homotryptophan (9a)</td>
<td></td>
<td>48.8</td>
</tr>
<tr>
<td>DL-indole-3-lactic acid (10a)</td>
<td></td>
<td>67.3</td>
</tr>
<tr>
<td>indole-3-propionic acid (11a)</td>
<td></td>
<td>70.7</td>
</tr>
<tr>
<td>trans-indole-3-acrylic acid (12a)</td>
<td></td>
<td>38.0</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Compd</th>
<th>H-4</th>
<th>H-7</th>
<th>H-2</th>
<th>H-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>7.49, d, 1.6</td>
<td>7.27, d, 8.4</td>
<td>7.15, s</td>
<td>6.95, dd, 8.4, 1.6</td>
</tr>
<tr>
<td>2b</td>
<td>7.49, br, s</td>
<td>7.25, d, 8.4</td>
<td>7.05, s</td>
<td>7.02, dd, 8.4, 1.5</td>
</tr>
<tr>
<td>7b</td>
<td>7.47, br, s</td>
<td>7.26, d, 8.4</td>
<td>7.18, s</td>
<td>6.95, dd, 8.4, 1.5</td>
</tr>
<tr>
<td>8b</td>
<td>7.35, br, s</td>
<td>7.19, d, 8.3</td>
<td>7.05, s</td>
<td>6.88, dd, 8.3, 1.5</td>
</tr>
<tr>
<td>9b</td>
<td>7.36, d, 1.6</td>
<td>7.27, d, 8.4</td>
<td>7.13, s</td>
<td>6.95, dd, 8.4, 1.6</td>
</tr>
<tr>
<td>10b</td>
<td>7.45, br, s</td>
<td>7.19, d, 8.3</td>
<td>7.09, s</td>
<td>6.88, dd, 8.3, 1.5</td>
</tr>
<tr>
<td>11b</td>
<td>7.33, br, s</td>
<td>7.20, d, 8.3</td>
<td>7.00, s</td>
<td>6.89, dd, 8.3, 1.5</td>
</tr>
<tr>
<td>12b</td>
<td>7.61, br, s</td>
<td>7.33, d, 8.3</td>
<td>7.60, sff</td>
<td>7.05, dd, 8.3, 1.5</td>
</tr>
</tbody>
</table>

Due to the presence of a double bond between C-10 and C-11, the signal of H-2 was downshifted in the 1H NMR spectrum.
Enzyme products of 1a and 7a with prenylation at C-6 were reported by Takahashi et al. (13). The NMR data of 6-dimethylallyl-L-tryptophan and 6-dimethylallyl-L-abrine (also taken in CD$_3$OD) differed clearly from those of 1b and 7b, especially in the region for aromatic protons. The aromatic protons in the 1H NMR spectra of 6-dimethylallyl-L-tryptophan and 6-dimethylallyl-L-abrine appeared (from low to high magnetic field) in a different order than in the spectra of 1b and 7b, i.e. doublet (7.8–8.2 Hz), two singlets, and double doublet. Therefore, the prenylation position in 1b and 7b must be C-5. This conclusion was also confirmed by interpretation of the two-dimensional NMR spectra of 1b in DMSO-d$_6$ and 7b in CD$_3$OD. In the HMBC spectrum of 1b (see supplemental Figs. S2 and S3), connectivity from δ$_{H}$ 7.32 (1H, br. s, H-4) to C-1’ of the prenyl moiety at δ$_{C}$ 34.1 proved unequivocally the attachment of the dimethylallyl moiety to C-5. The signal at δ$_{H}$ 7.32 (1H, s) for proton H-4 was unambiguously confirmed by the detected connectivities between this signal and C-8 at 134.9 ppm as well as C-3 at 109.3 ppm. For 7b, similar phenomena were also observed in the HMBC spectrum (see supplemental Figs. S2 and S9). It can be concluded that the prenyl moieties in 1b, 2b, and 7b–11b are attached to C-5 of the indole rings.

Substrate 12a is also a derivative of L-tryptophan with alteration at the side chain. Because of the presence of a double bond between C-10 and C-11, the signal of H-2 was downshifted in 1H NMR spectrum to δ$_{H}$ 7.60 (1H, s), in comparison with those of 1b, 2b, and 7b–11b between 7.00 and 7.18 ppm. However, the signals for H-4, H-6, and H-7 of 12b appeared in the same order as in the spectra of 1b, 2b, and 7b–11b (Table 2), proving the C5-prenylation in the structure of 12b.

In the 1H NMR spectrum of 3b (see supplemental Fig. S5), the two doublets at δ$_{H}$ 6.85 (1H, d, 8.2 Hz, H-6) and δ$_{H}$ 7.08 (1H, d, 8.2 Hz, H-7) represent signals for two protons at the ortho-position and indicated the prenylation at C-5 or C-7. The connectivity from H-6 to δ$_{C}$ 31.4 of C-1’ and from δ$_{H}$ 2.55 (3H, s, H-13) of the methyl group at C-4 to δ$_{C}$ 128.9 of C-5 in the HMBC spectrum confirmed the prenylation at C-5 in 3b (see supplemental Fig. S2).

The structures of 4b, 5b, and 6b were elucidated by interpretation of their 1H NMR spectra (see supplemental Figs. S6–S8). The presinglets at δ$_{H}$ 1.4 (1H, s), δ$_{H}$ 7.44 (1H, s, H-4), and δ$_{H}$ 7.08 (1H, s, H-7) in the 1H NMR spectrum of 4b proved the prenylation at C-5. In the 1H NMR spectrum of 5b, the two doublets at δ$_{H}$ 7.02 (1H, d, 10.8 Hz, H-7) and δ$_{H}$ 7.49 (1H, d, 7.3 Hz, H-4) with clearly different coupling constants are caused by the different distances of the protons to fluoro atom at C-6. In the 1H NMR spectrum of the enzyme product of 6a, signals for two products 6b and 6c with a ratio of 1:5:1 were detected. Unfortunately, these two compounds could not be separated from each other. Based on their different contents in the mixture, we were able to identify the major product 6b as the C5-prenylated derivative, which is characteristic of the presence of three singlets at δ$_{H}$ 7.14 (1H, br. s), 7.14 (1H, br. s), and 6.69 (1H, br. s) for H-2, H-4, and H-6, respectively.

In conclusion, 5-DMATS catalyzed the C5-prenylation of L-tryptophan and simple indole derivatives (Fig. 3). To the best of our knowledge, the structures 1b–12b were not described previously. The structure of 6c could not be unequivocally elucidated in this study. The presence of two doublets with a coupling constant of 8.1 Hz in the 1H NMR spectrum indicated a prenylation at C-4 or C-6.

Biochemical Characterization and Kinetic Parameters of 5-DMATS—For determination of the metal ion dependence of 5-DMATS, incubations of L-tryptophan (1a) with DMAPP were carried out in the presence of different metal ions at a final concentration of 5 mM. Incubations with the chelating agent EDTA or without additives were used as controls. In the incubation mixture with EDTA, no decrease of the enzyme activity was observed, in comparison with that of incubation without additives. As observed for other members of the DMATS superfamily (15, 39), several divalent metal ions enhanced slightly the enzyme activity of 5-DMATS. For example, the enzyme activities with Ca$^{2+}$ and Mg$^{2+}$ were found to be 250 and 204% of that without additives, respectively.

To study the behavior of 5-DMATS toward 12 indole derivatives (1a–12a) and DMAPP in detail, kinetic parameters,
5-DMATS from Aspergillus clavatus

TABLE 3

<table>
<thead>
<tr>
<th>Substrate</th>
<th>K_m</th>
<th>k_{cat}</th>
<th>k_{cat}/K_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Tryptophan (1a)</td>
<td>0.034</td>
<td>0.87</td>
<td>25,588</td>
</tr>
<tr>
<td>1-Methyl-DL-tryptophan (2a)</td>
<td>0.10</td>
<td>0.059</td>
<td>590</td>
</tr>
<tr>
<td>4-Methyl-DL-tryptophan (3a)</td>
<td>0.25</td>
<td>0.29</td>
<td>1160</td>
</tr>
<tr>
<td>6-Methyl-DL-tryptophan (4a)</td>
<td>1.0</td>
<td>0.76</td>
<td>760</td>
</tr>
<tr>
<td>6-Fluoro-DL-tryptophan (5a)</td>
<td>0.27</td>
<td>0.29</td>
<td>1074</td>
</tr>
<tr>
<td>7-Methyl-DL-tryptophan (6a)</td>
<td>0.47</td>
<td>0.40</td>
<td>851</td>
</tr>
<tr>
<td>1-Abirine (7a)</td>
<td>0.26</td>
<td>0.40</td>
<td>1538</td>
</tr>
<tr>
<td>N-Acetyl-DL-tryptophan (8a)</td>
<td>0.35</td>
<td>0.10</td>
<td>286</td>
</tr>
<tr>
<td>1-B-Homotryptophan (9a)</td>
<td>0.97</td>
<td>0.15</td>
<td>155</td>
</tr>
<tr>
<td>DL-Indole-3-lactic acid (10a)</td>
<td>0.67</td>
<td>0.43</td>
<td>642</td>
</tr>
<tr>
<td>Indole-3-propionic acid (11a)</td>
<td>0.39</td>
<td>0.39</td>
<td>1000</td>
</tr>
<tr>
<td>trans-Indole-3-acrylic acid (12a)</td>
<td>0.40</td>
<td>0.14</td>
<td>350</td>
</tr>
<tr>
<td>DMAPP</td>
<td>0.076</td>
<td>1.3</td>
<td>17,105</td>
</tr>
</tbody>
</table>

Including Michaelis-Menten constants (K_m) and turnover numbers (k_{cat}) were determined by Hanes-Woolf and Eadie-Hofstee plots and are given in Table 3. The reactions catalyzed by 5-DMATS apparently followed Michaelis-Menten kinetics. The K_m values for DMAPP and 1-tryptophan (1a) were found to be 76 and 34 μM, respectively, whereas K_m values of 0.10–1.0 μM were determined for 2a–12a, much higher than that observed for 1a. The turnover numbers were calculated for DMAPP and 1a at 1.3 and 0.87 s$^{-1}$, respectively. Lower turnover numbers of 0.059–0.76 s$^{-1}$ were determined for 2a–12a. The catalytic efficiencies (k_{cat}/K_m) of 5-DMATS toward DMAPP and 1a were calculated to be 17,105 and 25,588 s$^{-1}$ M$^{-1}$, respectively. In comparison, lower catalytic efficiencies at 155–1538 s$^{-1}$ M$^{-1}$ were found for 2a–12a, only 0.6–6.0% that of 1a.

DISCUSSION

Prenyltransferases catalyze transfer reactions of prenyl moieties from prenyl diphosphates to diverse aliphatic or aromatic receptors, including proteins, terpenes, benzoic acids, naphthalenes, flavonoids, and indole alkaloids (1, 8, 9, 40, 41). These enzymes are involved in both primary and secondary metabolism, play an important role in living organisms (42), and contribute significantly to the structural diversity of natural products (43). Prenylated indole alkaloids represent a large group of natural products, predominantly identified as mycotoxins (1, 15). A large number of indole prenyltransferases, mainly belonging to the DMATS superfamily from fungi of Ascomycetes, have been identified in the last years and characterized biochemically (1, 10, 11). The members of the DMATS superfamily are soluble proteins, showed usually broad substrate specificity and accepted tryptophan, simple indole derivatives, tryptophan-containing cyclic dipeptides, or other indole-containing structures as aromatic substrates and DMAPP as prenyl donor (1, 10, 11). A few examples of soluble indole prenyltransferases have also been identified in bacteria (13, 45). One of the important features of indole prenyltransferases is the regioselectivity of their prenylation reactions. With the exception for C-5, diverse indole prenyltransferases for the other six positions (N-1, C-2, C-3, C-4, C-6, and C-7) have been identified and characterized (Fig. 1). No enzyme for prenylation at C-5 of the indole ring was reported prior to this study, although a number of C5-prenylated derivatives have been isolated from different organisms (Fig. 2). Therefore, there is a need to find enzymes for C5-prenylation at the indole nucleus, so that these enzymes could be better used as tools for chemoenzymatic synthesis of prenylated indole derivatives or even for synthesis of prenylated hydroxynaphthalenes and flavonoids, which have been very recently described for several members of the DMATS superfamily (46, 47).

In this study, we identified and characterized the first tryptophan C5-prenyltransferase 5-DMATS from *A. clavatus*, which catalyzes the regiospecific C5-prenylation of indole derivatives and fills here with the last gap in the search for indole prenyltransferases regarding their prenylation positions. Blast searching in the database with 5-DMATS from *A. clavatus* NRRL1 revealed the presence of three orthologues in the genome sequences of *A. oryzae* RIB40 (48), *A. flavus* NRRL3357 (49), and *A. oryzae* CBS 113480 (GenBankTM). Analysis of genes in the genomic region of these prenyltransferase genes in all four strains did not provide any indication for their clustering with genes for secondary metabolite biosynthesis. No C5-prenylated derivative was reported for these fungi. Therefore, their roles in these strains could not be predicted in this study. It seems that these genes are the results of redundant copies in the evolution. Nevertheless, considering the low K_m values of 34 and 76 μM for 1-tryptophan and DMAPP, respectively, as well as the high turnover number of 1.1 s$^{-1}$ (Table 3), it can be speculated that 1-tryptophan and DMAPP are very likely the natural substrates of 5-DMATS in the four fungal strains. Inactivation of these genes in the fungal strains could provide detailed information about their roles in nature, if the genes are expressed and the gene products involved in the biosynthesis of certain substance. Therefore, we tried to detect the production of C5-prenylated indole derivatives by *A. clavatus* NRRL1. For this purpose, the fungus was cultivated in different liquid media like YME. Culture filtrates and mycelia were extracted with ethyl acetate and methanol, respectively. In the 1H NMR spectra of both extracts, no signal for aromatic protons was observed, which could be assigned to C5-substituted indole rings. Signals for prenyl moieties were also absent in their 1H NMR spectra (data not shown). This means that C5-substituted indole derivatives were not or only in a very low yield produced by this fungus under the tested conditions. These results could indicate that 5-DMATS is not involved in the biosynthesis of secondary metabolites in *A. clavatus*. It cannot be excluded, however, that 5-DMATS catalyzed a C5-prenylation in the biosynthesis of a fungal product. It is plausible that the expression level of 5-dmats and other related genes would be too low to produce a substantial amount of prenylated derivative. In both cases, cultivation of *A. clavatus* NRRL1 and 5-dmats-defective mutants would very likely not result in significant changes of secondary metabolite accumulation, which prohibited the potential usage of knock-out experiments to prove gene function. Therefore, optimization of culture conditions should be carried out to improve the level of gene expression in *A. clavatus*. Cultivation of *A. oryzae*, *A. flavus*, or *A. oryzae* under different conditions and proof of the accumulated C5-prenylated secondary metabolites, e.g. by NMR analysis, after purification or...
as extracts, would also be a prerequisite for gene knock-out experiments in these strains. This work is now in progress.

In addition to 5-DMATS described in this study, several DMATSs using L-tryptophan as natural or best aromatic substrate with different regioselectivity have been studied biochemically in detail, e.g. the 4-DMATS FgaPT2 from

A. fumigatus (20) and its orthologues MaPT from *Malbranchea aurantiaca* (50) and DwaW from a clavicipitalean fungus (51, 52), the 6-DMATS IptA from *Streptomyces* sp. SN-593 (13), and the 7-DMATS from *A. fumigatus* (22). All of these enzymes catalyzed regular C-prenylation (13, 20, 22, 50, 51). As mentioned above, 5-DMATS shares high sequence similarities on the amino acid level with 4-DMATSs, e.g. 52% with FgaPT2 from *A. fumigatus*, 50% with MaPT from *M. aurantiaca*, and 47% with DwaW from the clavicipitalean fungus. As observed for the low sequence similarity between FgaPT2 and 7-DMATS (22), 5-DMATS also showed low sequence similarity (27%) to 7-DMATS. No meaningful similarity was found for 5-DMATS and IptA. These data proved again that substrates of indole prenyltransferases and their prenylation positions could not be predicted by sequence analysis and comparison (15).

As observed for other members of the DMATS superfamily (15, 39), the enzyme activity of 5-DMATS was enhanced by some metal ions such as Ca^{2+} or Mg^{2+}. 5-DMATS accepted only DMAP but not GPP or FPP as a prenyl donor. It showed, however, similar to many members of the DMATS superfamily, broad promiscuity toward its aromatic substrates. With the exception for C5-substituted derivatives, the most tested simple indole derivatives with modifications at the indole ring or side chain have been well accepted by 5-DMATS (Table 1 and supplemental Table S1). It is not surprising that C5-substituted derivatives were poor substrates for a 5-DMATS with a high regioselectivity at C-5. No product formation was observed for 5-fluoro-L-tryptophan, although low conversion yields of 7.4 and 1.7% were detected for 5-fluoro-L-tryptophan and 5-methyl-L-tryptophan, respectively. These results indicated a limited feasibility of 5-DMATS to prenylate C5-substituted tryptophan derivatives. Similar phenomena were also observed for the tryptophan C6-prenyltransferase IptA, which also accepted 6-methyl-L-tryptophan as substrate and catalyzed a C7-prenylation (13). Because of the low amounts, the enzyme products of 5-fluoro-L-tryptophan and 5-methyl-L-tryptophan were not identified in this study. It could be speculated, however, that prenylation had taken place at another position rather than C-5. We have shown in this study that 5-DMATS prenylated predominantly tryptophan and derivatives at C-5 but occasionally also catalyzed prenylations at other positions, as observed in the incubation mixture of 7-methyl-L-tryptophan. Both C5- and C4- or C6-prenylated derivatives were identified in this case (supplemental Table S4). The acceptance of C5-substituted tryptophan derivatives by 5-DMATS could also be explained by the substrate promiscuity of indole prenyltransferases of the DMATS superfamily, which accepted even hydroxynaphthalenes and flavonoids as substrates and catalyzed C-, O-, or both prenylations (46, 47).

As given in Table 1, high conversion yields of more than 38% were detected for 12 simple indole derivatives after incubation with 1 μM 5-DMATS for 7 h. NMR and MS analyses proved unequivocally that the reaction catalyzed by 5-DMATS was highly regioselective regular prenylation at C-5 of the indole nucleus in most cases. It can therefore be expected that 5-DMATS could serve as an effective catalyst for chemoenzymatic synthesis of prenylated derivatives in the program of drug discovery and development. Acceptance of tryptophan-containing cyclic dipeptides by 5-DMATS could also be used to increase the structural diversity of prenylated derivatives, although the conversion yields detected in this study were still very low, which perhaps could be improved in the future by mutagenesis experiments.

Acknowledgments—We thank Dr. Laufenberg for taking mass spectra and Marco Matuschek and Edyta Stec for synthesis of DMAPP, GPP, and FPP.

REFERENCES

15. Li, S. M. (2009) Evolution of aromatic prenyltransferases in the biosynthe-
s of indole derivatives. Phytochemistry 70, 1746–1757
SUPPLEMENTAL DATA FOR

Biochemical characterization of indole prenyltransferases: Filling the last gap of prenylation positions by a 5-dimethylallyltryptophan synthase from Aspergillus clavatus

Xia Yu (于霞)¹, Yan Liu (刘燕)¹,², Xiulan Xie (谢秀兰)³, Xiao-Dong Zheng (郑晓冬)², Shu-Ming Li (李书明)¹

¹Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany

²Department of Food Science and Nutrition, Zhejiang University, 310058 Hangzhou, Zhejiang, People’s Republic of China

³Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany

Correspondence to: Shu-Ming Li, Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany, Tel: 0049-6421-2822461, Fax: 0049-6421-2825365, email: shuming.li@staff.uni-marburg.de
Table S1. Enzyme activity of 5-DMATS towards aromatic compounds, which are not included in Table 1.

Table S2. Enzyme activity of 5-DMATS towards prenyl diphosphates.

Table S3. HR-ESI-MS data of enzyme products of 5-DMATS

Table S4. 1H- and 13C- NMR data of enzyme products obtained in CD$_3$OD or DMSO-d_6.

Figure S1. Analysis of purified His$_6$-5-DMATS on SDS-PAGE.

Figure S2. Summary of the HMBC connectivities of enzyme products 1b, 3b and 7b.

Figure S3.1. 1H-NMR spectrum of 1b in DMSO-d_6 (500 MHz)

Figure S3.2. 13C-NMR spectrum of 1b in DMSO-d_6 (500 MHz)

Figure S3.3. HSQC spectrum of 1b in DMSO-d_6 (500 MHz)

Figure S3.4. HMBC spectrum of 1b in DMSO-d_6 (500 MHz)

Figure S3.5. 1H-NMR spectrum of 1b in CD$_3$OD (400 MHz)

Figure S4. 1H-NMR spectrum of 2b in CD$_3$OD (400 MHz)

Figure S5.1. 1H-NMR spectrum of 3b in DMSO-d_6 (500 MHz)

Figure S5.2. HSQC spectrum of 3b in DMSO-d_6 (500 MHz)

Figure S5.3. HMBC spectrum of 3b in DMSO-d_6 (500 MHz)

Figure S6. 1H-NMR spectrum of 4b in CD$_3$OD (500 MHz)

Figure S7. 1H-NMR spectrum of 5b in CD$_3$OD (500 MHz)

Figure S8. 1H-NMR spectrum of 6b and 6c in DMSO-d_6 (500 MHz)

Figure S9.1. 1H-NMR spectrum of 7b in CD$_3$OD (500 MHz)

Figure S9.2. 13C-NMR spectrum of 7b in CD$_3$OD (500 MHz)

Figure S9.3. HSQC spectrum of 7b in CD$_3$OD (500 MHz)

Figure S9.4. HMBC spectrum of 7b in CD$_3$OD (500 MHz)

Figure S10. 1H-NMR spectrum of 8b in CD$_3$OD (500 MHz)

Figure S11. 1H-NMR spectrum of 9b in CD$_3$OD (400 MHz)

Figure S12. 1H-NMR spectrum of 10b in CD$_3$OD (500 MHz)

Figure S13. 1H-NMR spectrum of 11b in CD$_3$OD (500 MHz)

Figure S14. 1H-NMR spectrum of 12b in CD$_3$OD (500 MHz)
Table S1. Enzyme activity of 5-DMATS towards aromatic compounds, which are not included in Table 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Structure</th>
<th>Product yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-methyl-DL-tryptophan</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>5-bromo-DL-tryptophan</td>
<td></td>
<td>< 0.5</td>
</tr>
<tr>
<td>5-fluoro-L-tryptophan</td>
<td></td>
<td>7.4</td>
</tr>
<tr>
<td>indole-3-butyric acid</td>
<td>![Structure](indole-3-butyric acid.png)</td>
<td>20.2</td>
</tr>
<tr>
<td>indole-3-acetic acid</td>
<td>![Structure](indole-3-acetic acid.png)</td>
<td>1.8</td>
</tr>
<tr>
<td>tryptamine</td>
<td></td>
<td>6.1</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Ala</td>
<td></td>
<td>1.9</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Leu</td>
<td></td>
<td>6.4</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Phe</td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Trp</td>
<td></td>
<td>9.0</td>
</tr>
</tbody>
</table>

The reaction mixtures containing aromatic compounds and DMAPP were incubated with 1 µM protein for 7 h.
Table S2. Enzyme activity of 5-DMATS towards prenyl diphosphates

<table>
<thead>
<tr>
<th>Name</th>
<th>Structure</th>
<th>Product yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1h incubation</td>
</tr>
<tr>
<td></td>
<td>0.40 µM 5-DMATS</td>
<td>1 µM 5-DMATS</td>
</tr>
<tr>
<td>DMAPP</td>
<td></td>
<td>95.4</td>
</tr>
<tr>
<td>GPP</td>
<td></td>
<td>< 0.5</td>
</tr>
<tr>
<td>FPP</td>
<td></td>
<td>< 0.5</td>
</tr>
</tbody>
</table>

L-tryptophan was used as aromatic substrate.

Table S3. HR-ESI-MS data of enzyme products of 5-DMATS

<table>
<thead>
<tr>
<th>Comp.</th>
<th>Chemical formula</th>
<th>HR-ESI-MS data</th>
<th>Deviation (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Calculated</td>
<td>Measured</td>
</tr>
<tr>
<td>1b</td>
<td>C_{16}H_{20}N_{2}O_{2}</td>
<td>273.1603 [M+H]^+</td>
<td>273.1604</td>
</tr>
<tr>
<td>2b</td>
<td>C_{17}H_{22}N_{2}O_{2}</td>
<td>287.1760 [M+H]^+</td>
<td>287.1746</td>
</tr>
<tr>
<td>3b</td>
<td>C_{17}H_{22}N_{2}O_{2}</td>
<td>287.1760 [M+H]^+</td>
<td>287.1753</td>
</tr>
<tr>
<td>4b</td>
<td>C_{17}H_{22}N_{2}O_{2}</td>
<td>287.1760 [M+H]^+</td>
<td>287.1791</td>
</tr>
<tr>
<td>5b</td>
<td>C_{16}H_{19}FN_{2}O_{2}</td>
<td>291.1509 [M+H]^+</td>
<td>291.1473</td>
</tr>
<tr>
<td>6b and 6c</td>
<td>C_{17}H_{22}N_{2}O_{2}</td>
<td>287.1760 [M+H]^+</td>
<td>287.1725</td>
</tr>
<tr>
<td>7b</td>
<td>C_{17}H_{22}N_{2}O_{2}</td>
<td>287.1760 [M+H]^+</td>
<td>287.1750</td>
</tr>
<tr>
<td>8b</td>
<td>C_{16}H_{19}NO_{3}</td>
<td>337.1528 [M+Na]^+</td>
<td>337.1499</td>
</tr>
<tr>
<td>9b</td>
<td>C_{17}H_{22}N_{2}O_{2}</td>
<td>287.1760 [M+H]^+</td>
<td>287.1744</td>
</tr>
<tr>
<td>10b</td>
<td>C_{16}H_{19}NO_{3}</td>
<td>296.1263 [M+Na]^+</td>
<td>296.1245</td>
</tr>
<tr>
<td>11b</td>
<td>C_{16}H_{19}NO_{2}</td>
<td>280.1313 [M+Na]^+</td>
<td>280.1346</td>
</tr>
<tr>
<td>12b</td>
<td>C_{16}H_{17}NO_{2}</td>
<td>278.1157 [M+Na]^+</td>
<td>278.1153</td>
</tr>
</tbody>
</table>
Table S4. 1H- and 13C- NMR data of enzyme products obtained in CD$_3$OD or DMSO- d_6.

<table>
<thead>
<tr>
<th>Compd</th>
<th>(\text{1H- and 13C- NMR data of enzyme products obtained in CD}_3\text{OD or DMSO- }d_6).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos.</td>
</tr>
<tr>
<td>1b</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>2'</td>
</tr>
<tr>
<td></td>
<td>3'</td>
</tr>
<tr>
<td></td>
<td>4'</td>
</tr>
<tr>
<td></td>
<td>5'</td>
</tr>
</tbody>
</table>

Chemical shifts (δ) were given in ppm and coupling constants (J) in Hz. $\#$: overlapping signals with those of solvents; \S: due to low amount, the signals were not observed.
<table>
<thead>
<tr>
<th>Compd</th>
<th>6c (in DMSO- d_6)</th>
<th>7b (in CD$_3$OD)</th>
<th>8b (in CD$_3$OD)</th>
<th>9b (in CD$_3$OD)</th>
<th>10b (in CD$_3$OD)</th>
<th>11b (in CD$_3$OD)</th>
<th>12b (in CD$_3$OD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos.</td>
<td>$\delta$$_H$, multi., J</td>
<td>δ C</td>
<td>$\delta$$_H$, multi., J</td>
</tr>
<tr>
<td>2</td>
<td>7.12, d, 2.2</td>
<td>125.3</td>
<td>7.18, s</td>
<td>7.05, s</td>
<td>7.13, s</td>
<td>7.09, s</td>
<td>7.00, s</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>108.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>7.29, d, 8.1</td>
<td>118.3</td>
<td>7.47, br. s</td>
<td>7.35, br. s</td>
<td>7.36, d, 1.6</td>
<td>7.45, br. s</td>
<td>7.33, br. s</td>
</tr>
<tr>
<td>5</td>
<td>6.80, d, 8.1</td>
<td>133.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>123.8</td>
<td>6.95, dd, 8.4, 1.5</td>
<td>6.88, dd, 8.4, 1.5</td>
<td>6.95, dd, 8.4, 1.6</td>
<td>6.88, dd, 8.3, 1.5</td>
<td>6.89, dd, 8.3, 1.5</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>112.3</td>
<td>7.26, d, 8.4</td>
<td>7.19, d, 8.3</td>
<td>7.27, d, 8.4</td>
<td>7.19, d, 8.3</td>
<td>7.20, d, 8.3</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>136.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>128.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>#</td>
<td>27.6</td>
<td>3.46, dd, 15.5, 4.6</td>
<td>3.34, dd, 14.6, 4.8</td>
<td>2.54, dd, 16.8, 3.9</td>
<td>3.26, dd, 14.8, 3.4</td>
<td>2.57, m</td>
</tr>
<tr>
<td>11</td>
<td>#</td>
<td>65.4</td>
<td>3.77, dd, 8.2, 4.6</td>
<td>4.58, dd, 6.7, 4.8</td>
<td>3.66, m</td>
<td>4.21, dd, 8.2, 3.4</td>
<td>3.01, m</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>173.4</td>
<td>-</td>
<td>-</td>
<td>3.05, d, 7.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>2.36, s</td>
<td>33.1</td>
<td>2.56, s</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.86, s</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1'</td>
<td>#</td>
<td>35.6</td>
<td>3.43, d, 7.3</td>
<td>3.40, d, 7.3</td>
<td>3.42, d, 6.9</td>
<td>3.40, d, 7.3</td>
<td>3.40, d, 7.2</td>
</tr>
<tr>
<td>2'</td>
<td>5.18, m</td>
<td>126.0</td>
<td>5.37, m</td>
<td>5.37, m</td>
<td>5.37, m</td>
<td>5.38, m</td>
<td>5.37, m</td>
</tr>
<tr>
<td>3'</td>
<td>-</td>
<td>132.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4'</td>
<td>1.72, s</td>
<td>17.9</td>
<td>1.76, s</td>
<td>1.76, s</td>
<td>1.76, s</td>
<td>1.76, s</td>
<td>1.76, s</td>
</tr>
<tr>
<td>5'</td>
<td>1.67, s</td>
<td>25.9</td>
<td>1.74, s</td>
<td>1.74, s</td>
<td>1.74, s</td>
<td>1.74, s</td>
<td>1.75, s</td>
</tr>
</tbody>
</table>

#: overlapping signals with those of solvents; §: due to low amount, the signals were not observed.
Figure S1. Analysis of purified His₆-5-DMATS on SDS-PAGE. Lane 1: purified His₆-5-DMATS; 2: molecular mass standard.

Figure S2. Summary of the HMBC connectivities of enzyme products 1b, 3b and 7b.
Figure S3.1. 1H-NMR spectrum of 1b in DMSO-d_6 (500 MHz)

Figure S3.2. 13C-NMR spectrum of 1b in DMSO-d_6 (500 MHz)
Figure S3.3. HSQC spectrum of 1b in DMSO-d$_6$ (500 MHz)

Figure S3.4. HMBC spectrum of 1b in DMSO-d$_6$ (500 MHz)
Figure S3.5. 1H-NMR spectrum of 1b in CD$_3$OD (400 MHz)

Figure S4. 1H-NMR spectrum of 2b in CD$_3$OD (400 MHz)
Figure S5.1. 1H-NMR spectrum of 3b in DMSO-d_6 (500 MHz)

Figure S5.2. HSQC spectrum of 3b in DMSO-d_6 (500 MHz)
Figure S5.3. HMBC spectrum of 3b in DMSO-d_6 (500 MHz)

Figure S6. 1H-NMR spectrum of 4b in CD$_3$OD (500 MHz)
Figure S7. 1H-NMR spectrum of 5b in CD$_3$OD (500 MHz)

Figure S8. 1H-NMR spectrum of 6b and 6c in DMSO-d_6 (500 MHz). The protons of 6b and 6c were labeled with Hb and Hc, respectively.
Figure S9.1. 1H-NMR spectrum of 7b in CD$_3$OD (500 MHz)

Figure S9.2. 13C-NMR spectrum of 7b in CD$_3$OD (500 MHz)
Figure S9.3. HSQC spectrum of 7b in CD$_3$OD (500 MHz)

Figure S9.4. HMBC spectrum of 7b in CD$_3$OD (500 MHz)
Figure S10. 1H-NMR spectrum of 8b in CD$_3$OD (500 MHz)

Figure S11. 1H-NMR spectrum of 9b in CD$_3$OD (400 MHz)
Figure S12. 1H-NMR spectrum of 10b in CD$_3$OD (500 MHz)

Figure S13. 1H-NMR spectrum of 11b in CD$_3$OD (500 MHz)
Figure S14. 1H-NMR spectrum of 12b in CD$_3$OD (500 MHz)
5.3 Identification of a brevianamide F reverse prenyltransferase BrePT from *Aspergillus versicolor* with a broad substrate specificity towards tryptophan-containing cyclic dipeptides
Identification of a brevianamide F reverse prenyltransferase BrePT from *Aspergillus versicolor* with a broad substrate specificity towards tryptophan-containing cyclic dipeptides

Suqin Yin · Xia Yu · Qing Wang · Xiao-Qing Liu · Shu-Ming Li

Received: 18 April 2012 / Accepted: 20 April 2012 / Published online: 3 June 2012
© Springer-Verlag 2012

Abstract A putative brevianamide F reverse prenyltransferase gene *brePT* was amplified from *Aspergillus versicolor* NRRL573 by using primers deduced from its orthologue *notF* in *Aspergillus* sp. MF297-2 and overexpressed in *Escherichia coli*. The soluble His-tagged protein BrePT was purified to near homogeneity and assayed with tryptophan-containing cyclic dipeptides in the presence of dimethylallyl diphosphate. BrePT showed much higher flexibility towards its aromatic substrates than NotF and accepted all of the 14 tested tryptophan-containing cyclic dipeptides. Structure elucidation of the enzyme products by NMR and MS analyses proved unequivocally the highly regiospecific reverse prenylation at C2 of the indole nucleus.

Keywords Brevianamide · Cyclic dipeptide · DMATS superfamily · Prenylated derivative · Prenyltransferase

Introduction

Prenyltransferases are found in all domains of the life and are involved in the biosynthesis of primary and secondary metabolites in nature (Heide 2009; Li 2009a; Liang 2009; Yazaki et al. 2009). They catalyze the transfer reactions of a prenyl moiety from a prenyl donor, usually as diphosphate, to a terpenoid, serine residue of a protein or an aromatic nucleus (Li 2009a). The later mentioned enzymes are known as aromatic prenyltransferases, which are mainly found in plants, bacteria and fungi (Heide 2009; Li 2009a; Yazaki et al. 2009). A subgroup of the aromatic prenyltransferases from ascomycetes show clear sequence homology to dimethylallyltryptophan synthase (DMATS) in the biosynthesis of ergot alkaloids from *Claviceps purpurea* (Tudzynski et al. 1999) and are therefore classified as prenyltransferases of the DMATS superfamily. The members of this group catalyze mainly the prenylation of diverse indole derivatives including tryptophan and tryptophan-containing cyclic dipeptides at different positions of the indole ring and are involved in the biosynthesis of a number of prenylated indole alkaloids (Li 2009b; Li 2010; Steffan et al. 2009). Prenylated indole alkaloids are widely distributed in terrestrial and marine organisms, especially in the genera *Claviceps*, *Penicillium*, and *Aspergillus*. They are important mycotoxins like fumitremorgin- or roquefortine-type alkaloids (Li 2010; Williams et al. 2000) and drugs, e.g., ergot alkaloids (Wallwey and Li 2011).

Suqin Yin and Xia Yu contributed equally to this work.

Electronic supplementary material The online version of this article (doi:10.1007/s00253-012-4130-0) contains supplementary material, which is available to authorized users.

S. Yin · Q. Wang · X.-Q. Liu (✉)
College of Life Sciences, Capital Normal University, No.105 Xisanhuan Beilu, Beijing 100048, China
e-mail: liuxq@mail.cnu.edu.cn

S. Yin · X. Yu · Q. Wang · S.-M. Li (✉)
Institut für Pharmazeutische Biologie und Biotechnologie, Philosophisch-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany
e-mail: shuming.li@Staff.uni-Marburg.de
The characteristic features of the enzymes of the DMATS superfamily are their flexibility towards aromatic substrates and high regioselectivity regarding prenylation position at the indole ring. Usually, tryptophan prenyltransferases, e.g., FgaPT2 and 7-DMATS from Aspergillus fumigatus (A. fumigatus), MaPT from Malbranchea aurantiaca, or 5-DMATS from Aspergillus clavatus, accepted also very well a number of tryptophan derivatives with modifications both at the side chain and the indole ring as substrates (Ding et al. 2008; Kremer et al. 2007; Steffan et al. 2007; Yue et al. 2012). FgaPT2 used even a number of tryptophan-containing cyclic dipeptides as substrates (Steffan and Li 2009). The same prenylation position at the indole ring was however found for products of a given enzyme, i.e., at C-4 with FgaPT2 and MaPT (Ding et al. 2008; Steffan et al. 2007), C-5 with 5-DMATS (Yu et al. 2012) and C-7 in the case of 7-DMATS (Kremer and Li 2008). Similar phenomena were also observed for cyclic dipeptide prenyltransferases from this family. For example, the regular prenyltransferase FtmPT1 from A. fumigatus catalyzes the prenylation of brevianamide F (cyclo-L-Trp-L-Pro) at C2 of the indole ring (Grundmann and Li 2005). The reverse prenyltransferases AnaPT and CdpC3PT from Neosartorya fischeri used almost all of the tested tryptophan-containing cyclic dipeptides as substrates and catalyzed regiospecific prenylation at C-3 of the indole ring (Yin et al. 2009, 2010).

Until now, two cyclic dipeptide prenyltransferases were reported to use a limited number of compounds as clearly favorable prenylation substrates. CTrpPT from Aspergillus oryzae accepted cyclo-L-Trp-L-Trp much better than other cyclic dipeptides as substrate (Zou et al. 2010). NotF from Aspergillus sp. MF297-2 is involved in the biosynthesis of notoamides and only used brevianamide F as aromatic substrate (Ding et al. 2010). This feature prohibits their usage as catalysts for production of desired compounds. It was necessary to find a NotF homologue with broad substrate specificity and to be used as catalyst for synthesis of reversely C2-prenylated indole derivatives.

Literature search revealed that several Aspergillus versicolor strains produced brevianamides or notoamides (Finefield et al. 2011; Li et al. 2009), which are very likely derived from deoxybrevianamidE and therefore a brevianamide F reverse prenyltransferase must be involved in their biosynthesis. We decided therefore to amplify notF homologue from A. versicolor NRRL573 by using PCR primers deduced from notF sequence in Aspergillus sp. MF297-2. In this paper, we report the cloning and expression of a notF homologue brePT from A. versicolor. Biochemical characterization with BrePT revealed its high flexibility towards tryptophan-containing cyclic dipeptides.

Materials and methods

Chemicals

Dimethylallyl diphasphate (DMAPP), geranyl diphasphate (GPP), and farnesyl diphasphate (FPP) were prepared according to the method described for GPP (Woodside et al. 1988). The four cyclo-Trp-Pro isomers were synthesized from tryptophan methyl ester and N-Boc protected proline according to the method published previously (Caballero et al. 2003). Cyclo-L-Trp-L-Pro and Cyclo-L-Trp-D-Pro were synthesized from H-L-Trp-OMe·HCl and N-Boc-d-Pro-OH, cyclo-D-Trp-L-Pro and cyclo-D-Trp-D-Pro from H-d-Trp-OMe·HCl and N-Boc-d-Pro-OH. Similarly, the two pairs H-L-Trp-Ome-HCl and N-Boc-d-Ala-OH as well as H-d-Trp-Ome-HCl and N-Boc-d-Ala-OH were used for the preparation of the four stereoisomers of cyclo-Trp-Ala. Cyclo-L-Trp-l-His was synthesized from N-Boc-l-Trp-OH and H-l-His-Ome-HCl according to the literature (Bivin et al. 1993; Cacciatore et al. 2005). The other cyclic dipeptides were purchased from Bachem (Bubendorf, Switzerland).

Computer-assisted sequence analysis

FGENESH (Softberry, Inc.) and the DNASIS software package (version 2.1: Hitachi Software Engineering, San Bruno, CA) were used for intron prediction and sequence analysis, respectively. Amino acid sequence similarity searches were carried out by using BLAST program from GenBank.

Bacterial strains, plasmids, and culture conditions

pGEM-T easy and pET28a were obtained from Promega (Mannheim, Germany) and Novagen (Beijing, China), respectively. *Escherichia coli* XL1 Blue MRF’ (Stratagene, Amsterdam, the Netherlands) and BL21 (DE3) pLysS (Newprobo, Beijing, China) were used for cloning and expression experiments, respectively. They were grown in liquid Luria-Bertani (LB) medium or on solid LB medium with 1.5 % (w/v) agar at 37 or 20 °C. 50 μg·ml⁻¹ of kanamycin were used for selection of recombinant *E. coli* cells.

Cultivation of *A. versicolor* NRRL573 for DNA isolation

A. versicolor NRRL573 was kindly provided by Agricultural Research Service Culture Collection of the United States Department of Agriculture. For DNA isolation, the fungus was cultivated in liquid potato dextrose medium at 25 °C and 160 rpm for 5 days. Fungal mycelia were collected and washed with phosphate-buffered saline consisting of 137 mM NaCl, 2.7 mM KCl, 1 mM Na₂HPO₄, and 0.18 mM KH₂PO₄ (pH 7.3). Genomic DNA was isolated by using freeze–thaw method.
DNA propagation in *E. coli*, PCR amplification, and gene cloning

Standard procedures for DNA isolation and manipulation were performed as described (Sambrook and Russell 2001). PCR amplification was carried out on an iCycler from BioRad (Munich, Germany). A PCR fragment of 1,384 bp was amplified from genomic DNA of *A. versicolor* by using the DNA sequences of *Aspergillus* sp. MF297-2, 5′-ATATATGACGCCCCAGAGCTCCGT-3′ and 5′-GGCGGCCGCCAGATCCATGG-3′ as primers. The underlined bold triplets ATG and TCA represent the start and stop codon of *notF*, respectively.

To delete the intron sequence, a two round fusion PCR was carried out as described previously (Yin et al. 2009). Two primers *brePT1*-for (5′-CATGCAATGACGCCCCAGAGCTCCGT-3) and *brePT2*-rev (5′-CATATC-3′) were used for amplification of the first exon, and *brePT2*-for (5′-TACGTGCAACAGCTGTACGCTGCAGCTGTTTGC-3) and *brePT2*-rev (5′-ATAAGAATGGCCCGCGCCGCATCTTTCTTCACAGATGACTTTGT-3′) for the second exon. The underlined sequences with bold letter in *brePT1*-for and *brePT2*-rev represent the restriction sites *Nco*I and *Not*I for cloning in pET28a vector, respectively. The entire coding sequence of *brePT* was sequenced (Eurofins MWG Operon, Ebersberg, Germany). A PCR fragment of 1,384 bp was amplified from pQW2 by using the primers pQW2 in *E. coli* into pET28a, which had been digested with the same restriction enzymes. The PCR product of 1,343 bp was then cloned into the restriction sites *Nco*I and *Not*I in pET28a, resulting in the new expression plasmid pQW1. pQW1 was digested with *Nco*I and *Not*I for cloning in pET28a vector, respectively. The entire coding sequence of *brePT* was sequenced (Eurofins MWG Operon, Ebersberg, Germany) to confirm the sequence. To create the expression vector pQW2, pQW1 was digested with *Nco*I and *Not*I and the resulted *Nco*I–*Not*I fragment of 1,314 bp was ligated into pET28a, which had been digested with the same enzymes, previously. After unsuccessful expression with pQW2 in *E. coli* under different conditions, the expression vector pQW2 was amplified from pQW2 by using the primers 5′-TACGTTCAATCTCGGTCCCGTGCAGCTGTTTGC-3′ and 5′-ATATATGACGCCCCAGAGCTCCGTG-3′. The underlined sequence codes five histidine residues for purification on Ni-NTA agarose. The PCR product of 1,343 bp was then cloned into the restriction sites *Nco*I and *Not*I in pET28a, resulting in the new expression plasmid pSY1.

Overproduction and purification of His₅-BrePT

For gene expression, *E. coli* BL21 (DE3) pLysS cells harboring the plasmid pSY1 were cultivated in liquid LB medium supplemented with kanamycin (50 μg ml^{−1}) and grown at 37 °C to an *A*₆₀₀ of 0.7 and induced with 0.1 mM IPTG for 5 h at 20 °C. Protein extraction and purification were carried out as described previously (Yu et al. 2012).

Protein analysis and determination of molecular mass of active His₅-BrePT

Proteins were analyzed on SDS-PAGE according to the method described by Laemmli (Laemmli 1970) and stained with Coomassie Brilliant Blue G-250. The molecular mass of the recombinant His₅-BrePT was determined by size exclusion chromatography on a HiLoad 16/60 Superdex 200 column (GE Healthcare) that had been equilibrated with 50 mM Tris–HCl buffer (pH 7.5) containing 150 mM NaCl. The column was calibrated with dextran blue 2000 (2,000 kDa), ferritin (440 kDa), aldolase (158 kDa), conalbumin (75 kDa), carbonic anhydrase (29 kDa), and ribonuclease A (13.7 kDa; GE Healthcare). The proteins were eluted with 50 mM Tris–HCl buffer (pH 7.5) containing 150 mM NaCl.

Assays for BrePT activity

For determination of the BrePT activity, the reaction mixtures (100 μl) contained 50 mM Tris–HCl (pH 7.5), 10 mM CaCl₂, 1 mM cyclic dipeptide, 2 mM DMAPP, GPP, or FPP, and 18 μg of purified recombinant BrePT and were incubated at 37 °C for 4 h. The reactions were then terminated by addition of 100 μl of methanol. After removal of protein by centrifugation at 13,000×g for 20 min, the enzyme products were analyzed on HPLC under the conditions described below. For quantitative measurement of the enzyme activity, duplicate values were determined routinely. The assays for determination of the kinetic parameters (100 μl) of cyclic dipeptides contained 2 mM DMAPP, 0.5–10 μg of BrePT. Due to the difference in solubility in assay system, various concentrations were used for cyclic dipeptides: 1d–1g, 1i, and 1j up to 5 mM, 1b and 1c up to 2 mM, 1a up to 0.8 mM, and 1h, 1k, and 1l up to 0.5 mM. For determination of the kinetic parameters of DMAPP, the assays (100 μl) contained 1 μg of BrePT, 1 mM cyclo-i-Trp-l-Pro and DMAPP at final concentrations of up to 2 mM. The incubation time was 30 min.

Preparative synthesis of the enzyme products for structural elucidation

BrePT assays for isolation of the enzyme products (10 ml) contained 1 mM DMAPP, 1 mM cyclic dipeptide, 10 mM CaCl₂, 50 mM Tris–HCl (pH 7.5), and 2 μg of BrePT. The reaction mixtures were incubated at 37 °C for 16 h and extracted subsequently with ethyl acetate. After evaporation of the solvent, the residues were dissolved in methanol and purified on HPLC under the conditions described below.
HPLC conditions for analysis and isolation of the enzyme products of BrePT

The enzyme products of the incubation mixtures of BrePT were analyzed on HPLC with an Agilent series 1200 by using a Multospher 120 RP-18 column (250 × 4 mm, 5 μm, C+S Chromatographie Service, Langerwehe, Germany) at a flow rate of 1 ml min⁻¹. Water (solvent A) and methanol (solvent B) each with 0.5 % (v/v) trifluoroacetic acid were used as solvents. For analysis of enzyme products, a linear gradient of 40–100 % (v/v) solvent B in 15 min was used. The column was then washed with 100 % solvent B for 5 min and equilibrated with 40 % (v/v) solvent B for 5 min. Detection was carried out by a photodiode array detector at 296 nm.

For isolation, the same HPLC equipment with a Multospher 120 RP-18 column (250 × 10 mm, 5 μm, C+S Chromatographie) was used. Water (solvent C) and methanol (solvent D) without acid were used as solvents. A linear gradient of 40–100 % (v/v) solvent D in 30 min at a flow rate of 2.5 ml min⁻¹ was used. The column was then washed with 100 % solvent D for 8 min and equilibrated with 40 % (v/v) solvent D for 8 min.

NMR spectroscopic analysis and high resolution mass spectra

¹H-NMR spectra were recorded on a JEOL ECX-400 or ECX-500 spectrometer. Chemical shifts were referenced to the signal of CD3OD at 3.31 ppm or DMSO-d₆ at 2.50 ppm. All spectra were processed with MestReNova 5.2.2. The isolated products were also analyzed by mass spectroscopy on a Q-Trap Quantum (Applied Biosystems) using a high resolution electron spray ionization (HR-ESI) mode or on an AutoSPEC with an electron impact (HR-EI) mode. Positive MS data are given in Table 1.

Nucleotide sequence accession number

The genomic and coding sequences of brePT from A. versicolor NRRL573 is available at GenBank under the accession number JQ013953.

Results

Cloning and sequence analysis of a notF homologue brePT from A. versicolor as well as protein overproduction and purification

Whole genome sequencing of the marine-derived Aspergillus sp. MF297-2 led to the identification of a biosynthetic gene cluster for notoamides (Ding et al. 2010). NotF from this cluster was found to be responsible for the reverse prenylation of brevianamide F at position C2 of the indole ring resulting in
the formation of deoxybrevianamide E (Fig. 1) (Ding et al. 2010). It was also reported that NotF was highly specific towards its aromatic substrate and no prenylated product was detected for L-tryptophan, cyclo-L-Trp-L-Trp or cyclo-L-Trp-L-Tyr by LC-MS analysis (Ding et al. 2010).

In course of our search for NotF homologues with broad substrate specificity, a 1,384 bp PCR fragment was amplified from genomic DNA of *A. visicolor* NRRL573 by using two oligonucleotides containing sequences at the beginning and the end of *notF*. The obtained fragment was cloned into pGEM-T easy vector and sequenced subsequently. Sequencing results showed that the putative *notF* homologue from *A. versicolor*, termed *brePT* (*brevianamide F prenyltransferase*) in this study, has a size of 1,376 bp consisting of two predicted exons of 1,178 and 130 bp, respectively, disrupted by one intron of 68 bp. *brePT* shares an identity of 87 % on the nucleotide level with *notF* from *Aspergillus* sp. MF297-2. The deduced polypeptide BrePT has a length of 435 amino acids and is therefore of 17 amino acids shorter than NotF. These amino acids correspond to two gaps of five and seven amino acids at the N terminus and one gap of five amino acids between amino acids 183 and 187 in NotF (Fig. 2). BrePT and NotF share an identity of 83 % with each other on the amino acid level.

To clone the entire coding region of *brePT*, the two exons were amplified parallel from the genomic DNA and combined with the help of a short overlapped region by further PCR amplification (see Materials and methods). The successfully amplified PCR product was cloned via pGEM-T easy vector into the expression vector pET28a to create the expression construct pQW2. After failed expression with pQW2, we recloned *brePT* in pET28a by introducing five histidine residues in the C-terminus of the overproduced protein. *E. coli* BL21 cells harboring the newly constructed expression vector pSY1 were cultivated in LB medium and induced with 0.1 mM IPTG at 20 °C for 5 h. One-step purification on Ni-NTA agarose resulted in a significant band with similar migration behavior as the 45 kDa size marker on SDS-PAGE (Fig. 3), corresponding to the calculated mass.
Fig. 4 HPLC analysis of reaction mixtures of BrePT with cyclic dipeptides
of 50 kDa for His5-BrePT. The yield was calculated to be 1.5 mg of purified protein per liter of culture. The molecular mass of the native recombinant His5-BrePT was determined by size exclusion chromatography as 56 kDa, which indicated that BrePT likely acts as a monomer.

BrePT accepted all of the tested tryptophan-containing cyclic dipeptides as substrates in the presence of DMAPP, with a conversion yield of about 91% after incubation with 18 μg of His5-BrePT for 4 h. Detection of this peak was strictly dependent on the presence of DMAPP and the active enzyme (data not shown). Incubation of His5-BrePT with 13 additional tryptophan-containing cyclic dipeptides (1b–1n) showed also clearly product formation with conversion yields from 6 to 92% (Fig. 4). L-tryptophan and L-tyrosine were not accepted by His5-BrePT in the presence of DMAPP under this condition. No production formation was observed, when GPP or FPP instead of DMAPP was used as a prenyl donor in reaction mixtures of the 14 tryptophan-containing cyclic dipeptides and His5-BrePT. The accepted substrates included all of the four diketopiperazine stereoisomers of tryptophan and proline as well as of tryptophan and alanine. As shown in Fig. 4, cyclo-L-Trp-d-Pro (1b) was also well accepted by BrePT with an almost same conversion yield as 1a. In contrast, the other two isomers cyclo-D-Trp-d-Pro (1c) and cyclo-D-Trp-L-Pro (1d) showed conversion yields of less than 15%. It seems that the stereochemistry of tryptophanyl moiety in these dipeptides plays an important role for their binding to BrePT and L-form is the preferable configuration. Similar phenomena were observed for cyclo-L-Trp-D-Pro and cyclo-L-Trp-L-Pro, where d-form is the preferable configuration. The stereochemistry of the diazepine moiety also seemed to play a role in determining the activity of the substrate. For cyclo-L-Trp-D-Pro, the conversion yield was much lower than that of cyclo-L-Trp-L-Pro, indicating that the stereochemistry of the diazepine moiety also played a role in determining the activity of the substrate.
also observed with the four isomers of cyclic dipeptides from tryptophan and alanine (Fig. 4). Cyclo-L-Trp-L-Ala (1e) and cyclo-L-Trp-D-Ala (1f) showed comparable activities with conversion yields of 25 and 21 %, respectively. The two isomers with D-tryptophanyl moiety, i.e., cyclo-D-Trp-D-Ala (1g) and cyclo-D-Trp-L-Ala (1h) showed significantly lower conversion yields of 6 and 14 %, respectively. In comparison to that of cyclo-L-Trp-L-Ala (1e), comparable activities were detected for cyclo-L-Trp-Gly (1i) and cyclo-L-Trp-L-Leu (1j) with conversion yields of 23 and 32 %, respectively. BrePT showed slightly lower activities towards tryptophan-containing cyclic dipeptides with an additional aromatic amino acid such as cyclo-L-Trp-L-Phe (1k), cyclo-L-Trp-L-Tyr (1l), cyclo-L-Trp-L-His (1m), and cyclo-L-Trp-L-Trp (1n) than those consisting of L-tryptophan and an aliphatic amino acid (Fig. 4).

BrePT catalyzed reverse C2-prenylation of tryptophan-containing cyclic dipeptides

For structure elucidation, enzyme products of 12 selected substrates (1a–1l, Fig. 4) were isolated on HPLC in preparative scales and subjected to MS and NMR analyses. High-resolution electron spray ionization mass spectroscopy (HR-ESI-MS) and high resolution electron impact mass spectroscopy (HR-EI-MS) confirmed that the molecular masses of the isolated products are 68 Daltons larger than those of the respective substrates (Table 1), indicating the monoprenylation of these substrates. Comparing the 1H-NMR data of the enzyme products (2a–2l, Table 2; for spectra see Figs. S1–S12 in the Electronic supplementary material) with those of the respective substrates (data not shown) revealed clearly the presence of the characteristic signals for reverse prenyl residues, i.e., $\delta_H 6.08$–6.22 (dd, 1H-2\prime), 4.98–5.16 (d, 1H-1\prime), 4.97–5.12 (d, 1H-1\prime), 1.43–1.58 ppm (s, 3H-4\prime), and 1.43–1.56 ppm (s, 3H-5\prime). Inspection of the 1H-NMR spectra of the enzyme products revealed also the disappearance of the singlets for H-2 of the substrates. Other signals for aromatic protons did not changed significantly. This proved unequivocally the attachment of the reverse prenyl (tert-prenyl) moieties at C2 of the indole ring and the regiospecific C2-prenylation catalyzed by BrePT (Fig. 5). The 1H-NMR data of 2a, 2d, 2e, 2h, and 2i corresponded to those reported previously (Guo et al. 2011; Kuramochi et al. 2008; Ritchie and Saxton 1981).
Biochemical characterization and kinetic parameters of BrePT

For determination of the ion dependence of BrePT, incubations of cyclo-L-Trp-L-Pro (1a) with DMAPP were carried out in the presence of different metal ions at a final concentration of 5 mM. Incubations with the chelating agent EDTA or without additives were used as controls. In the incubation mixture with EDTA, slight increase of the enzyme activity to 116 % was observed, in comparison to that of incubation without additives. As observed for other members of the DMATS superfamily (Li 2009b; Steffan et al. 2009), Ca2+ clearly enhanced the enzyme activity of BrePT. The enzyme activity with Ca2+ was found to be 266 % of that without additives.

To study the behavior of BrePT towards DMAPP and twelve different cyclic dipeptides (1a–1l) in detail, kinetic parameters including Michaelis–Menten constants (K_M) and turnover numbers (k_cat), were determined by Hanes–Woolf and Eadie–Hofstee plots and are given in Table 3. The reactions catalyzed by BrePT apparently followed Michaelis–Menten kinetics. BrePT showed the best affinity to cyclo-L-Trp-L-Pro (1a) with the largest reaction velocity. K_M values for DMAPP and cyclo-L-Trp-L-Pro (1a) were found to be 98 and 32 μM, respectively. The turnover number and catalytic efficiency were calculated for 1a at

Table 2 (continued)

Compd	Cyclo-2-tert-prenyl-	Cyclo-2-tert-prenyl-	Cyclo-2-tert-prenyl-	Cyclo-2-tert-prenyl-
	L-Trp-Gly (2i)	L-Trp-L-en (2j)	L-Trp-L-Phe (2k)	L-Trp-L-Tyr (2l)
	in CD3OD	in CD3OD	in DMSO-d6b	in DMSO-d6b
Pos.	δ_6 multi. , J	δ_6 multi. , J	δ_6 multi. , J	δ_6 multi. , J
4	7.50, d, 8.0	7.52, d, 7.7	7.27, d, 7.1	7.27, d, 7.9
5	6.97, dd, 8.0, 7.0	6.97, t, 7.7	6.92, dd, 8.1, 7.1	6.92, dd, 7.9, 7.1
6	7.03, dd, 8.0, 7.0	7.05, t, 7.7	7.00, dd, 8.1, 7.1	7.00, dd, 7.9, 7.1
7	7.30, d, 8.0	7.32, d, 7.7	7.20, d, 7.1	7.23, d, 7.9
10	3.44, dd, 14.6, 4.4	3.51, dd, 14.8, 4.0	2.86, dd, 13.6, 5.2	2.78, dd, 13.7, 4.8
	3.34, dd, 14.6, 9.0	3.3*	2.79, dd, 13.6, 5.2	2.73, dd, 13.7, 4.8
11	4.19, dd, 9.0, 4.4	4.26, dd, 8.3, 4.0	4.07, t, 5.2	4.00, t, 4.8
14	3.3*	3.80, dd, 9.5, 4.5	3.84, dd, 9.1, 3.8	3.83, dd, 9.1, 3.6
17	1.43, ddd, 13.6, 9.5, 4.5	3.08, dd, 14.7, 3.8	3.10, dd, 14.5, 3.6	2.25, dd, 14.5, 9.1
	1.16, ddd, 13.6, 9.5, 4.5	2.33, dd,14.7, 9.1		
18	-	1.30, m	-	-
19	-	0.88, d, 6.6	7.10, d, 7.0	6.91, d, 8.5
20	-	0.86, d, 6.6	7.30, t, 7.0	6.68, d, 8.5
21	-	-	7.21, t, 7.0	-
22	-	-	7.30, t, 7.0	6.68, d, 8.5
23	-	-	7.10, d, 7.0	6.91, d, 8.5
1’	5.14, d, 17.5	5.16, d, 17.5	4.98, d, 10.6	4.99, d, 10.5
	5.09, d, 10.6	5.11, d, 10.6	4.97, d, 17.4	4.98, d, 17.4
2’	6.20, dd, 17.5, 10.6	6.21, dd, 17.5, 10.6	6.08, dd, 17.4, 10.6	6.08, dd, 17.4, 10.5
4’	1.53, s	1.56, s	1.43, s	1.43, s
5’	1.52, s	1.56, s	1.43, s	1.43, s

*Overlapping signals with those of solvents
b After addition of D2O
0.276 s\(^{-1}\) and 8,639 s\(^{-1}\) M\(^{-1}\), respectively. The \(K_M\) values of other tested substrates were found to be in the range of 82–2,906 \(\mu\)M. Some of these values are much higher than that of 1a but still in the concentration range expected for non-natural substrates. Comparing the kinetic data showed that BrePT has much higher catalytic efficiencies towards cyclo-Trp-Pro isomers with L-tryptophanyl moiety, i.e., 1a and 1b, than with their D-configured counter partners, i.e., 1c and 1d. As aforementioned, cyclo-L-Trp-D-Pro (1b) was also very well accepted by BrePT with a \(K_M\) value at 82 \(\mu\)M and turnover number at 0.15 s\(^{-1}\). The catalytic efficiency of 1b was 21% of that of 1a. Significant higher \(K_M\) values at 0.7 and 2.9 mM were calculated for 1c and 1d, respectively. The catalytic efficiency ratios of 1a to 1c and 1a to 1d were calculated to be approximately 64 and 960, respectively. Similar to the data obtained for cyclo-Trp-Pro isomers, higher catalytic efficiency was also calculated for cyclo-Trp-Ala isomers with L-configured tryptophanyl moiety than for their respective D-configured counter partners, i.e., with ratios of about 1.8 for cyclo-L-Trp-L-Ala (1e) to cyclo-D-Trp-L-Ala (1h) and cyclo-L-Trp-D-Ala (1f) to cyclo-D-Trp-D-Ala (1g). Cyclo-L-Trp-L-Leu (1j) was also found to be a good substrate for BrePT with a \(K_M\) value of 0.106 mM and turnover number of 0.014 s\(^{-1}\), corresponding to a catalytic efficiency of 134 s\(^{-1}\) M\(^{-1}\).

Discussion

In a previous study, Ding et al. (2010) showed the high specificity of the brevianamide F reverse prenyltransferase NotF. In that study, the natural substrate cyclo-L-Trp-L-Pro (1a) was very well, but cyclo-L-Trp-L-Tyr (1l) and cyclo-L-Trp-L-Trp (1n) were not accepted by NotF. In this study, we cloned, overexpressed and characterized a NotF homologue BrePT from *A. versicolor*, which accepted all of the 14 tested tryptophan-containing cyclic dipeptides with cyclo-L-Trp-L-Pro (1a) as the best substrate. This could indicate the different substrate specificities of BrePT and NotF. BrePT from *A. versicolor* shares a sequence identity of 83% on the amino acid level with NotF from *Aspergillus* sp. MF297-2 and is of 17 amino acids shorter than NotF. These 17 amino acids were found as three gaps in NotF (Fig. 2). Given the difference of their substrate specificity, it could be speculated that these three gaps would be responsible for the different flexibility of these enzymes towards aromatic substrates.

On the other hand, cyclic dipeptides consisting of two aromatic amino acids were also poor substrates for BrePT (Fig. 4). Cyclo-L-Trp-L-Tyr (II) and cyclo-L-Trp-L-Trp (1n) were accepted by BrePT with conversion yields of 13.6 and 12.7% after incubation with 18 \(\mu\)g of BrePT for 4 h, i.e., a relative activity of 14.8 and 13.9% of that of cyclo-L-Trp-L-Pro (1a), respectively. The catalytic efficiency was calculated for cyclo-L-Trp-L-Tyr (II) at 27 s\(^{-1}\) M\(^{-1}\), i.e., only 0.3% of that of 1a (Table 3). Unfortunately, the conversion yield of cyclo-L-Trp-L-Pro was not given for NotF in the previous

Table 3 Kinetic parameters of BrePT for selected substrates

<table>
<thead>
<tr>
<th>Name</th>
<th>(K_M) (mM)</th>
<th>(k_{cat}) (s(^{-1}))</th>
<th>(k_{cat}/K_M) (s(^{-1}) M(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclo-L-Trp-L-Pro (1a)</td>
<td>0.032</td>
<td>0.276</td>
<td>1639</td>
</tr>
<tr>
<td>Cyclo-L-Trp-D-Pro (1b)</td>
<td>0.082</td>
<td>0.150</td>
<td>1830</td>
</tr>
<tr>
<td>Cyclo-D-Trp-D-Pro (1c)</td>
<td>0.709</td>
<td>0.095</td>
<td>134</td>
</tr>
<tr>
<td>Cyclo-D-Trp-L-Pro (1d)</td>
<td>2.906</td>
<td>0.027</td>
<td>9</td>
</tr>
<tr>
<td>Cyclo-L-Trp-L-Ala (1e)</td>
<td>0.942</td>
<td>0.035</td>
<td>37</td>
</tr>
<tr>
<td>Cyclo-L-Trp-D-Ala (1f)</td>
<td>0.793</td>
<td>0.013</td>
<td>17</td>
</tr>
<tr>
<td>Cyclo-D-Trp-D-Ala (1g)</td>
<td>1.318</td>
<td>0.011</td>
<td>9</td>
</tr>
<tr>
<td>Cyclo-D-Trp-L-Ala (1h)</td>
<td>0.119</td>
<td>0.003</td>
<td>21</td>
</tr>
<tr>
<td>Cyclo-L-Trp-Gly (II)</td>
<td>1.300</td>
<td>0.032</td>
<td>25</td>
</tr>
<tr>
<td>Cyclo-L-Trp-L-Leu (1j)</td>
<td>0.106</td>
<td>0.014</td>
<td>134</td>
</tr>
<tr>
<td>Cyclo-L-Trp-L-Phe (1k)</td>
<td>0.094</td>
<td>0.004</td>
<td>40</td>
</tr>
<tr>
<td>Cyclo-L-Trp-L-Tyr (1l)</td>
<td>0.214</td>
<td>0.006</td>
<td>27</td>
</tr>
<tr>
<td>DMAPP</td>
<td>0.098</td>
<td>0.489</td>
<td>4,992</td>
</tr>
</tbody>
</table>
study (Ding et al. 2010). Given a similar behavior of BrePT and NotF regarding their substrate specificities, it would not be surprising that no product formation was observed for NotF with cyclo-L-Trp-L-Trp (11) and cyclo-L-Trp-L-Tyr (11) as substrates. It would be interesting now to test the acceptance of other substances investigated in this study by NotF, e.g., 1b or/and 1j.

From the catalytic efficiencies obtained for the four stereoisomers of cyclo-trypt-PrO (1a–1d) as well as for those of cyclo-trypt-Ala (1e–1h), it seems that an acceptance by BrePT is strongly dependent on the configuration of tryptophan. Isomers with L-tryptophan moiety were much better substrates for BrePT than those with a D-configuration (Fig. 4). The natural substrate of BrePT is unknown. Based on its high sequence similarity of 83 % on the amino acid level to NotF, the low KM value and high turnover number with cyclo-L-Trp-L-PrO (1a), it can be however speculated that the natural substrate of BrePT should be brevianamide F. As mentioned in the "Introduction," the product of BrePT, i.e., deoxybrevianamide E, is a precursor of brevianamides and notoamides, which were isolated from several strains of A. versicolor (Finefield et al. 2011). BrePT is therefore very likely involved in the biosynthesis of these compounds in A. versicolor (Finefield et al. 2011; Li et al. 2009).

We demonstrated in this study that BrePT catalyzed the reverse prenyl transfer reaction onto C2 of the indole nucleus of the tryptophan-containing diketopiperazines, at least for the 12 isolated and identified enzyme products (Fig. 5). This feature provides experimental evidence for a possible application of BrePT as a catalyst in the chemoenzymatic synthesis of C2 reversely prenylated cyclic dipeptides.

Acknowledgments This work was financially supported in part by grants from the Deutsche Forschungsgemeinschaft (Li844/1-3 to S.-M. Li) and China Natural Science Foundation (31070067 to X.-Q. Liu). Xia Yu is a recipient of a fellowship from China Scholarship Council.

References

© Springer

Electronic supplementary material for:

Identification of a brevianamide F reverse prenyltransferase BrePT from Aspergillus versicolor with a broad substrate specificity towards tryptophan-containing cyclic dipeptides

Suqin Yin1,2,3, Xia Yu2,3, Qing Wang1,2, Xiao-Qing Liu1* and Shu-Ming Li2*

1 College of Life Sciences, Capital Normal University, No.105 Xisanhuan Beilu, Beijing, 100048, China

2 Philipps-Universität Marburg, Institut für Pharmazeutische Biologie und Biotechnologie, Deutschhausstrasse 17A, D-35037 Marburg, Germany.

3 These authors contributed equally to this work

* correspondence to: Xiao-Qing Liu (liuxq@mail.cnu.edu.cn) and Shu-Ming Li (shuming.li@Staff.uni-Marburg.de)
Figure S1. 1H-NMR spectrum of 2a in CD$_3$OD (500 MHz)

Figure S2. 1H-NMR spectrum of 2b in CD$_3$OD (500 MHz)

Figure S3. 1H-NMR spectrum of 2c in CD$_3$OD (500 MHz)

Figure S4. 1H-NMR spectrum of 2d in CD$_3$OD (400 MHz)

Figure S5. 1H-NMR spectrum of 2e in CD$_3$OD (400 MHz)

Figure S6. 1H-NMR spectrum of 2f in CD$_3$OD (500 MHz)

Figure S7. 1H-NMR spectrum of 2g in CD$_3$OD (400 MHz)

Figure S8. 1H-NMR spectrum of 2h in CD$_3$OD (400 MHz)

Figure S9. 1H-NMR spectrum of 2i in CD$_3$OD (500 MHz)

Figure S10. 1H-NMR spectrum of 2j in CD$_3$OD (500 MHz)

Figure S11. 1H-NMR spectrum of 2k in DMSO-d_6 (400 MHz) after addition of D$_2$O

Figure S12. 1H-NMR spectrum of 2l in DMSO-d_6 (400 MHz) after addition of D$_2$O
Figure S1. 1H-NMR spectrum of 2a in CD$_3$OD (500 MHz)

Figure S2. 1H-NMR spectrum of 2b in CD$_3$OD (500 MHz)
Figure S3. 1H-NMR spectrum of 2c in CD$_3$OD (500 MHz)

Figure S4. 1H-NMR spectrum of 2d in CD$_3$OD (400 MHz)
Figure S5. 1H-NMR spectrum of 2e in CD$_3$OD (400 MHz)

Figure S6. 1H-NMR spectrum of 2f in CD$_3$OD (500 MHz)
Figure S7. 1H-NMR spectrum of 2g in CD$_3$OD (400 MHz)

Figure S8. 1H-NMR spectrum of 2h in CD$_3$OD (400 MHz)
Figure S9. 1H-NMR spectrum of 2i in CD$_3$OD (500 MHz)

Figure S10. 1H-NMR spectrum of 2j in CD$_3$OD (500 MHz)
Figure S11. 1H-NMR spectrum of 2k in DMSO-d_6 (400 MHz) with addition of one drop of D$_2$O

Figure S12. 1H-NMR spectrum of 2l in DMSO-d_6 (400 MHz) with addition of one drop of D$_2$O
5.4 Complementary stereospecific synthesis of cis-configurated prenylated pyrroloindoline diketopiperazines by indole prenyltransferases of the DMATS superfamily (manuscript)
Complementary stereospecific synthesis of cis-configured prenylated pyrroloindoline diketopiperazines by indole prenyltransferases of the DMATS superfamily

Xia Yu,* Xiulan Xie, and Shu-Ming Li*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Prenylated pyrroloindoline diketopiperazines are a subgroup of prenylated indole alkaloids with a characteristic 6/5/5/6-fused tetracyclic ring system. Three indole prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily, i.e., AnaPT and CdpC3PT from Neosartorya fischeri and CdpNPT from Aspergillus fumigatus, had been found to catalyze the formation of prenylated pyrroloindoline diketopiperazines from tryptophan-containing cyclic dipeptides in one-step reactions. In this study, we investigated their behavior towards all of the four stereoisomers of cyclo-Trp-Ala and cyclo-Trp-Pro. Our results demonstrated that the enzymes showed different preference for these substrates and different stereospecificity of the product formation. The stereoselectivity of AnaPT and CdpC3PT depends mainly on the configuration of the tryptophanyl moiety in the tested cyclic dipeptides. AnaPT usually catalyze the anti-substitution of the prenyl moiety at C-3 to the carbonyl moiety at C-11, while CdpC3PT introduces the prenyl moiety from the opposite side, i.e. syn-configuration to the carbonyl moiety at C-11. CdpNPT catalyzes both syn- and anti-substitution of the prenyl moiety and the structure of the second amino acid moiety of the tested dipeptides is important for the stereospecificity in its enzyme catalysis. These enzymes are therefore efficient tools for enantioselective synthesis of cis-configured prenylated pyrroloindoline diketopiperazines. As examples, we prepared in this study eight and six stereoisomers of cis-configured prenylated pyrroloindoline diketopiperazines from cyclo-Trp-Ala and cyclo-Trp-Pro isomers, respectively.

Introduction

Prenylated indole alkaloids are mainly found in the family of Clavicipitaceae and Trichocomaceae of Ascomycota, and carry important pharmacological and biological activities. Prenylated pyrroloindoline diketopiperazines, a subgroup of these alkaloids, contain a 6/5/5/6-fused tetracyclic core with at least three or four chiral centres (Fig. 1). Their structural complexity prohibited a conventional synthesis of these compounds. In previous studies, three C3-prenyltransferases belonging to the dimethylallyltryptophan synthase (DMATS) superfamily were identified and characterized biochemically, i.e., AnaPT and CdpC3PT from Neosartorya fischeri and CdpNPT from Aspergillus fumigatus. They introduced a dimethylallyl moiety to position C-3 of a tryptophanyl moiety. In addition, they catalyzed also the formation of a five-membered ring between the original indole and diketopiperazine rings with a cis-configuration between H-2 and C3-dimethylallyl moiety, resulting in the formation of prenylated pyrroloindoline diketopiperazines (Fig. 1). Attacking of the dimethylallyl cation by C-3 of the indole ring was proposed to be the first step in the reaction mechanism, resulting in the formation of an intermediate with a positive charge at C-2. This is followed by the formation...
Table 1: Conversion of cyclo-Trp-Ala (1a−4a) and cyclo-Trp-Pro isomers (5a−8a) catalyzed by AnaPT, CdpC3PT and CdpNPT. The assays contained 40 µg of the recombinant enzymes each and were incubated at 37 °C for 3 h.

<table>
<thead>
<tr>
<th>Subs.</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AnaPT</td>
</tr>
<tr>
<td></td>
<td>S.C.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Ala (1a)</td>
<td></td>
</tr>
<tr>
<td>cyclo-L-Trp-D-Ala (2a)</td>
<td></td>
</tr>
<tr>
<td>cyclo-L-Trp-D-Ala (3a)</td>
<td></td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro (5a)</td>
<td></td>
</tr>
<tr>
<td>cyclo-L-Trp-D-Pro (6a)</td>
<td></td>
</tr>
<tr>
<td>cyclo-D-Trp-D-Pro (7a)</td>
<td></td>
</tr>
<tr>
<td>cyclo-D-Trp-L-Pro (8a)</td>
<td></td>
</tr>
</tbody>
</table>

S.C.: substrate consumption.

Anti−: conversion yields of anti-cis configured prenylated pyrroloindoline diketopiperazines.

Syn−: conversion yields of syn-cis configured prenylated pyrroloindoline diketopiperazines.
n.d.: not detected.

n.i.: not isolated due to low stability

of a C–N bond between C-2 and N-12 with a positive charge at N-12.17−19 Release of a proton from N-12 leads to the enzymatic products.17−19 The substrate promiscuity of AnaPT, CdpC3PT and CdpNPT towards tryptophan-containing cyclic dipeptides provided evidence for their potential application as catalysts for highly regio- and stereoselective conversions.15,17,19 By using AnaPT and CdpNPT, four azsonalamin stereoisomers were prepared from benzodiazepinedione enantiomers.20 However, the most of the reported cyclic dipeptides usually contained only L-configured amino acid moieties, and little was known about their behavior on substrates with D-configured amino acid moieties. In order to understand more about the stereospecificity of AnaPT, CdpC3PT and CdpNPT, we carried out enzyme incubation with four cyclo-Trp-Ala isomers (1a−4a) and four cyclo-Trp-Pro isomers (5a−8a) and analyzed the chemical structures of the enzyme products.

Results and Discussion

The four cyclo-Trp-Ala (1a−4a) and cyclo-Trp-Pro isomers (5a−8a) (Table 1) were synthesized according to the methods published previously.21,22 Incubation of these substrates was carried out with 40 µg of AnaPT, CdpC3PT or CdpNPT in the presence of DMAPP for 3 h. Assays with heat-inactivated proteins by boiling for 20 min were used as negative controls. HPLC analysis of the incubation mixtures showed that isomers of cyclo-Trp-Ala (1a−4a) were well accepted by all of the three enzymes (Fig. 2). Substrate consumptions were found to be in the range of 13.9−52.4% in the assays with AnaPT and CdpC3PT (Table 1). In comparison to those of 13.9% for cyclo-D-Trp-D-Ala (3a) and 21.7% for cyclo-D-Trp-L-Ala (4a), AnaPT accepted cyclo-L-Trp-L-Ala (1a) and cyclo-L-Trp-D-Ala (2a) significantly better (Table 1) with substrate consumption at 39.7% and 32.4%, respectively. These results indicated the preference of AnaPT for L-configured tryptophanyl moiety. CdpC3PT represented a similar behavior as AnaPT. The substrate consumption of cyclo-L-Trp-L-Ala (1a) at 52.4% and cyclo-L-Trp-D-Ala (2a) at 34.2% were twice or even higher than those for cyclo-D-Trp-D-Ala (3a) and cyclo-D-Trp-L-Ala (4a). As given in Table 1, CdpNPT showed much higher activity towards four cyclo-Trp-Ala isomers (1a−4a) than AnaPT and CdpC3PT. Substrate consumptions in the range of 62.3−87.0% were detected in the enzyme assays with CdpNPT. The comparable activity of CdpNPT towards cyclo-Trp-Ala isomers (1a−4a) indicated that CdpNPT exhibited no obvious preference for L- or D-configured cyclic dipeptides.

In the incubation mixtures with the four cyclo-Trp-Pro isomers (5a−8a), preference of AnaPT and CdpC3PT towards substrates with L-tryptophanyl moiety was also observed (Fig. 3). By using AnaPT, higher substrate consumption of 15.2% for cyclo-L-Trp-L-Pro (5a) and 30.0% for cyclo-D-Trp-D-Pro (6a) were detected, in comparison to 7.1% for cyclo-D-Trp-D-Pro (7a) and 8.7% for cyclo-D-Trp-L-Pro (8a) (Table 1). CdpC3PT represented a significant higher activity towards cyclo-L-Trp-L-Pro (5a) and cyclo-L-Trp-D-Pro (6a) with substrate consumption of 88.3 and 76.1%, respectively, approximately three times or even higher than those for cyclo-D-Trp-L-Pro (7a) and cyclo-D-Trp-L-Pro (8a). As observed for cyclo-Trp-Ala isomers (1a−4a), relative higher activity than those of AnaPT and CdpC3PT was also detected for CdpNPT in the assays with cyclo-Trp-Pro isomers (5a−8a). Yields of the product formation were found in the range of 68.5−98.0%.

Detailed inspection of the HPLC chromatograms of the incubation mixtures of 1a−4a with AnaPT and CdpC3PT (Fig. 2) revealed the formation of one product peak in each assay. The presence of one dominant peak for 3a or two comparable peaks for 1a, 2a and 4a were observed in the assays of CdpNPT. Incubation of AnaPT with cyclo-L-Trp-L-Pro (5a), cyclo-L-Trp-D-Pro (6a) and cyclo-D-Trp-L-Pro (8a) resulted in the formation of one dominant enzyme product in each assay (Fig. 3). AnaPT catalyzed the conversion of two dominant products from cyclo-D-Trp-D-Pro (7a). In cases of the assays with CdpC3PT, one dominant product each was detected for cyclo-L-Trp-L-Pro (6a), cyclo-D-Trp-D-Pro (7a) and cyclo-D-Trp-L-Pro (8a), and three products for cyclo-L-Trp-L-Pro (5a). In the incubation mixtures with CdpNPT, one dominant product peak each was observed for cyclo-L-Trp-D-Pro (6a) and cyclo-D-Trp-D-Pro (7a), while two and three products were for cyclo-L-Trp-L-Pro (5a) and cyclo-D-Trp-L-Pro (8a), respectively.

UV-detection revealed that 1b−8b and 1c−8c were likely prenylated pyrroloindoline diketopiperazines with maximal...
absorptions at 205, 240 and 295 nm. The dominant products ($1b$-$4b$, $1c$-$4c$) of the four cyclo-Trp-Ala isomers ($1a$-$4a$) catalyzed by AnaPT and CdpC3PT were isolated on HPLC, respectively, and subjected to 1H-NMR and MS analyses. Products ($1b$-$4b$, $1c$, $2c$ and $4c$) were also purified from the incubation mixtures with CdpNPT. 1H-NMR and MS analyses proved that the products from CdpNPT were identical to those from AnaPT and CdpC3PT assays. Similar experiments were also carried out for the four cyclo-Trp-Pro isomers ($5a$-$8a$). Products $5b$-$8b$ and $7c$ from the reaction mixtures of AnaPT, $5c$-$8c$, $7b$, $5d$ and $6d$ of CdpC3PT and $5b$, $7b$, $8b$, $5c$-$7c$, $6d$ and $8d$ of CdpNPT were isolated on HPLC and subjected to MS and NMR analyses. Positive EI-MS or ESI-MS (see Electronic Supplementary Information, Table S1) confirmed the presence of one dimethylallyl moiety each in $1b$-$5b$, $7b$ and $1c$-$8c$ by detection of masses, which are 68 daltons larger than those of the respective substrates. In the 1H-NMR spectra of all of the enzyme products (taken in CDCl$_3$), signals at δ_H 5.15-5.07 (d, 2H-1'), 5.94-5.99 (dd, H-2'), 1.11-1.14 (s, 3H-4'), 0.99-1.11 (s, 3H-5') were observed (Tables S2-3 and Figs. S1-S17), proving unequivocally the presence of a reverse dimethylallyl moiety in their structures. Cross peaks in HSQC spectra of $5b$, $5c$ and $6c$ revealed that the singlets of H-2 (δ_H 5.39-5.71, 1H, s) correlated with C-2 (δ_C 77.2-79.4), proving the disappearance of the double bond between C-2 and C-3 of the original indole ring. Connectivities from H-2 to C-
11 (δc 59.1-60.5) in the HMBC spectra of 5b, 5c and 6c showed clearly that a chemical bond between C-2 and N-12 was formed and therefore the three C3-prenylated products contained a fused five-membered ring between the indoline and diketopiperazine ring. In the HMBC spectra of 5b, 5c and 6c (Figs. S9-S11), connectivities from H-2 of the indoline ring to C-3' (δc 40.8-41.6) of the prenyl moiety, and from both H-4' (δh 1.11-1.14, 3H, s) and H-5' (δh 0.99-1.01, 3H, s) of the prenyl moiety to C-3 (δc 61.9-62.8) of the indoline ring, proved unequivocally the attachment of the dimethylallyl moiety to C-3 of the indoline ring. NOESY experiments provided unambiguous evidences for a cis-configuration between H-2 and C3-prenyl moiety (Figs. S9-S11). For example, strong or medium NOE correlations were observed for H-2 with H-2', H-4' and H-5' of the dimethylallyl moieties. For compound 5b, strong NOE correlation was observed between H-4' of the prenyl moiety and H-10b, which has the anti-configuration to the carbonyl moiety at C-11. NOE correlation was not observed for the protons of the prenyl moiety with H-10a, which has the syn-configuration to the carbonyl moiety at C-11. Therefore, H-2 and C3-prenyl moiety must be substituted on the same side to H-10b, consequently the opposite side of the carbonyl moiety at C-11 and proving that 5b is an anti-cis configured prenylated pyrroloindoline diketopiperazine. In contrast to 5b, weak or none NOE correlations were observed...
Table 2: Signals of H-10b and H-11 in the 1H-NMR spectra of cis-configured prenylated pyrroloindoline diketopiperazines from the incubation mixtures of C3-prenyltransferases with cyclic dipetides.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>AnaPT</td>
<td>anti-cis</td>
<td>t</td>
<td>8.9</td>
<td>2.79</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-D-Pro</td>
<td>AnaPT</td>
<td>anti-cis</td>
<td>t</td>
<td>8.9</td>
<td>2.79</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Leu</td>
<td>AnaPT</td>
<td>anti-cis</td>
<td>t</td>
<td>8.5</td>
<td>2.81</td>
<td>19</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Trp</td>
<td>AnaPT</td>
<td>anti-cis</td>
<td>t</td>
<td>9.2</td>
<td>2.79</td>
<td>19</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Trp</td>
<td>AnaPT</td>
<td>anti-cis</td>
<td>t</td>
<td>9.2</td>
<td>2.81</td>
<td>19</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Trp</td>
<td>AnaPT</td>
<td>anti-cis</td>
<td>t</td>
<td>8.8</td>
<td>2.81</td>
<td>19</td>
</tr>
<tr>
<td>cyclo-L-Trp-Gly</td>
<td>AnaPT</td>
<td>anti-cis</td>
<td>t</td>
<td>9.0</td>
<td>2.84</td>
<td>19</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Ala</td>
<td>AnaPT</td>
<td>anti-cis</td>
<td>t</td>
<td>8.7</td>
<td>2.81</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-D-Ala</td>
<td>AnaPT</td>
<td>anti-cis</td>
<td>t</td>
<td>9.1</td>
<td>2.87</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-D-Ala</td>
<td>AnaPT</td>
<td>anti-cis</td>
<td>t</td>
<td>8.8</td>
<td>2.81</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Ala</td>
<td>AnaPT</td>
<td>anti-cis</td>
<td>t</td>
<td>9.2</td>
<td>2.87</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>6.7</td>
<td>2.54</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>5.3</td>
<td>2.51</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>5.3</td>
<td>2.51</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>5.1</td>
<td>2.55</td>
<td>15</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>6.2</td>
<td>2.52</td>
<td>15</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>6.2</td>
<td>2.52</td>
<td>15</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>6.1</td>
<td>2.52</td>
<td>15</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>5.9</td>
<td>2.56</td>
<td>15</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>6.2</td>
<td>2.55</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>6.2</td>
<td>2.57</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-D-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>6.5</td>
<td>2.55</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>6.2</td>
<td>2.57</td>
<td>this study</td>
</tr>
<tr>
<td>cyclo-L-Trp-L-Pro</td>
<td>CdpC3PT</td>
<td>syn-cis</td>
<td>dd</td>
<td>6.2</td>
<td>2.57</td>
<td>this study</td>
</tr>
</tbody>
</table>

H-10b and H-11b have the syn- and anti-configuration to the carbonyl moiety at C-11, respectively.

for protons of the prenyl moiety with H-10b and H-11. The 1H-NMR spectrum of the enzyme product 7b obtained from substate 7a was identical to that of 5b obtained from 5a (Figs. S9 and S12). Considering that 7a is the enantiomer of 5a, 7b and 5b should also be enantiomers. The structure of 7b was therefore assigned to an anti-cis configured prenylated pyrroloindoline diketopiperazine. Similar phenomena were also observed for enzyme product 7c and 7e as well as 8c and 8e. It can be therefore concluded that the prenyl moiety has a syn-configuration to the carbonyl moiety at C-11 in 7c and 8c.

Detailed inspection of the 1H-NMR spectra revealed significant difference between anti-configured (5b and 7b) and syn-configured derivatives (5e, 6c and 8c) for the coupling patterns of H-11 and chemical shift of H-10b. A triplet was detected for H-11 in 5b and 7b, while a doublet was observed for H-11 in 5c, 6c, and 8c. Concerning the chemical shifts for H-10b, it seems that H-10b in products with an anti-configured prenyl moiety was low-field shifted approximate 0.25 ppm in comparison to H-10b in those with a syn-configured prenyl moiety (Table 2). To understand the observed difference for H-11 and H-10b, 1H-NMR data of known anti-cis and syn-cis configured prenylated pyrroloindoline diketopiperazines from literature and from this study are summarized in Table 2. The observed difference for H-11 and H-10b in this study can be indeed also found for other product pairs of known compounds. In addition, similar coupling constants were observed for H-11 in products bearing a prenyl moiety in the same orientation. The coupling constants of H-11 were approximately 9 Hz for the triplets in anti-cis configured prenylated pyrroloindoline diketopiperazines and about 11 Hz and 6 Hz for the double doublets in syn-cis configured prenylated pyrroloindoline diketopiperazines. Therefore, the 1H-1H vicinal coupling patterns of H-11 and chemical shifts for H-10b in 1H-NMR spectra could be used for prediction of the stereochemistry of cis-configured prenylated pyrroloindoline diketopiperazines.

In the 1H-NMR spectra of the product pairs obtained from cyclo-Trp-Ala isomers, triplets with coupling constants of 8.7-9.1 Hz were observed for H-11 in products 1b-4b, while double doublets with coupling constants of 11.1-11.2 Hz and 6.2 Hz were detected for H-11 in 1b-4c. Furthermore, comparison of the signals in the 1H-NMR spectra of 1b to 1c, 2b to 2c, 3b to 3c and 4b to 4c revealed that H-10b of the former was low-field shifted 0.26-0.30 ppm to the latter in respective product pairs. Thus, 1b-4b and 1c-4c were assigned to be anti- and syn-cis configured prenylated pyrroloindoline diketopiperazines, respectively. A literature search revealed that the 1H-NMR data of 2c corresponded well to those published previously. Unfortunately, 6b and 8b were very unstable and their structures cannot be elucidated in this study. In addition to cis-configured prenylated pyrroloindoline diketopiperazines, N-regularly prenylated derivatives of cyclo-Trp-Pro (5d, 6d and 8d) were also detected in the enzyme assays of CdpNPT and CdpC3PT, and their structures were confirmed by 1H-NMR and MS analyses (Figs. S15-S17). From the obtained data, it is obvious that the configuration of tryptophan moiety in the tested cyclic dipetides has a significant influence on the attack direction of the indole ring to the dimethylallyl cation. AnaPT converted all cyclo-Trp-Ala stereoisomers (1a-4a) to anti-cis configured prenylated pyrroloindoline diketopiperazines (1b-4b). This means that the
prenyl moiety was always attached at the opposite side of the carbonyl moiety at C-11. Similar phenomena were also observed for assays of AnaPT with cyclo-L-Trp-L-Pro (5a) and cyclo-D-Trp-D-Pro (7a). In the incubation mixture with cyclo-L-Trp-L-Pro (5a), only the product with anti-configured prenylation was detected. Although both anti- and syn-cis configured prenylated pyrroloindoline diketopiperazines were isolated from assays of AnaPT with cyclo-D-Trp-D-Pro (7a), the anti-cis configured product with 94% of the C3-prenylated derivatives (Table 1) was the clearly dominant product.

1H-NMR spectra confirmed the formation of syn-cis configured prenylated pyrroloindoline diketopiperazines (1c-8c) from all substrates with CdpC3PT. In the incubation mixture of cyclo-D-Trp-D-Pro (7a) with CdpC3PT, conversion yield of C3-

Fig. 4: Prenyl transfer reactions catalyzed by AnaPT, CdpC3PT and CdpNPT towards 1a-4a and 5a-8a. Only C3-prenylated products with yields more than 3% are illustrated.
prenylated products was very low. In this case, one additional anti-cis configured prenylated pyrroloindoline diketopiperazine 7b was also isolated. These data confirmed that the stereospecificity of CdpC3PT was also mainly influenced by the configuration of tryptophanyl moiety other than alaninyl or prolinyl moiety in the tested cyclic dipeptides. The prenylation almost took place at the same side of the carbonyl moiety at C-11.

It was reported in a previous study that CdpNPT catalyzed only syn-prenylation of cyclo-L-Trp-L-Pro (5a).15 Detailed inspection of the HPLC chromatogram of incubation mixture of CdpNPT with 5a revealed that one minor peak with a ratio of 6 : 94 to the syn-cis configured prenylated pyrroloindoline diketopiperazine 5c with the characteristic UV absorption of prenylated pyrroloindoline diketopiperazines was also detected. The minor peak had the same retention time with the anti-cis configured prenylated pyrroloindoline diketopiperazine (5b) produced by AnaPT and was subsequently confirmed to be an identical structure by the 1H-NMR analysis. Similar to 5a, one minor peak each (3c and 7c) with a characteristic UV absorption of prenylated pyrroloindoline diketopiperazines, in addition to the anti-cis configured prenylated pyrroloindoline diketopiperazines (3b and 7b), were also detected in the assays of CdpNPT with cyclo-D-Trp-D-Ala (3a) and cyclo-D-Trp-D-Pro (7a). The ratio of the products was found to be about 3 : 97 for 3c and 3b and 2 : 98 for 7c and 7b in these assays. Products 3c and 7c formed by CdpNPT had the same retention time with syn-cis configured prenylated pyrroloindoline diketopiperazines 3c and 7c formed by CdpC3PT, and thereby could be assigned to syn-cis configured prenylated pyrroloindoline diketopiperazines.

It seems that CdpNPT showed different stereospecificity towards the four isomers of cyclo-Trp-Ala isomers (1a-4a) and cyclo-Trp-Pro isomers (5a-7a). CdpNPT preferred to catalyze the formation of syn-cis configured prenylated pyrroloindoline diketopiperazines (5c and 6c) from cyclo-L-Trp-L-Pro (5a) and cyclo-L-Trp-D-Pro (6a), and an anti-cis configured prenylated pyrroloindoline diketopiperazine (7c) from cyclo-D-Trp-D-Pro (7a). These products were found as major products in the enzyme assays with 5a-7a. Although a main product (3b) with anti-configured prenyl moiety was observed in the assay with cyclo-D-Trp-D-Ala (3a), product yields of derivatives with syn- and anti-configured prenyl moiety were comparable in the assays with cyclo-L-Trp-L-Ala (1a), cyclo-L-Trp-D-Ala (2a) and cyclo-D-Trp-L-Ala (4a). In contrast to AnaPT and CdpC3PT, it is likely that not the configuration of amino acids moiety in the tested cyclic dipeptides, but the size of the second amino acid moiety plays an important role for the stereospecificity of CdpNPT. The size reduction from cyclo-Trp-Pro (5a-8a) to cyclo-Trp-Ala (1a-4a) led to lower stereoselectivity of CdpNPT.

Furthermore, free rotation of the residue at C-14 of the diketopiperazine ring plays also an important role for the stereoselectivity observed in this study. In a previous study,20 we have observed that the stereoselectivity of a given enzyme for benzodiazepinediones differed clearly from that of tested diketopiperazines. AnaPT introduced in that case a prenyl moiety from different sides of (R)- and (S)-benzodiazepinedione, so that an c-prenylation took place in both cases, resulting in the formation of anti-cis and syn-cis configured aszonalenin, respectively (Fig. 5). In contrast, CdpNPT catalyzed a ß-prenylation of both substrates, i.e. introduced the prenyl moiety from the opposite side of the AnaPT reactions, resulting in the formation of other two anti-cis and syn-cis configured isomers (Fig. 5). In all of the four reactions, only one of the four stereoisomers was detected as enzyme product.

ten.

Conclusions

In this study, we presented the substrate promiscuity of AnaPT, CdpC3PT and CdpNPT towards all of the four stereoisomers of cyclo-Trp-Ala and cyclo-Trp-Pro, and demonstrated clearly the distinct stereospecific preference of the three C3-prenyltransferases. The configuration of tryptophanyl moiety in the tested cyclic dipeptides strongly influences the prenylation orientation of the AnaPT and CdpC3PT reactions, but not that of CdpNPT. The stereoselectivity of the AnaPT and CdpC3PT reactions were approximately 100% in incubation mixtures with different stereoisomers and complemented to each other. In comparison to AnaPT and CdpC3PT, CdpNPT showed lower stereospecificity, but higher conversion yields towards most of the tested substrates. Therefore, CdpNPT could be useful for prenylation of poor substrates of AnaPT and CdpC3PT.

Experimental Section

Chemicals

Dimethylallyl diphosphate (DMAPP) was prepared according to the methods described for GPP.24 Synthesis of the four cyclo-Trp-Ala (1a-4a) isomers and cyclo-Trp-Pro isomers (5a-8a) was according to the method published previously.21,22

Overproduction and purification of the recombinant proteins as well as enzyme assays with recombinant purified protein

AnaPT, CdpNPT and CdpC3PT were overproduced in E. coli and purified as described.14,16 The enzymatic reaction mixtures (100
μl) for determination of the relative activities with different tryptophan-containing cyclic dipeptides contained 50 mM Tris-HCl (pH 7.5), 10 mM CaCl₂, 1 mM substrate, 2 mM DMAPP, 0.15-2% (v/v) glycerol, 5% (v/v) DMSO and 40 μg of purified recombinant protein. The reaction mixtures were incubated at 37 °C for 3 h. The enzyme reactions were terminated by addition of 100 μl methanol per 100 μl reaction mixtures. Enzymatic assays for isolation of the enzyme products contained 2 mM DMAPP, 1 mM cyclic dipeptide, 10 mM CaCl₂, 50 mM Tris-HCl (pH 7.5), and 2 mg of purified recombinant protein per 10 ml assay. The reaction mixtures were incubated at 37 °C for 16 h and extracted subsequently with ethyl acetate. After evaporation of the solvent, the residues were dissolved in methanol and purified on HPLC.

HPLC conditions for analysis and isolation of synthetic products
The enzyme products of the incubation mixtures were analyzed on HPLC with an Agilent series 1200 by using a Multospher 120 RP-18 column (250 x 4 mm, 5 μm, C+S Chromatographie Service, Langerwehe, Germany) at a flow rate of 1 ml/min. Water (solvent A) and acetonitrile (solvent B) each with 0.5% (v/v) trifluoroacetic acid were used as solvents. For analysis of enzyme products, 37% (v/v) solvent B in 30 min was used. The column was then washed with 85% solvent B for 5 min and equilibrated with 37% (v/v) solvent B for 5 min. Detection was carried out by a photodiode array detector at 254 nm. For isolation, the same HPLC equipment with a Multospher 120 RP-18 column (250 x 10 mm, 5 μm, C+S Chromatographie Service) was used. The flow rate of 2.5 ml/min was used. Water (solvent C) and acetonitrile (solvent D) without acid were used as solvents. 30 μl of the residues were dissolved in methanol and purified on HPLC. The enzyme products of the incubation mixtures were analyzed on an Agilent series 1200 by using an electron spray ionization (ESI) or on an Auto SPEC with an electron impact (HR-EI) mode. Positive MS data are given in Table S1 in Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

NMR spectroscopic analysis and high resolution mass spectra
NMR spectra were recorded on a JEOL ECX-400, Bruker Avance 500 MHz or Bruker Avance 600 MHz spectrometer. Chemical shifts were referenced to the signal of CDCl₃ at 7.26 ppm. All spectra were processed with MestReNova 5.2.2. The NMR spectra were recorded on a JEOL ECX-400, Bruker 35 MHz or Bruker Avance 600 MHz spectrometer. Chemical shifts were referenced to the signal of CDCl₃ at 7.26 ppm. All spectra were processed with MestReNova 5.2.2. The NMR spectra were recorded on a JEOL ECX-400, Bruker 35 MHz or Bruker Avance 600 MHz spectrometer. Chemical shifts were referenced to the signal of CDCl₃ at 7.26 ppm. All spectra were processed with MestReNova 5.2.2.

Acknowledgements
This work was financially supported in part by a grant from the Deutsche Forschungsgemeinschaft (Li844/4-1 to S.-M. Li). Xia Yu is a recipient of a fellowship from China Scholarship Council.

Notes and references
Supplementary information for:

Complementary stereospecific synthesis of cis-configurated prenylated pyrroloindoline diketopiperazines by indole prenyltransferases of the DMATS superfamily

Xia Yu, a Xiulan Xie, b and Shu-Ming Li* a

a Philipps-Universität Marburg, Institut für Pharmazeutische Biologie und Biotechnologie, Deutschhausstrasse 17A, D-35037 Marburg, Germany. Email: shuming.li@staff.uni-marburg.de, Tel: 0049-6421-2822461, Fax: 0049-6421-2825365.

b Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Strasse, 35032 Marburg, Germany.

Correspondence to: Shu-Ming Li, Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany, Tel: 0049-6421-2822461, Fax: 0049-6421-2825365, email: shuming.li@staff.uni-marburg.de
Contents

Table S1: HR-EI-MS and ESI-MS data of enzyme products ... 3

Table S2. 1H-NMR data of enzyme products obtained from cyclo-Trp-Ala isomers (1a-4a) in CDCl$_3$ (400 MHz). Chemical shifts (δ) were given in ppm and coupling constants (J) in Hz. ... 4

Table S3. 1H- and 13C- NMR data of enzyme products obtained from cyclo-Trp-Pro isomers (5a-8a) in CDCl$_3$ (400 MHz). Chemical shifts (δ) were given in ppm and coupling constants (J) in Hz. ... 5

Fig. S1: 1H-NMR spectrum of 1b in CDCl$_3$ (500 MHz). .. 7

Fig. S2: 1H-NMR spectrum of 1c in CDCl$_3$ (400 MHz). .. 7

Fig. S3: 1H-NMR spectrum of 2b in CDCl$_3$ (400 MHz). ... 8

Fig. S4: 1H-NMR spectrum of 2c in CDCl$_3$ (400 MHz). ... 8

Fig. S5: 1H-NMR spectrum of 3b in CDCl$_3$ (500 MHz). ... 9

Fig. S6: 1H-NMR spectrum of 3c in CDCl$_3$ (400 MHz). ... 9

Fig. S7: 1H-NMR spectrum of 4b in CDCl$_3$ (500 MHz). ... 10

Fig. S8: 1H-NMR spectrum of 4c in CDCl$_3$ (400 MHz). ... 10

Fig. S9.1: 1H-NMR spectrum of 5b in CDCl$_3$ (500 MHz). ... 11

Fig. S9.2: HSQC spectrum of 5b in CDCl$_3$ (500 MHz). ... 11

Fig. S9.3: HMBC spectrum of 5b in CDCl$_3$ (500 MHz). ... 12

Fig. S9.4: NOESY spectrum of 5b in CDCl$_3$ (500 MHz). ... 12

Fig. S10.1: 1H-NMR spectrum of 5c in CDCl$_3$ (600 MHz). ... 13

Fig. S10.2: HSQC spectrum of 5c in CDCl$_3$ (600 MHz). ... 13

Fig. S10.3: HMBC spectrum of 5c in CDCl$_3$ (600 MHz). ... 14

Fig. S10.4: NOESY spectrum of 5c in CDCl$_3$ (600 MHz). ... 14

Fig. S11.1: 1H-NMR spectrum of 6c in CDCl$_3$ (500 MHz). ... 15

Fig. S11.2: HSQC spectrum of 6c in CDCl$_3$ (500 MHz). ... 15

Fig. S11.3: HMBC spectrum of 6c in CDCl$_3$ (500 MHz). ... 16

Fig. S11.4: NOESY spectrum of 6c in CDCl$_3$ (500 MHz). ... 16

Fig. S12: 1H-NMR spectrum of 7b in CDCl$_3$ (400 MHz). ... 17

Fig. S13: 1H-NMR spectrum of 7c in CDCl$_3$ (400 MHz). ... 17

Fig. S14: 1H-NMR spectrum of 8c in CDCl$_3$ (400 MHz). ... 18

Fig. S15: 1H-NMR spectrum of 5d in CDCl$_3$ (500 MHz). ... 18

Fig. S16: 1H-NMR spectrum of 6d in CDCl$_3$ (500 MHz). ... 19

Fig. S17: 1H-NMR spectrum of 8d in CDCl$_3$ (400 MHz). ... 19
<table>
<thead>
<tr>
<th>Comp.</th>
<th>Chemical formula</th>
<th>MS</th>
<th>Calculated</th>
<th>Measured</th>
<th>Deviation (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>C\textsubscript{19}H\textsubscript{23}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>326.2 [M+H]\dagger</td>
<td>326.1</td>
<td>-</td>
</tr>
<tr>
<td>1c</td>
<td>C\textsubscript{19}H\textsubscript{23}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>326.2 [M+H]\dagger</td>
<td>326.1</td>
<td>-</td>
</tr>
<tr>
<td>2b</td>
<td>C\textsubscript{19}H\textsubscript{23}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>326.2 [M+H]\dagger</td>
<td>326.1</td>
<td>-</td>
</tr>
<tr>
<td>2c</td>
<td>C\textsubscript{19}H\textsubscript{23}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>326.2 [M+H]\dagger</td>
<td>326.1</td>
<td>-</td>
</tr>
<tr>
<td>3b</td>
<td>C\textsubscript{19}H\textsubscript{23}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>326.2 [M+H]\dagger</td>
<td>326.1</td>
<td>-</td>
</tr>
<tr>
<td>3c</td>
<td>C\textsubscript{19}H\textsubscript{23}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>326.2 [M+H]\dagger</td>
<td>326.1</td>
<td>-</td>
</tr>
<tr>
<td>4b</td>
<td>C\textsubscript{19}H\textsubscript{23}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>326.2 [M+H]\dagger</td>
<td>326.1</td>
<td>-</td>
</tr>
<tr>
<td>4c</td>
<td>C\textsubscript{19}H\textsubscript{23}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>326.2 [M+H]\dagger</td>
<td>326.1</td>
<td>-</td>
</tr>
<tr>
<td>5b</td>
<td>C\textsubscript{21}H\textsubscript{25}N\textsubscript{3}O\textsubscript{2}</td>
<td>HR-EI-MS</td>
<td>351.1947 [M]\dagger</td>
<td>351.1952</td>
<td>-1.5</td>
</tr>
<tr>
<td>5c</td>
<td>C\textsubscript{21}H\textsubscript{25}N\textsubscript{3}O\textsubscript{2}</td>
<td>HR-EI-MS</td>
<td>351.1947 [M]\dagger</td>
<td>351.1967</td>
<td>-5.8</td>
</tr>
<tr>
<td>5d</td>
<td>C\textsubscript{21}H\textsubscript{25}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>352.2 [M+H]\dagger</td>
<td>352.1</td>
<td>-</td>
</tr>
<tr>
<td>6c</td>
<td>C\textsubscript{21}H\textsubscript{25}N\textsubscript{3}O\textsubscript{2}</td>
<td>HR-EI-MS</td>
<td>351.1947 [M]\dagger</td>
<td>351.1974</td>
<td>-7.8</td>
</tr>
<tr>
<td>6d</td>
<td>C\textsubscript{21}H\textsubscript{25}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>352.2 [M+H]\dagger</td>
<td>352.1</td>
<td>-</td>
</tr>
<tr>
<td>7b</td>
<td>C\textsubscript{21}H\textsubscript{25}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>352.2 [M+H]\dagger</td>
<td>352.2</td>
<td>-</td>
</tr>
<tr>
<td>7c</td>
<td>C\textsubscript{21}H\textsubscript{25}N\textsubscript{3}O\textsubscript{2}</td>
<td>HR-EI-MS</td>
<td>351.1947 [M]\dagger</td>
<td>351.1981</td>
<td>-9.6</td>
</tr>
<tr>
<td>8c</td>
<td>C\textsubscript{21}H\textsubscript{25}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>352.2 [M+H]\dagger</td>
<td>352.2</td>
<td>-</td>
</tr>
<tr>
<td>8d</td>
<td>C\textsubscript{21}H\textsubscript{25}N\textsubscript{3}O\textsubscript{2}</td>
<td>ESI-MS</td>
<td>352.2 [M+H]\dagger</td>
<td>352.2</td>
<td>-</td>
</tr>
</tbody>
</table>
Table S2. 1H-NMR data of enzyme products obtained from cyclo-Trp-Ala isomers (1a-4a) in CDCl$_3$ (400 MHz). Chemical shifts (δ) were given in ppm and coupling constants (J) in Hz.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1b*</td>
<td>2</td>
<td>5.41, s</td>
<td>5.52, s</td>
<td>5.38, s</td>
<td>5.57, s</td>
<td>5.40, s</td>
<td>5.51, s</td>
<td>5.39, s</td>
<td>5.58, s</td>
</tr>
<tr>
<td>1c</td>
<td>4</td>
<td>7.18, d, 7.6</td>
<td>7.16, d, 7.6</td>
<td>7.15, d, 7.6</td>
<td>7.16, d, 7.6</td>
<td>7.17, d, 7.6</td>
<td>7.16, d, 7.5</td>
<td>7.16, d, 7.6</td>
<td>7.17, d, 7.4</td>
</tr>
<tr>
<td>2b</td>
<td>5</td>
<td>6.76, t, 7.6</td>
<td>6.77, t, 7.6</td>
<td>6.74, t, 7.6</td>
<td>6.77, t, 7.6</td>
<td>6.75, t, 7.6</td>
<td>6.76, t, 7.5</td>
<td>6.76, t, 7.6</td>
<td>6.78, t, 7.4</td>
</tr>
<tr>
<td>2c</td>
<td>6</td>
<td>7.09, t, 7.6</td>
<td>7.11, t, 7.6</td>
<td>7.08, t, 7.6</td>
<td>7.11, t, 7.6</td>
<td>7.08, t, 7.6</td>
<td>7.10, t, 7.5</td>
<td>7.09, t, 7.6</td>
<td>7.12, t, 7.4</td>
</tr>
<tr>
<td>3b*</td>
<td>7</td>
<td>6.61, d, 7.6</td>
<td>6.60, d, 7.6</td>
<td>6.57, d, 7.6</td>
<td>6.60, d, 7.6</td>
<td>6.58, d, 7.6</td>
<td>6.58, d, 7.5</td>
<td>6.61, d, 7.6</td>
<td>6.61, d, 7.4</td>
</tr>
<tr>
<td>10a</td>
<td>10b</td>
<td>2.54, dd, 13.9, 8.7</td>
<td>2.48, dd, 12.7, 11.1</td>
<td>2.44, dd, 13.8, 9.1</td>
<td>2.43, dd, 12.6, 11.2</td>
<td>2.54, dd, 13.9, 8.8</td>
<td>2.47, dd, 12.7, 10.9</td>
<td>2.43, dd, 13.8, 9.2</td>
<td>2.43, dd, 12.6, 11.3</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>4.13, t, 8.7</td>
<td>3.96, dd, 11.1, 6.2</td>
<td>4.09, t, 9.1</td>
<td>3.93, dd, 11.2, 6.2</td>
<td>4.13, t, 8.8</td>
<td>3.96, dd, 10.9, 6.5</td>
<td>4.09, t, 9.2</td>
<td>3.93, dd, 11.3, 6.2</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>4.06, q, 6.9</td>
<td>4.05, q, 6.9</td>
<td>3.96, qd, 7.2, 3.7</td>
<td>4.01, qd, 7.1, 3.8</td>
<td>4.06, q, 6.9</td>
<td>4.04, q, 6.9</td>
<td>3.96, qd, 7.2, 3.8</td>
<td>4.01, qd, 7.1, 3.8</td>
</tr>
<tr>
<td>1'</td>
<td>17</td>
<td>1.42, d, 6.9</td>
<td>1.47, d, 6.9</td>
<td>1.48, d, 7.2</td>
<td>1.41, d, 7.1</td>
<td>1.42, d, 6.9</td>
<td>1.46, d, 6.9</td>
<td>1.47, d, 7.2</td>
<td>1.41, d, 7.1</td>
</tr>
<tr>
<td>1'</td>
<td>17</td>
<td>5.16, d, 10.8</td>
<td>5.13, d, 10.8</td>
<td>5.17, d, 10.8</td>
<td>5.13, d, 10.8</td>
<td>5.16, d, 10.8</td>
<td>5.12, d, 10.8</td>
<td>5.17, d, 10.8</td>
<td>5.13, d, 10.8</td>
</tr>
<tr>
<td>2'</td>
<td>17</td>
<td>5.13, d, 17.4</td>
<td>5.08, d, 17.4</td>
<td>5.13, d, 17.4</td>
<td>5.08, d, 17.3</td>
<td>5.12, d, 17.4</td>
<td>5.08, d, 17.4</td>
<td>5.14, d, 17.4</td>
<td>5.08, d, 17.4</td>
</tr>
<tr>
<td>4'</td>
<td>17</td>
<td>1.15, s</td>
<td>1.12, s</td>
<td>1.15, s</td>
<td>1.12, s</td>
<td>1.14, s</td>
<td>1.12, s</td>
<td>1.15, s</td>
<td>1.12, s</td>
</tr>
<tr>
<td>5'</td>
<td>17</td>
<td>0.99, s</td>
<td>1.02, s</td>
<td>0.99, s</td>
<td>1.01, s</td>
<td>0.99, s</td>
<td>1.02, s</td>
<td>0.99, s</td>
<td>1.01, s</td>
</tr>
</tbody>
</table>

H-10a and H-10b: has the syn- and anti-configuration to the carbonyl moiety at C-11, respectively.

*: measured on 500 MHz spectrometer.
Table S3. 1H- and 13C- NMR data of enzyme products obtained from cyclo-Trp-Pro isomers (5a-8a) in CDCl$_3$ (400 MHz). Chemical shifts (δ) were given in ppm and coupling constants (J) in Hz.

<table>
<thead>
<tr>
<th>Compd</th>
<th>5b*</th>
<th>5c*</th>
<th>6c*</th>
<th>7b</th>
<th>7c</th>
<th>8c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13C NMR δ ppm</td>
<td>1H NMR δ, multi., J in Hz</td>
<td>13C NMR δ ppm</td>
<td>1H NMR δ, multi., J in Hz</td>
<td>13C NMR δ ppm</td>
<td>1H NMR δ, multi., J in Hz</td>
</tr>
<tr>
<td>2</td>
<td>79.4</td>
<td>5.39, s</td>
<td>77.4</td>
<td>5.46, s</td>
<td>77.2</td>
<td>5.71, s</td>
</tr>
<tr>
<td>3</td>
<td>62.3</td>
<td>/</td>
<td>61.9</td>
<td>/</td>
<td>62.8</td>
<td>/</td>
</tr>
<tr>
<td>4</td>
<td>125.8</td>
<td>7.17, d, 7.6</td>
<td>125.1</td>
<td>7.16, d, 7.6</td>
<td>125.5</td>
<td>7.17, d, 7.6</td>
</tr>
<tr>
<td>5</td>
<td>118.7</td>
<td>6.73, t, 7.6</td>
<td>119.0</td>
<td>6.77, t, 7.6</td>
<td>119.0</td>
<td>6.74, t, 7.6</td>
</tr>
<tr>
<td>6</td>
<td>128.3</td>
<td>7.06, t, 7.6</td>
<td>128.9</td>
<td>7.11, t, 7.6</td>
<td>129.0</td>
<td>7.08, t, 7.6</td>
</tr>
<tr>
<td>7</td>
<td>108.9</td>
<td>6.55, d, 7.6</td>
<td>109.4</td>
<td>6.59, d, 7.6</td>
<td>108.7</td>
<td>6.56, d, 7.6</td>
</tr>
<tr>
<td>8</td>
<td>148.4</td>
<td>/</td>
<td>149.9</td>
<td>/</td>
<td>150.3</td>
<td>/</td>
</tr>
<tr>
<td>9</td>
<td>131.5</td>
<td>/</td>
<td>129.4</td>
<td>/</td>
<td>128.6</td>
<td>/</td>
</tr>
<tr>
<td>10a</td>
<td>35.7</td>
<td>2.56, dd, 14.0, 8.9</td>
<td>35.1</td>
<td>2.49, dd, 12.9, 10.8</td>
<td>38.3</td>
<td>2.31, t, 12.0</td>
</tr>
<tr>
<td>10b</td>
<td>35.7</td>
<td>2.79, dd, 14.0, 8.9</td>
<td>35.1</td>
<td>2.54, dd, 12.9, 6.7</td>
<td>38.3</td>
<td>2.51, dd, 12.0, 5.3</td>
</tr>
<tr>
<td>11</td>
<td>59.1</td>
<td>4.16, t, 8.9</td>
<td>60.5</td>
<td>3.99, dd, 10.8, 6.7</td>
<td>59.9</td>
<td>3.97, dd, 12.0, 5.3</td>
</tr>
<tr>
<td>12</td>
<td>168.7</td>
<td>/</td>
<td>166.2</td>
<td>/</td>
<td>164.2</td>
<td>/</td>
</tr>
<tr>
<td>14</td>
<td>60.7</td>
<td>4.09, t, 8.0</td>
<td>60.5</td>
<td>4.05, †</td>
<td>60.7</td>
<td>4.02, dd, 11.7, 5.7</td>
</tr>
<tr>
<td>15</td>
<td>27.8</td>
<td>2.31, m</td>
<td>20.5, m</td>
<td>27.7</td>
<td>2.32, m</td>
<td>29.4</td>
</tr>
<tr>
<td>16</td>
<td>23.0</td>
<td>1.97, m</td>
<td>1.86, m</td>
<td>22.9</td>
<td>2.04, m</td>
<td>21.5</td>
</tr>
<tr>
<td>17</td>
<td>44.9</td>
<td>3.42, m</td>
<td>45.1</td>
<td>3.56, m</td>
<td>3.50, m</td>
<td>44.4</td>
</tr>
<tr>
<td>19</td>
<td>165.7</td>
<td>/</td>
<td>167.0</td>
<td>/</td>
<td>164.5</td>
<td>/</td>
</tr>
<tr>
<td>1'</td>
<td>114.6</td>
<td>5.15, d, 10.8</td>
<td>5.12, d, 17.4</td>
<td>114.5</td>
<td>5.12, d, 10.8</td>
<td>5.07, d, 17.4</td>
</tr>
<tr>
<td>2'</td>
<td>143.7</td>
<td>5.95, dd, 17.4, 10.8</td>
<td>143.7</td>
<td>5.98, dd, 17.4, 10.8</td>
<td>143.5</td>
<td>5.94, dd, 17.4, 10.8</td>
</tr>
<tr>
<td>3'</td>
<td>41.6</td>
<td>/</td>
<td>40.8</td>
<td>/</td>
<td>41.0</td>
<td>/</td>
</tr>
<tr>
<td>4'</td>
<td>22.2</td>
<td>1.14, s</td>
<td>22.4</td>
<td>1.11, s</td>
<td>22.1</td>
<td>1.12, s</td>
</tr>
<tr>
<td>5'</td>
<td>22.4</td>
<td>0.99, s</td>
<td>22.7</td>
<td>1.01, s</td>
<td>23.0</td>
<td>1.01, s</td>
</tr>
</tbody>
</table>

H-10a and H-10b: has the syn- and anti-configuration to the carbonyl moiety at C-11, respectively.
†: the coupling constant can't be determined due to overlapping of this peak with impurity.
§: the coupling constants can't be determined due to low resolution of these peaks.
*: measured on 500 MHz spectrometer.
∆*: measured on 600 MHz spectrometer.
<table>
<thead>
<tr>
<th>Compd</th>
<th>5d*</th>
<th>6d*</th>
<th>8d*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H NMR δ, multi., J in Hz</td>
<td>H NMR δ, multi., J in Hz</td>
<td>H NMR δ, multi., J in Hz</td>
</tr>
<tr>
<td>Pos.</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.01, s</td>
<td>6.96, s</td>
<td>6.95, s</td>
</tr>
<tr>
<td></td>
<td>4.76, d, 6.1</td>
<td>7.59, d, 6.1</td>
<td>7.59, d, 6.1</td>
</tr>
<tr>
<td></td>
<td>5.12, dd, 6.1, 7.0</td>
<td>7.12, dd, 6.1, 7.0</td>
<td>7.11, dd, 6.1, 7.0</td>
</tr>
<tr>
<td></td>
<td>6.24, dd, 6.1, 7.0</td>
<td>7.20, dd, 6.1, 7.0</td>
<td>7.20, dd, 6.1, 7.0</td>
</tr>
<tr>
<td></td>
<td>7.33, d, 6.1</td>
<td>7.30, d, 6.1</td>
<td>7.30, d, 6.1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3.76, dd, 15.1, 6.7</td>
<td>3.35, dd, 14.5, 6.7</td>
<td>3.35, dd, 14.4, 6.7</td>
</tr>
<tr>
<td></td>
<td>2.92, dd, 15.1, 11.1</td>
<td>3.20, dd, 14.5, 3.7</td>
<td>3.20, dd, 14.4, 3.7</td>
</tr>
<tr>
<td></td>
<td>4.36, dd, 11.1, 3.7</td>
<td>4.23, dt, 6.7, 3.7</td>
<td>4.23, dt, 6.7, 3.7</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>4.08, t, 8.2</td>
<td>3.57, dt, 12.0, 8.6</td>
<td>3.57, dt, 12.0, 8.6</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.93, m</td>
<td>2.10, m</td>
<td>2.10, m</td>
</tr>
<tr>
<td></td>
<td>2.02, m</td>
<td>1.74, m</td>
<td>1.72, m</td>
</tr>
<tr>
<td></td>
<td>1.91, m</td>
<td>1.48, m</td>
<td>1.47, m</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3.85, m</td>
<td>3.22, overlaps</td>
<td>3.22, overlaps</td>
</tr>
<tr>
<td></td>
<td>3.95, m</td>
<td>2.92, dd, 10.9, 6.4</td>
<td>2.91, dd, 11.0, 6.5</td>
</tr>
<tr>
<td>1'</td>
<td>4.67, d, 6.9</td>
<td>4.65, d, 6.9</td>
<td>4.65, d, 6.9</td>
</tr>
<tr>
<td>2'</td>
<td>5.38, tm, 6.9</td>
<td>5.31, tm, 6.9</td>
<td>5.31, tm, 6.9</td>
</tr>
<tr>
<td>4'</td>
<td>1.83, s</td>
<td>1.82, s</td>
<td>1.82, s</td>
</tr>
<tr>
<td>5'</td>
<td>1.78, s</td>
<td>1.76, s</td>
<td>1.76, s</td>
</tr>
</tbody>
</table>

*: measured on 500 MHz spectrometer.
‡: assignments interchangeable.
Fig. S1: 1H-NMR spectrum of 1b in CDCl$_3$ (500 MHz).

Fig. S2: 1H-NMR spectrum of 1c in CDCl$_3$ (400 MHz).
Fig. S3: 1H-NMR spectrum of 2b in CDCl$_3$ (400 MHz).

Fig. S4: 1H-NMR spectrum of 2c in CDCl$_3$ (400 MHz).
Fig. S5: 1H-NMR spectrum of $3b$ in CDCl$_3$ (500 MHz).

Fig. S6: 1H-NMR spectrum of $3c$ in CDCl$_3$ (400 MHz).
Fig. S7: 1H-NMR spectrum of 4b in CDCl$_3$ (500 MHz).

Fig. S8: 1H-NMR spectrum of 4c in CDCl$_3$ (400 MHz).
Fig. S9.1: 1H-NMR spectrum of 5b in CDCl$_3$ (500 MHz).

Fig. S9.2: HSQC spectrum of 5b in CDCl$_3$ (500 MHz).
Fig. S9.3: HMBC spectrum of 5b in CDCl₃ (500 MHz).

Fig. S9.4: NOESY spectrum of 5b in CDCl₃ (500 MHz).
Fig. S10.1: 1H-NMR spectrum of 5c in CDCl$_3$ (600 MHz).

Fig. S10.2: HSQC spectrum of 5c in CDCl$_3$ (600 MHz).
Fig. S10.3: HMBC spectrum of 5c in CDCl₃ (600 MHz).

Fig. S10.4: NOESY spectrum of 5c in CDCl₃ (600 MHz).
Fig. S11.1: 1H-NMR spectrum of 6c in CDCl$_3$ (500 MHz).

Fig. S11.2: HSQC spectrum of 6c in CDCl$_3$ (500 MHz).
Fig. S11.3: HMBC spectrum of 6c in CDCl₃ (500 MHz).

Fig. S11.4: NOESY spectrum of 6c in CDCl₃ (500 MHz).
Fig. S12: 1H-NMR spectrum of 7b in CDCl$_3$ (400 MHz).

Fig. S13: 1H-NMR spectrum of 7c in CDCl$_3$ (400 MHz).
Fig. S14: 1H-NMR spectrum of 8c in CDCl$_3$ (400 MHz).

Fig. S15: 1H-NMR spectrum of 5d in CDCl$_3$ (500 MHz).
Fig. S16: 1H-NMR spectrum of 6d in CDCl$_3$ (500 MHz).

Fig. S17: 1H-NMR spectrum of 8d in CDCl$_3$ (400 MHz).
5.5 Friedel–Crafts alkylation on indolocarbazoles catalyzed by two dimethylallyltryptophan synthases from Aspergillus
Friedel–Crafts alkylation on indolocarbazoles catalyzed by two dimethylallyltryptophan synthases from Aspergillus

Xia Yua, Aigang Yangb, Wenhan Linb, Shu-Ming Lia,⇑

a Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Marburg 35037, Germany
b State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
c Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg 35032, Germany

Article history:
Received 24 August 2012
Revised 5 October 2012
Accepted 9 October 2012
Available online 16 October 2012

Keywords:
Aspergillus
Enzyme catalysis
Indolocarbazoles
Prenylation

Abstract

Prenylated indolocarbazoles have been reported neither from natural sources, nor by chemical synthetic approaches. In this Letter, we report a regiospecific prenylation of indolocarbazoles at the para-position of the indole N-atom by two recombinant enzymes from the dimethylallyltryptophan synthase (DMATS) superfamily, that is, 5-DMATS from Aspergillus clavatus and FgaPT2 from Aspergillus fumigatus.

Indolocarbazoles are a class of natural products with well known remarkable biological activities, especially their inhibitory effects against protein kinases in various organisms. Several of these compounds have already entered clinical trials for treatment of cancer and other diseases.1,2 To overcome the activity promiscuity of naturally occurring indolocarbazoles such as staurosporine and K252d (Fig. 1) toward kinases,3–5 numerous chemical strategies have been developed for the synthesis of their mimetics to provide specific kinase inhibitors.6,7 Significant progress has also been achieved in the biosynthetic studies of indolocarbazoles. Identification and proof of biosynthetic genes for indolocarbazoles provided additional possibilities to create novel derivatives by combinatorial biosynthesis.8,9 However, prenylated indolocarbazoles have been reported, neither from natural sources, nor from chemical synthetic approaches, although diverse prenylated carbazoles have been isolated from different sources.6

Prenylated derivatives are formed in the nature by transfer of \(n \times C_5 \) (\(n = 1, 2, 3, 4, \) or larger) units from their active forms, usually as diphosphate esters, to diverse acceptors. The responsible enzymes for the transfer reactions are different prenyltransferases, which are also successfully used as biocatalysts for the synthesis of prenylated compounds.9–12 A large group of prenyltransferases belong to the dimethylallyltryptophan synthase (DMATS) superfamily. The members of this superfamily are involved in the biosynthesis of fungal secondary metabolites and catalyzed mainly the prenylation of diverse indole derivatives.13 For example, FgaPT2 from Aspergillus fumigatus and 5-DMATS from Aspergillus clavatus catalyze the prenylation of L-tryptophan at C-4 and C-5, respectively, and therefore function as dimethylallyltryptophan synthases (Scheme 1).14,15 It has also been demonstrated that some members of the DMATS superfamily catalyze even the prenylation of hydroxynaphthalenes and flavonoids.16,17 These results encouraged us to test the acceptance of indolocarbazoles by members of the DMATS superfamily.

For this purpose, we synthesized four indolocarbazoles \(1a-4a \) (Scheme 2). Treatment of indole-3-acetamide with methyl indolyl-3-glyoxylate in the presence of KOBu afforded the intermediate arcyriarubin A,18 which was converted to N6-methylarcyrirubin A (\(1a \)) and its N6-methylated derivative \(4a \) were obtained after oxidative

Figure 1. Structures of staurosporine and K252d.
cyclization of the two bisindolylmaleimides arcyriarubin A and N-methylarcyrriarubin A, respectively. \(^{20,21}\) Reduction of 1a with tin metal in AcOH/HCl and LiAlH\(_4\) in THF resulted in the formation of K252c (2a)\(^{21}\) and 7-hydroxy-K252c (3a),\(^{22}\) respectively. The identities of the obtained compounds were confirmed by NMR and MS analyses. Unexpectedly, two product peaks 3a and 3a* were observed in the HPLC chromatogram of 3a (Fig. 2). Reanalysis of the isolated single peak 3a on HPLC revealed still the presence of both peaks. Furthermore, the ratios of 3a* to 3a were found to be nearly identical in all of the incubation mixtures with 3a. However, a \(^1\)H NMR spectrum in DMSO-\(d_6\) showed only signals for the structure of 3a. It seems therefore that 3a* is an isomer of 3a, for example, a keto–enol tautomer at C-5 and N-6.

Scheme 1. Prenyltransfer reactions of 5-DMATS and FgaPT2 for their natural substrate L-tryptophan.

Scheme 2. Synthesis of bisindolylmaleimides and indolocarbazoles as substrates.

Figure 2. HPLC chromatograms and prenyl transfer reactions onto indolocarbazoles catalyzed by 5-DMATS and FgaPT2. The reaction mixtures (100 \(\mu\)l) containing 0.2 \(\mu\)g \(\mu\)l\(^{-1}\) of purified recombinant protein, 0.5 mM of aromatic substrate, and DMAPP in 50 mM Tris–HCl (pH 7.5) were incubated at 37°C for 3 h. Detection was carried out on a Photodiode array detector and illustrated for absorption at 290 nm.
Streptomyces nitrosogriseus CQT14–24, were then incubated with nine prenyltransferases from the DMATS superfamily in the presence of dimethylallyl diphosphate (DMAPP). The tested enzymes included five cyclic dipeptide prenyltransferases AnaPT, BrePT, CdpC3PT, CdpNPT, and FtmP1T with prenylation positions at C-2 or C-3 of the indole ring.21–27 three dimethylallyltryptophan synthases FgaPT2, 5-DMATS, and 7-DMATS with prenylation positions at C-4, C-5, and C-7,14,15,28 respectively. One tyrosine O-prenyltransferase SirD29 was also tested. HPLC analysis showed that 5-DMATS from Aspergillus clavatus and FgaPT2 from Aspergillus fumigatus displayed more substrate flexibilities toward the tested substrates than other enzymes (data not shown) and were studied in detail.

HPLC analysis of incubation mixtures with a 20 µg of 5-DMATS or FgaPT2 in 100 µl assay indicated that 1a was poor substrate for both enzymes. 5-DMATS accepted 1a only with a total conversion yield of 0.3%, while no product peak was detected in its incubation mixture with FgaPT2. Other three indolocarbazoles (2a–4a) were clearly accepted by both 5-DMATS and FgaPT2 (Fig. 2). Product formation was only detected in the incubation mixtures with active, but not in those with heat-inactivated proteins (by boiling for 20 min, data not shown). This demonstrated the importance of the oxidation grade at position C-7. Hydroxylation at this position seems better for acceptance than those with heat-inactivated proteins (by boiling for 20 min, data not shown).

For structure elucidation, three enzyme products 2a, 3a, and 4a were isolated from the reaction mixtures of 5-DMATS and FgaPT2 with 7-DMATS with prenylation positions at C-3 and C-9, since both H-4 and H-8 were altered from doublets to a singlet (Fig. S6).31 confirming that the prenylation had taken place at C-3 of 2b, 3b, and 4b. In the 1H NMR spectrum of 2c, the signal of H-8 rather than that of H-4 was changed from a doublet to a singlet (Figure S6),32 confirming that the prenylation had taken place at C-9. The structure of 2d was assigned to a product with two prenyl moieties at C-3 and C-9, since both H-4 and H-8 were altered from doublets to singlets (Supplementary Fig. S6).

This proved that both DMATS enzymes catalyzed the regiospecific C-prenylation on the indolocarbazole system, that is, the para-position to the indole N-atom (C3, C9, or both) and function therefore as catalysts for Friedel–Crafts alkylations. A Friedel–Crafts alkylation catalyzed by strong Lewis acids would involve an allylation. This is also the case for the enzyme-catalyzed Friedel–Crafts allylation described in this study. The formation of a dimethylallyl cation in an enzyme-catalyzed prenyl transfer reaction would be facilitated by interactions of several basic amino acid residues of the enzyme with pyrophosphate group of DMAPP.32,33

To elucidate the behavior of 5-DMATS and FgaPT2 toward indolocarbazoles, kinetic parameters were determined for the best accepted substrate 3a with both enzymes by Hanes–Woof and Eadie–Hofstee plots. Michaelis–Menten constants (K\textsubscript{M}) were calculated to be at 87 and 136 µM for 5-DMATS and FgaPT2, respectively, while turnover numbers (k\textsubscript{cat}) were found at 6.8 and 7.3 min-1. The catalytic efficiency (k\textsubscript{cat}/K\textsubscript{M}) of 5-DMATS toward 3a was 1302 s-1 M-1, that is, 5.0 % of that of its best substrate L-tryptophan.14 Similarly, A k\textsubscript{cat}/K\textsubscript{M} value of 891 s-1 M-1 was calculated for FgaPT2 toward 3a, which is 3.0 % of that of L-tryptophan.15 These data provided evidence that dimethylallyltryptophan synthases could also be used for the production of C-prenylated indolocarbazoles.

In conclusion, the present work demonstrated the acceptances of indolocarbazoles by fungal dimethylallyltryptophan synthases of the DMATS superfamily, which expands the potential usage of these enzymes in the structural modifications. To the best of our knowledge, this is the first report on the (chemoenzymatic) synthesis of prenylated indolocarbazoles.

Acknowledgments

This work was supported within the LOEWE program of the State of Hessen (SynMikro to S.-M. Li). Xia Yu is a recipient of a fellowship from China Scholarship Council. We thank Dr. Ortmann and Laufenberg for taking NMR and mass spectra.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012.10.039.
References and notes

Electronic Supplementary Material for:

Friedel-Crafts alkylation on indolocarbazoles catalyzed by two dimethylallyltryptophan synthases from *Aspergillus*

Xia Yu \(^a\), Aigang Yang \(^b\), Wenhan Lin \(^b\) and Shu-Ming Li \(^{a,c,*}\)

\(^a\) Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Marburg, Germany

\(^b\) State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China

\(^c\) Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, Germany

* Corresponding author: Shu-Ming Li. Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany

Tel.: +49 6421 2822461; fax: +49 6421 2826678.

E-mail address: shuming.li@staff.uni-marburg.de
Experimental section

Overproduction and purification of the recombinant proteins as well as enzyme assays with recombinant proteins

HPLC conditions for analysis and isolation of the enzyme products

Spectroscopic analyses

HR-EI-MS and NMR data

Table S1. HR-EI-MS data of the enzyme products of indolocarbazoles.

Table S2. 1H-NMR data (400 MHz) of prenylated products in DMSO-d_6. Chemical shifts (δ) are given in ppm and coupling constants (J) in Hz.

NMR spectra

Figure S1. 1H-NMR spectrum of $2b$ in DMSO-d_6 (400 MHz).

Figure S2. 1H-NMR spectrum of $2c$ in DMSO-d_6 (400 MHz).

Figure S3. 1H-NMR spectrum of $2d$ in DMSO-d_6 (400 MHz).

Figure S4.1. 1H-NMR spectrum of $3b$ in DMSO-d_6 (400 MHz).

Figure S4.2. 1H-NMR spectrum of $3b$ in DMSO-d_6 (400 MHz) with addition of D$_2$O.

Figure S5 1H-NMR spectrum of $4b$ in DMSO-d_6 (400 MHz).

Figure S6. Comparison of the aromatic signals in the 1H-NMR spectrum of substrate $2a$ with those of its prenylated products $2b$, $2c$ and $2d$ (in DMSO-d_6, 400 MHz).

Figure S7. Comparison of the aromatic signals in the 1H-NMR spectrum of substrate $3a$ with that of its prenylated product $3b$ (in DMSO-d_6, 400 MHz).

Figure S8. Comparison of the aromatic signals in the 1H-NMR spectrum of substrate $4a$ with that of its prenylated product $4b$ (in DMSO-d_6, 400 MHz).
Experimental section

Overproduction and purification of the recombinant proteins as well as enzyme assays with recombinant proteins

Protein overproduction and purification were carried out as described previously.1,2 The enzyme mixtures (100 \textmu l) for determination of the relative activities (Figure 2) contained each of 50 mM Tris–HCl (pH 7.5), 0.5 mM aromatic substrate, 0.5 mM DMAPP, 5 mM CaCl\textsubscript{2}, 5 \%(v/v) DMSO, 0.15–1.5\%(v/v) glycerol and 20 \mu g of purified protein. After incubation at 37°C for 3 h, the reaction mixtures were stopped by extraction with ethyl acetate for three times. For structure elucidation, enzyme products were isolated from large-scale incubations of 20-50 ml with the same condition described above.

HPLC conditions for analysis and isolation of the enzyme products

The enzyme products of the incubation mixtures were analyzed by HPLC on an Agilent series 1200 by using a Multospher 120 RP 18–5 \textmu m column (250 x 4 mm, 5 \mu m, C+S Chromatographie Service, Langerwehe, Germany) at a flow rate of 1 ml\textbullet min-1. Water (solvent A) and methanol (solvent B) were used as solvents. For analysis of enzyme assays with 2a and 3a, a linear gradient of 70-100 \%(v/v) solvent B in 15 min was used. The column was then washed with 100 \% solvent B for 5 min and equilibrated with 70 \%(v/v) solvent B for 5 min. For analysis of enzyme assays with 4a, a linear gradient of 85-100 \%(v/v) solvent B in 15 min was used. The column was then washed with 100 \% solvent B for 5 min and equilibrated with 85 \%(v/v) solvent B for 5 min. For isolation of the enzyme products, the same HPLC equipment with a Multospher 120 RP 18–5 \textmu m column (250 x 10 mm, 5 \mu m, C+S Chromatographie Service) was used. The flow rate was 2.5 ml\textbullet min-1.
Spectroscopic analyses

High-resolution electron impact mass spectrometry (HR-EI-MS) was taken on Auto SPEC. Positive HR-EI-MS data of the enzyme products are listed in Table S1. NMR Spectra (Figures S1-S8) were recorded on a JEOL ECX-400 spectrometer. Chemical shifts (Table S2) were referenced to the signal of DMSO-d_6 at 2.50 ppm.
HR-EI-MS and NMR data

Table S1. HR-EI-MS data of the enzyme products of indolocarbazoles.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical formula</th>
<th>HR-EI-MS data</th>
<th>Deviation (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Calculated (M⁺)</td>
<td>Measured</td>
</tr>
<tr>
<td>2b</td>
<td>C₂₅H₂₁N₃O</td>
<td>379.1685</td>
<td>379.1699</td>
</tr>
<tr>
<td>2c</td>
<td>C₂₅H₂₁N₃O</td>
<td>379.1685</td>
<td>379.1667</td>
</tr>
<tr>
<td>2d</td>
<td>C₃₀H₂₉N₃O</td>
<td>447.2311</td>
<td>447.2328</td>
</tr>
<tr>
<td>3b</td>
<td>C₂₅H₂₁N₃O₂</td>
<td>395.1634</td>
<td>395.1681</td>
</tr>
<tr>
<td>4b</td>
<td>C₂₆H₂₁N₃O₂</td>
<td>407.1634</td>
<td>407.1650</td>
</tr>
</tbody>
</table>
Table S2. 1H-NMR data of prenylated products in DMSO-d_6 (400 MHz). Chemical shifts (δ) are given in ppm and coupling constants (J) in Hz.

<table>
<thead>
<tr>
<th>Comp</th>
<th>2b</th>
<th>2c</th>
<th>2d</th>
<th>3b</th>
<th>4b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos.</td>
<td>δ_H, multi., J</td>
</tr>
<tr>
<td>1</td>
<td>7.61, d, 8.3</td>
<td>7.71, br d, 8.3</td>
<td>7.60, d, 8.2</td>
<td>7.62, d, 8.3</td>
<td>7.67, d, 8.4</td>
</tr>
<tr>
<td>2</td>
<td>7.23, dd, 8.3, 1.5</td>
<td>7.41, ddd, 8.3, 7.1, 1.3</td>
<td>7.22, dd, 8.2, 1.8</td>
<td>7.24, dd, 8.3, 1.4</td>
<td>7.33, dd, 8.4, 1.7</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>7.22, ddd, 7.9, 7.1, 1.0</td>
<td>-</td>
<td>8.97, d, 1.4</td>
<td>8.80, d, 1.7</td>
</tr>
<tr>
<td>4</td>
<td>9.02, br d, 7.9</td>
<td>9.02, br s</td>
<td>9.02, br s</td>
<td>9.38, dd, 10.2, 1.1</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>4.94, s</td>
<td>4.93, s</td>
<td>4.93, s</td>
<td>8.36, br d, 7.9</td>
<td>8.96, dd, 8.0, 1.2</td>
</tr>
<tr>
<td>8</td>
<td>7.81, br s</td>
<td>7.80, br s</td>
<td>7.80, br s</td>
<td>7.27, ddd, 7.9, 7.1, 0.9</td>
<td>7.31, ddd, 8.0, 7.1, 0.9</td>
</tr>
<tr>
<td>9</td>
<td>7.72, ddd, 8.2, 7.1, 1.1</td>
<td>7.26, dd, 8.3, 1.5</td>
<td>7.26, dd, 8.3, 1.5</td>
<td>7.45, ddd, 8.2, 7.1, 1.2</td>
<td>7.51, ddd, 8.4, 7.1, 1.2</td>
</tr>
<tr>
<td>10</td>
<td>7.77, br d, 8.2</td>
<td>7.67, d, 8.3</td>
<td>7.75, br d, 8.2</td>
<td>7.76, dd, 8.4, 0.9</td>
<td>7.76, dd, 8.4, 0.9</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.15, s</td>
</tr>
<tr>
<td>1'</td>
<td>3.49, d, 7.4</td>
<td>3.52, d, 7.4</td>
<td>3.48, d, 7.3</td>
<td>3.49, d, 7.3</td>
<td>3.49, d, 7.3</td>
</tr>
<tr>
<td>2'</td>
<td>5.41, t sep, 7.4, 1.1</td>
<td>5.44, t sep, 7.4, 1.0</td>
<td>5.41, t sep, 7.3, 1.2</td>
<td>5.41, t sep, 7.3, 1.0</td>
<td>5.40, t sep, 7.3, 1.1</td>
</tr>
<tr>
<td>4'</td>
<td>1.79, d, 1.1</td>
<td>1.79, d, 1.0</td>
<td>1.79, d, 1.2</td>
<td>1.79, d, 1.0</td>
<td>1.77, d, 1.1</td>
</tr>
<tr>
<td>5'</td>
<td>1.74, d, 1.1</td>
<td>1.75, d, 1.0</td>
<td>1.74, d</td>
<td>1.74, d</td>
<td>1.73, d, 1.1</td>
</tr>
<tr>
<td>1''</td>
<td>-</td>
<td>-</td>
<td>3.52, d, 7.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2''</td>
<td>-</td>
<td>-</td>
<td>5.43, t sep, 7.4, 1.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4''</td>
<td>-</td>
<td>-</td>
<td>1.78, d, 1.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5''</td>
<td>-</td>
<td>-</td>
<td>1.74, d</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NH</td>
<td>11.56, s</td>
<td>11.47, s</td>
<td>11.52, s</td>
<td>11.52, s</td>
<td>11.98, s</td>
</tr>
<tr>
<td>NH</td>
<td>11.29, s</td>
<td>11.29, s</td>
<td>11.29, s</td>
<td>11.29, s</td>
<td>11.98, s</td>
</tr>
<tr>
<td>NH</td>
<td>8.45, s</td>
<td>8.42, s</td>
<td>8.69, br s</td>
<td>6.42, d, 10.2</td>
<td>-</td>
</tr>
<tr>
<td>OH</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
NMR spectra

Figure S1. 1H-NMR spectrum of 2b in DMSO-d_6 (400 MHz).

Figure S2. 1H-NMR spectrum of 2c in DMSO-d_6 (400 MHz).
Figure S3. 1H-NMR spectrum of 2d in DMSO-d_6 (400 MHz).

Figure S4.1. 1H-NMR spectrum of 3b in DMSO-d_6 (400 MHz).
Figure S4.1. 1H-NMR spectrum of $3b$ in DMSO-d_6 (400 MHz) with addition of D$_2$O.

Figure S5. 1H-NMR spectrum of $4b$ in DMSO-d_6 (400 MHz).
Figure S6. Comparison of the aromatic signals in the 1H-NMR spectrum of substrate 2a with those of its prenylated products 2b, 2c and 2d (in DMSO-d_6, 400 MHz).
Figure S7. Comparison of the aromatic signals in the 1H-NMR spectrum of substrate 3a with that of its prenylated product 3b (in DMSO-d_6, 400 MHz).
Figure S8. Comparison of the aromatic signals in the 1H-NMR spectrum of substrate 4a with that of its prenylated product 4b (in DMSO-d_6, 400 MHz).
Reference List

5.6 Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases
Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases

Xia Yu · Xiulan Xie · Shu-Ming Li

Received: 24 February 2011 / Revised: 9 April 2011 / Accepted: 20 April 2011 / Published online: 4 June 2011 © Springer-Verlag 2011

Abstract Fungal prenyltransferases of the dimethylallyl-tryptophan synthase (DMATS) superfamily share no sequence, but structure similarity with the prenyltransferases of the CloQ/NphB group. The members of the DMATS superfamily have been reported to catalyze different prenylations of diverse indole or tyrosine derivatives, while some members of the CloQ/NphB group used hydroxynaphthalenes as prenylation substrates. In this study, we report for the first time the prenylation of hydroxynaphthalenes by the members of the DMATS superfamily. Three tryptophan-containing cyclic dipeptide prenyltransferases (AnaPT, CdpNPT and CdpC3PT), one tryptophan C7-prenyltransferase and one tyrosine O-prenyltransferase (SirD) were incubated with naphthalene and 11 derivatives. The enzyme activity and preference of the tested prenyltransferases towards hydroxynaphthalenes differed clearly from each other. For an accepted substrate, however, different enzymes produced usually the same major prenylation product, i.e. with a regular C-prenyl moiety at para- or ortho-position to a hydroxyl group. Regularly, O-prenylated and diprenylated derivatives were also identified as enzyme products of substrates with low conversion rates and regioselectivity. This was unequivocally proven by mass spectrometry and nuclear magnetic resonance analyses. The K_M values and turnover numbers (k_{cat}) of the enzymes towards selected hydroxynaphthalenes were determined to be in the range of 0.064–2.8 mM and 0.038–1.30 s$^{-1}$, respectively. These data are comparable to those obtained using indole derivatives. The results presented in this study expanded the potential usage of the members of the DMATS superfamily for production of prenylated derivatives including hydroxynaphthalenes.

Keywords Enzyme promiscuity · Fungal indole prenyltransferase · DMATS superfamily · Prenylated hydroxynaphthalenes

Introduction

Prenyltransferases catalyze the transfer reactions of a prenyl moiety from a prenyl donor, usually as diphosphate, to a terpenoid, serine residue of a protein or an aromatic nucleus. They are found in all domains of the life and involved in the biosynthesis of primary and secondary metabolites (Heide 2009; Li 2009; Liang 2009; Yazaki et al. 2009). The prenylated compounds often possess pharmacological activity distinct from their non-prenylated precursors (Sings and Singh 2003; Williams et al. 2000), which makes prenyltransferases attractive not only for biologists but also for medicinal chemists and biotechnologists. Significant progress has been achieved in the last years on the molecular biological, biochemical and structural biological investigations of...
prenyltransferases for aromatic substrates, such as benzoic acid, naphthalene or indole derivatives (Heide 2009; Li 2010). A number of indole prenyltransferases have been identified in fungi, mainly by genome mining, and characterized biochemically (Li 2010). These enzymes share clear sequence similarity with the dimethylallyltryptophan synthase (DMATS) from Claviceps purpurea (Tudzynski et al. 1999) and therefore referred as prenyltransferases of the DMATS superfamily (Haug-Schifferdecker et al. 2010). The members of the DMATS superfamily showed significant flexibility towards their aromatic substrates. Most of them used tryptophan-containing cyclic dipeptides as natural (AnaPT, FtmPT1 and NotF; Ding et al. 2010; Grundmann and Li 2005; Yin et al. 2009) or best substrates (CdpNPT and CdpC3PT; Ruan et al. 2008; Yin et al. 2010c) (Fig. 1a). FgaPT2 and 7-DMATS accepted tryptophan as substrate and function therefore as DMATS (Fig. 1b) (Kremer et al. 2007; Unsöld and Li 2005). At higher enzyme concentration, FgaPT2 accepted also cyclic dipeptides and FtmPT1 and CdpNPT tryptophan derivatives as prenylation substrates (Steffan and Li 2009; Zou et al. 2009). SirD shares significant sequence similarities with other enzymes from the DMATS superfamily and uses L-tyrosine as natural substrate (Fig. 1c) (Kremer and Li 2010; Zou et al. 2011).

The enzymes of the DMATS superfamily share almost no sequence similarity with other known prenyltransferases, e.g. the soluble prenyltransferases of the CloQ/NphB group from bacteria and fungi, which catalyze the prenylation of 4-hydroxyphenylpyruvate, phenazine and naphthalenes in the biosynthesis of secondary metabolites (Haug-Schifferdecker et al. 2010; Heide 2009). For example, the naphthalene prenyltransferases Fq26, Fq7 and NphB from the CloQ/NphB group are involved in the biosynthesis of furanonaphthoquinone I (Haagen et al. 2007), furauquinocins (Kumano et al. 2010) and naphterpin

![Diagram](image-url)
(Kumano et al. 2008), respectively. An acceptance of hydroxynaphthalenes by a member of the DMATS superfamily was not reported previously. Correspondingly, tyrosine or indole derivatives were not prenylated by enzymes of the CloQ/NphB group.

Interestingly, structure analysis revealed that FgaPT2 and FtmPT1 from the DMATS superfamily contain a PT barrel (Jost et al. 2010; Metzger et al. 2009), which has been only found in the bacterial aromatic prenyltransferases of the CloQ/NphB group (Kuzuyama et al. 2005; Metzger et al. 2010). This finding prompted us to investigate the acceptance of naphthalene derivatives by the members of the DMATS superfamily. Acceptance of hydroxynaphthalenes by prenyltransferases of the DMATS superfamily would increase structure diversity of prenylated hydroxynaphthalenes by chemoenzymatic synthesis approaches.

Materials and methods

Chemicals

Dimethylallyl diphosphate (DMAPP) was prepared according to the method described for geranyl diphosphate by Woodside et al. (1988). Naphthalene derivatives of the highest available purity were purchased from Fluka, TCI, Acros Organics, Aldrich and Alfa Aesar.

Overproduction and purification of recombinant proteins

Protein overproduction and purification were carried out as described previously: FgaPT2 (Steffan et al. 2007), FtmPT1 (Grundmann and Li 2005), AnaPT (Yin et al. 2009), CdpNPT (Yin et al. 2007), CdpC3PT (Yin et al. 2010b), 7-DMATS (Kremer et al. 2007), CTrpPT (Zou et al. 2010) and SirD (Kremer and Li 2010).

Enzyme assays with different prenyltransferases

The enzymatic reaction mixtures (100 μl) for determination of the relative activities with different hydroxynaphthalenes contained 50 mM Tris–HCl (pH 7.5), 5 mM (CdpC3PT and SirD) or 10 mM CaCl₂ (other enzymes), 1 mM aromatic substrate, 2 mM DMAPP, 0.15–1.5% (v/v) glycerol, 5% (v/v) dimethyl sulphoxide (DMSO) and 20 μg of purified recombinant protein. Under this condition, naphthalene (1a, Table 1) reached a final concentration of 0.2 mM, while other substrates were dissolved completely. The reaction mixtures were incubated at 37°C for 1 or 7 h. For structure elucidation, enzyme products were isolated from large-scale incubations of 5–70 ml with 0.2–0.3 mg protein per milliliter assay. For the determination of the kinetic parameters, the assays contained DMAPP at final concentrations of 2 or 5 mM (for CdpC3PT) and hydroxynaphthalenes at final concentrations of 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2 and 5 mM. The protein amount and incubation time are given in Table 2.

Table 1 List of naphthalene and derivatives used in this study

<table>
<thead>
<tr>
<th>Compounds</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>R₅</th>
<th>R₆</th>
<th>R₇</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphthalene (1a)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>1-naphthol (1b)</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>2-naphthol (1c)</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>1,4-dihyroxynaphthalene (1d)</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>1,5-dihyroxynaphthalene (1e)</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>1,6-dihyroxynaphthalene (1f)</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>1,7-dihyroxynaphthalene (1g)</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>2,3-dihyroxynaphthalene (1h)</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>2,6-dihyroxynaphthalene (1i)</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>2,7-dihyroxynaphthalene (1j)</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>3,5-dihydroxy-2-naphthoic acid (1k)</td>
<td>H</td>
<td>COOH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>3,7-dihydroxy-2-naphthoic acid (1l)</td>
<td>H</td>
<td>COOH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
</tr>
</tbody>
</table>
The enzyme reactions were terminated by addition of 60 μl methanol per 100 μl reaction mixtures. The proteins were removed by centrifugation at 13,000×g for 20 min. For quantification of the enzyme activity, two independent incubations were carried out routinely.

Quantification of the enzyme products

Due to the unknown absorption coefficients of the enzyme products and the low quality of the isolated substances, conversion rates of the enzyme reactions were calculated with the help of 1H-NMR spectra. For this purpose, incubations were taken in a large scale (10 ml) containing each of 1 mM aromatic substrate, 2 mM DMAPP, 5 or 10 mM CaCl₂ as mentioned above and 2 mg of purified protein. The reaction mixtures were extracted three times with ethyl acetate after incubation at 37°C for 24 h. After evaporation of the solvent, the residues of the ethyl acetate phase containing both substrate and enzyme products were subjected to 1H-NMR analysis. The conversion rate of a given substrate was determined by comparison of the integrals of the enzyme products and the remained substrate in 1H-NMR spectra. The absorption coefficients of the enzyme products were then calculated by high-performance liquid chromatography (HPLC) analysis of the samples after NMR analysis. For incubations with low conversion rates, e.g. <5%, ratio of peak areas of the product to sum of product and substrate was used.

HPLC conditions for analysis and isolation of the enzyme products

The enzyme products of the incubation mixtures were analyzed by HPLC on an Agilent series 1200 using a LiChrospher RP 18–5 column (125×4 mm, 5 μm, Agilent) at a flow rate of 1 ml min⁻¹. Water with 0.5% trifluoroacetic
acid (TFA; solvent A) and methanol with 0.5% TFA (solvent B) were used as solvents. For analysis of enzyme products, a linear gradient of 50–100% (v/v) solvent B in 20 min was used. The column was then washed with 100% solvent B for 5 min and equilibrated with 50% (v/v) solvent B for 5 min. For comparison of the enzyme activities towards 1-naphthol (1b, Table 1) versus tyrosine or indole derivatives shown in Fig. 2, a linear gradient of 40–100% (v/v) solvent B in 20 min was used. The column was then washed with 100% solvent B for 5 min and equilibrated with 40% (v/v) solvent B for 5 min. Detection was carried out by a photo diode array detector.

For isolation of the enzyme products, the same HPLC equipment with a Multosper 120 RP-18 column (250 × 10 mm, 5 μm, C+S Chromatographie Service, Langenfeld, Germany) was used. A linear gradient of 65–100% (v/v) solvent B in 20 min at a flow rate of 2.5 ml min⁻¹ was used. The column was then washed with 100% solvent B.
for 8 min and equilibrated with 65% (v/v) solvent for 8 min. For isolation of the enzyme products from the incubation mixtures of 1i and 1j, repeated chromatography was carried out with different gradients. If necessary, acetoneitrile instead of methanol was used as elution solvent.

NMR spectroscopic analysis

The isolated enzyme products were dissolved in 0.3 ml of CD3OD. Samples were filled into 3 mm thin wall NMR sample tubes of Wilmad Labglass from Rototec-Spintec. Spectra were recorded at room temperature on a JEOL ECX 400 MHz, a Bruker Avance 500 MHz or an Avance 600 MHz spectrometer. The heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation (HMBC) spectra were recorded with standard methods (Berger and Braun 2004). For HSQC spectra, 16 transients were used, while 32–64 transients were used for the HMBC spectra. 1H spectra were referenced to those of CD3OD. All spectra were processed with MestReNova.5.2.2.

High-resolution electron impact mass spectra

The isolated products were also analyzed by high-resolution electron impact mass spectrometry (HR-EL-MS) on Auto SPEC. Positive HR-EL-MS data of the enzyme products are as following: 2b, m/z 212.1230 (M+) (calculated for C13H16O, 212.1201); 2f, m/z 228.1162 (M+) (calculated for C13H16O2, 228.1150); 2g, m/z 228.1154 (M+) (calculated for C15H16O2, 228.1150); 2i, m/z 228.1163 (M+) (calculated for C15H16O2, 228.1150); 3i, m/z 228.1146 (M+) (calculated for C15H16O2, 228.1150); 4i, m/z 296.1787 (M+) (calculated for C20H12O2: 296.1776); 5i, m/z 296.1789 (M+) (calculated for C20H12O2, 296.1776); 6i, m/z 296.1768 (M+) (calculated for C20H12O2, 296.1776); 7i, m/z 296.1762 (M+) (calculated for C20H12O2, 296.1776); 2j, m/z 228.1180 (M+) (calculated for C15H16O2, 228.1150); 3j, m/z 228.1161 (M+) (calculated for C15H16O2, 228.1150); 4j, m/z 228.1159 (M+) (calculated for C15H16O2, 228.1150); 5j, m/z 296.1781 (M+) (calculated for C20H12O2, 296.1776); 6j, m/z 296.1772 (M+) (calculated for C20H12O2, 296.1776); 7j, m/z 296.1773 (M+) (calculated for C20H12O2, 296.1776); 8j, m/z 296.1787 (M+) (calculated for C20H12O2, 296.1776); 9j, m/z 296.1786 (M+) (calculated for C20H12O2, 296.1776); 2k, m/z 272.1068 (M+) (calculated for C14H16O4, 272.1049); 3k, m/z 272.1087 (M+) (calculated for C16H16O4, 272.1049); 2l, m/z 272.1083 (M+) (calculated for C16H16O4, 272.1049).

Results

1-Naphthol was accepted by seven of eight prenyltransferases of the DMATS superfamily

For initial investigation, eight prenyltransferases of the DMATS superfamily including five cyclic dipeptide prenyltransferases (FtmPT1, AnaPT, CdpC3PT, CdpNPT and CTrpPT), two dimethylallyltryptophan synthases (FgaPT2 and 7-DMATS) and one tyrosine O-prenyltransferase (SirD) were incubated with the simple naphthalene derivative 1-naphthol (1b, Table 1). Enzyme assays with the respective natural or best substrate described in previous studies (Grundmann and Li 2005; Kremer et al. 2007; Kremer and Li 2010; Unsöld and Li 2005; Yin et al. 2007, 2009, 2010; Zou et al. 2010), i.e. L-tyrosine for SirD or indole derivatives for other enzymes, were used as positive controls. HPLC analysis was used for monitoring of product formation and carried out under the same condition. As shown in Fig. 2, product formation was observed in the incubation mixtures of all of the enzymes with tyrosine or indole derivatives, as reported previously (Kremer et al. 2007; Kremer and Li 2010; Ruan et al. 2008; Unsöld and Li 2005; Yin et al. 2009, 2010; Zou et al. 2010). One additional peak each was also clearly detected in the incubation mixtures of FgaPT2, FtmPT1, AnaPT, CdpNPT, CdpC3PT, 7-DMATS and CTrpPT with 1b and DMAPP. Formation of these peaks was strictly dependent on the presence of DMAPP and active enzymes (data not shown). These results demonstrated that these enzymes accepted not only tryptophan or tryptophan-containing cyclic dipeptides but also the hydroxynaphthalene 1b as substrate. Product formation was not observed in the incubation mixture of SirD with 1b and DMAPP.

Comparison of the relative enzyme activities towards indole derivatives and 1b revealed a clear preference of most of the enzymes for indole derivatives (Fig. 2). However, high conversion rates of 33.9% and 28.8% were observed in the incubation mixtures of 1b with FgaPT2 and AnaPT, respectively, although these values are lower than those with their natural substrates L-tryptophan at 80.4% and (R)-benzodiazepinedinione at 74.2%. The conversion rate of CdpNPT with 1b was found to be 60.2%, significantly higher than that with one of the best substrates cyclo-L-Trp-L-Trp of 14.8%, (Ruan et al. 2008). Inspection of the HPLC chromatograms revealed additionally that the enzyme products of 1b with the seven mentioned indole prenyltransferases had the same retention time of 18.2 min, indicating the possibility of the presence of the same product. The intriguing results obtained with 1b encouraged us to test the acceptance of more hydroxynaphthalenes by the members of the DMATS family.
Different preference of indole prenyltransferases towards hydroxynaphthalenes

Five enzymes including AnaPT, CdpC3PT, CdpNPT, 7-DMATS and SirD were selected for incubation with naphthalene (1a) and 11 derivatives listed in Table 1. The reaction mixtures containing 5% (v/v) DMSO and 20 μg of purified protein each were incubated in the presence of DMAPP for 1 and 7 h. HPLC analysis was used for monitoring the enzyme product formation. Incubations with heat-inactivated proteins by boiling the proteins for 20 min were used as control assays.

As given in Table S1 (Electronic supplementary material), naphthalene (1a) in a final concentration of 0.2 mM was accepted by none of the tested enzymes, indicating the importance of activation of the naphthalene ring, e.g. by hydroxylation. All of the 11 hydroxynaphthalenes (1b–1l) were accepted by AnaPT. A conversion rate of more than 10% was observed for eight substrates after 1 h and for ten after 7 h. 7-DMATS and CdpNPT accepted nine of the 11 substrates after incubation for 1 h. In comparison to AnaPT, CdpNPT and 7-DMATS, hydroxynaphthalenes were poor substrates for CdpC3PT and SirD. Although CdpC3PT accepted most of the tested hydroxynaphthalenes, the conversion rates were very low (Table S1). Comparison of the conversion rates showed that 1-naphthol (1b) and 1,7-dihydroxynaphthalene (1g) were well accepted by AnaPT, 7-DMATS and CdpNPT. In addition, 1,6-dihydroxynaphthalene (1f) was found to be the best substrate for 7-DMATS with conversion rates of 73.3% and 92.6% after incubation for 1 and 7 h, respectively.

The data in Table S1 showed furthermore that the positions of the hydroxyl groups are important for the acceptance of these compounds. Reduction in enzyme activities of more than 75% was observed for AnaPT, CdpNPT, CdpC3PT and 7-DMATS if the hydroxyl group of 1b was moved from position C1 to C2 as in the structure of 1c. No product formation with 1c was detected after incubation with CdpC3PT for 1 h. Addition of one hydroxyl group to position C4 of 1b as in the structure of 1d caused even more loss of enzyme activities. Addition of one hydroxyl group to C6 at the second ring (1f) increased the activity of 7-DMATS to 333% after 1 h, in comparison to that of 1b. Placing this hydroxyl group to C7 (1g) increased slightly the activity of AnaPT, but strongly that of 7-DMATS, in comparison to those of 1b. Dihydroxynaphthalenes with one of the hydroxyl groups at C1 were generally better accepted by indole prenyltransferases than those with a hydroxyl group at C2, as detected for 7-DMATS, CdpNPT and CdpC3PT in the incubation mixtures with 1f and 1l. Similar phenomenon was also observed in the reaction mixtures of 1g and 1j with AnaPT, 7-DMATS, CdpNPT and CdpC3PT. Interestingly, moderate conversion rates of 14–20% after incubation for 1 h were observed for naphthoic acids like 1k with AnaPT and 7-DMATS as well as 1l with AnaPT.

Same prenyl transfer reaction onto hydroxynaphthalenes catalyzed by different indole prenyltransferases

For product isolation and structure elucidation, HPLC chromatograms of incubation mixtures of seven hydroxynaphthalenes (1b, 1f, 1g, 1i, 1j, 1k and 1l) with AnaPT, 7-DMATS, CdpNPT, CdpC3PT and SirD for 7 h (Fig. 3) are inspected in detail. Conversion rates of 15% or more were observed in 14 of the 35 incubation mixtures. With the exceptions of incubation mixtures of 1i and 1k with AnaPT and 1j with CdpNPT, 7-DMATS and AnaPT (Fig. 3d–f), one or one dominant product was detected in these mixtures. In the case of 1k (Fig. 3f), two products with comparable yields were observed. Incubations with low conversions showed more frequently two or more product peaks, e.g. AnaPT and 7-DMATS with 1i and 1j (Fig. 3d, e) as well as CdpNPT with 1j (Fig. 3e).

Most interestingly, the major products of one given substrate with different enzymes had usually the same retention time (Fig. 3a–f), as observed for 1b mentioned above (Fig. 2). To prove that the product peaks with the same retention time deal really with the same compound, the dominant products of 1b and 1g in the incubation mixtures of AnaPT, CdpNPT, CdpC3PT and 7-DMATS, i.e. 2b and 2g (Fig. 3a, c), were isolated on HPLC separately and subjected to 1H-NMR analysis. Similar experiments were also carried out for 2f from the incubation mixtures of 1f with 7-DMATS and CdpNPT (Fig. 3b) as well as 2j from those of 1j with AnaPT, 7-DMATS and CdpNPT (Fig. 3e). The four samples (2b, Fig. 3a) isolated from the incubation mixtures of AnaPT, CdpNPT, CdpC3PT and 7-DMATS with 1b showed identical 1H-NMR spectra (data not shown) and confirmed the presence of the identical structure. This proved that the four enzymes catalyzed the same prenylation reaction on 1b. It can be deduced that the enzyme products of FgaPT2, FtmPT1 and CTrpPT with 1b mentioned above (Fig. 2) have also the same structure as that of 2b. The same conclusion was also proven to be valid for 2f, 2g and 2j from different reaction mixtures. In addition, the products of 1i, 1k and 1l (Fig. 3d, f and g) were isolated from their incubation mixtures with AnaPT.

para-Position to the hydroxyl group at C1 of naphthalene ring is the favored prenylation position for indole prenyltransferases

The main products 2b, 2f, 2g, 2i, 2j, 2k, 3k and 2l were subjected to MS and NMR analyses. HR-EI-MS (see ‘Materials and methods’) confirmed the monoprenylation in the isolated enzyme products by detection of molecular...
masses, which are 68 Da larger than the respective substrates. Inspection of the 1H-NMR data of the isolated products revealed clearly the presence of signals for a regular dimethylallyl moiety at δ^H 3.49–3.73 (d, 2H-1′), 5.17–5.35 (br t, H-2′), 1.78–1.92 (s, 3H-4′), 1.67–1.75 (s, 3H-5′) (Table S2, Electronic supplementary material). Comparing the signals of the aromatic protons of 2b, 2f, 2g, 2k and 3k with those of the respective substrates (data not shown), the disappearance of one triplet was observed. This indicated that the prenyl moiety was very likely attached to position 2 or 4 of 2f and 2g, position 6 or 8 of 2k and 3k and position 2, 4, 5 or 8 of 2b (please see Fig. 3 HPLC chromatograms of incubation mixtures of selected hydroxynaphthalenes with recombinant AnaPT, CdpNPT, CdpC3PT, 7-DMATS and SirD after incubation for 7 h. Detection was carried with a diode array detector and illustrated for absorption at 296 nm.
Table S2 for numbering of the naphthalene ring). For determination of the prenylation position, connectivities in HMBC of the isolated compounds are taken in consideration and summarized in Fig. S1 (Electronic supplementary material). In the HMBC spectra of 2f and 2g, connectivities from H-1′ of the dimethylallyl moiety at 3.54–3.59 ppm to C9 at δC 128.9–135.8 ppm confirmed the attachment of the prenyl residue at position C4. Connectivities from H-1′ to δC 127.8 ppm of C10 in 2k and to δC 148.4 ppm of C-5 in 3k, proved unequivocally the presence of the prenyl moiety at position C8 in 2k and position C6 in 3k, i.e. the para- and ortho-position of the hydroxyl group, respectively. The observation of two doublets of double doublets at 7.45 (ddd, H-6) and 7.40 (ddd, H-7) in 1H-NMR spectrum and connectivity from H-1′ to δC 134.0 of C9 in the HMBC spectrum confirmed the prenylation at position C4 in 2b.

Comparison of the signals for aromatic protons in the spectra of 2i, 2j and 2l with those of the respective substrates revealed the disappearance of one doublet with a coupling constant of about 2–2.5 Hz, indicating the prenylations at position C1 of 2i and 2j and position C8 of 2l. In the HMBC spectra of 2i and 2j, connectivities from H-1′ of the dimethylallyl residue to C2 at δC 150.3–152.8 ppm and to C10 at δC 129.3–136.1 ppm, proved unambiguously the attachment of the prenyl moieties at C1 in 2i and 2j. The observation of H-1′ to δC 150.9 ppm for C7 and δC 128.1 ppm for C10, H-6 to δC 121.4 ppm for C8 in the HMBC spectrum confirmed the prenylation at position C8 in 2l. The structures of the enzyme products are summarized in Table S2. 2i and 2j have been also identified as prenylation products of 1i and 1j by NovQ, an enzyme from the CloQ/NphB group (Macone et al. 2009; Ozaki et al. 2009).

Inspection of the structures of the enzyme products revealed clearly that prenylation has preferentially taken place at para-position of the hydroxyl group at C1, as in the cases of 2b, 2f, 2g, and 2k. If this was not possible, as for 2i, 2j, and 2l, the ortho-position to the hydroxyl group at C2 was prenylated (Fig. 4). Detection of more than two product peaks in the incubation mixtures of 1i and 1j (Fig. 3d, e) indicated the presence of further derivatives, in addition to the two possible monoprenylated products at ortho-position to one of the two hydroxyl groups.

O-Prenylated and diprenylated derivatives were identified as minor products in the incubation mixtures of 1i and 1j.

To get structure information of the minor products, 3i, 4i, 5i, 6i and 7i were also isolated by repeated chromatography...
on HPLC from the incubation mixtures of \(1i\) with AnaPT (Fig. 3d). In analogous manner, products of \(1j\) were obtained from the incubation mixtures of AnaPT (3j–9j), 7-DMATS (3j–6j) and CdpNPT (3j and 4j) (Fig. 3e). 1H-NMR spectra revealed again that products with same retention times have also same 1H-NMR spectra.

The structures of 3i, 4i, 5i, 6i, 7i, 3j, 4j, 5j and 6j (Fig. 4 and Tables S2 and S3) were elucidated by comparison of their 1H-NMR spectra with those of the respective substrate and the aforementioned products 2i and 2j. Characteristic signals for O-prenyl moieties were found for H-2′ at approximately 5.5 ppm and for H-1′ at 4.6 ppm (Zou et al. 2011). The corresponding signals for C-prenyl groups appeared in the range of 5.1–5.4 and 3.3–3.7 ppm, respectively (Kremer and Li 2008; Steffan et al. 2007). In the case of the O-prenylated derivatives 3i and 4j, the number and coupling pattern of the aromatic protons were not changed. For 3j, 5j and 6j, signal for one or two aromatic protons had disappeared and the structures have been elucidated by interpretation of the coupling pattern of the aromatic protons.

The structures of 7j, 8j and 9j were elucidated by interpretation of the connectivities in their HMBC spectra (Fig. S1, Electronic supplementary material), as described for the main products discussed above. All of the structures were also confirmed by high-resolution electron impact mass spectrometry. It is obvious that in the incubation mixtures of substrates with low conversion rates and low regioselectivity like 1i and 1j, O-prenylation and diprenylation took place more frequently than those with a better acceptance.

Kinetic parameters of the indole prenyltransferases towards hydroxynaphthalenes

To get information on the catalytic efficiency of indole prenyltransferases towards hydroxynaphthalenes, kinetic parameters of AnaPT, CdpNPT, CdpC3PT and 7-DMATS, including Michaelis–Menten constants (\(K_M\)) and turnover numbers (\(k_{\text{cat}}\)) of six selected substrates were determined by Hanes–Woolf and Eadie–Hofstee plots. The obtained data are given in Table 2 and compared with those of indole derivatives with the respective enzyme. With an exception of (R)-benzodiazepinedione for AnaPT, the natural substrates of CdpNPT, CdpC3PT and 7-DMATS are unknown. Therefore, the best reported indole derivatives were used in these experiments. Due to the very low conversion, kinetic parameters of SirD towards hydroxynaphthalenes were not determined.

The \(K_M\) values of these enzymes for hydroxynaphthalenes are in the similar concentration range as those for indole derivatives, at least for some of hydroxynaphthalenes. For example, AnaPT accepted \(1g\) with a \(K_M\) of 0.30 mM, slightly higher than that for its natural substrate (R)-benzodiazepinedione at 0.23 mM. Comparable \(K_M\) values were found for CdpNPT towards hydroxynaphthalenes and cyclo-L-Trp-L-Trp. Similar or even lower \(K_M\) values were observed for CdpC3PT and 7-DMATS. Notably, low \(K_M\) value of 0.064 mM was determined for \(1g\) with 7-DMATS, while L-tryptophan was accepted by this enzyme with a \(K_M\) value of 0.14 mM.

Maximal reaction velocities of AnaPT, CdpC3PT and 7-DMATS determined with hydroxynaphthalenes are slightly slower than those with indole derivatives. Turnover numbers of AnaPT with 1b and 1g were found to be 0.74 and 0.34 s⁻¹, i.e. 49% and 23% of that with its natural substrate (R)-benzodiazepinedione, respectively. For CdpC3PT, turnover numbers at 0.31 and 0.14 s⁻¹ were determined for 1b and 1g, i.e. 38% and 17% of that of cyclo-L-Trp-L-Leu, respectively. Turnover numbers of 7-DMATS with 1f and 1g were found to be 52% and 33% of that of its best substrate L-tryptophan. CdpNPT showed a much higher maximal reaction velocity with 1b and 1f than with cyclo-L-Trp-L-Trp, approximate 14- and 1.8-fold, respectively.

As a consequence, the catalytic efficiencies (\(k_{\text{cat}}/K_M\)) of AnaPT determined with hydroxynaphthalenes were found to be about 17% of that with (R)-benzodiazepinedione. This low value is, however, due to the high turnover number and catalytic efficiency of AnaPT with its natural substrate. The catalytic efficiencies of AnaPT with 1b and 1g at 569 and 1,133 s⁻¹ M⁻¹ should be categorized as high. In comparison to the data obtained with AnaPT, higher relative catalytic efficiencies for hydroxynaphthalenes were calculated for CdpC3PT and 7-DMATS. The catalytic efficiency of 7-DMATS with 1g was found to be 73.2% of that with L-tryptophan.

Discussion

Prenyltransferases of the DMATS superfamily showed broad substrate specificity and were successfully used for production of prenylated tyrosine and indole derivatives by chemoenzymatic synthesis (Li 2010; Yin et al. 2010c; Zou et al. 2011). However, prenylation of hydroxynaphthalenes by these enzymes have not been reported previously.

After initial observation of the acceptance of 1-naththol (1b) by seven of the eight tested enzymes, we chose AnaPT, CdpC3PT, CdpNPT, 7-DMATS and SirD for detailed investigation with 11 hydroxynaphthalenes as potential prenylation substrates. As shown in Fig. 1, AnaPT, CdpC3PT and CdpNPT accept tryptophan-containing cyclic dipeptides as natural or best substrates (Ruan et al. 2008; Yin et al. 2010a, c). These enzymes are therefore the best candidates to elucidate the behaviour of very similar indole
prenyltransferases towards hydroxynaphthalenes. The dimethylallyltryptophan synthase 7-DMATS catalyzes the regular C7-prenylation of l-tryptophan derivatives (Kremer et al. 2007; Kremer and Li 2008). SirD represents a tyrosine O-prenyltransferase (Kremer and Li 2010). The substrates and catalyzed prenylation reactions of 7-DMATS and SirD differ clearly from those of the three cyclic dipeptide prenyltransferases AnaPT, CdpC3PT and CdpNPT. The five enzymes are therefore the best candidates to elucidate the behaviour of very different prenyltransferases towards hydroxynaphthalenes. In this study, we have shown that the substrate specificity of the members of DMATS superfamily towards hydroxynaphthalene derivatives did not correlate with those obtained for tyrosine or indole derivatives. For example, SirD showed the most flexible substrate specificity within the DMATS superfamily, accepted both tyrosine and tryptophan derivatives as substrates and catalyzed O-, N- and C-prenylation (Zou et al. 2011). However, hydroxynaphthalenes were poor substrates for this enzyme and only four of them were accepted with very low velocities (Table S1, Electronic supplementary material). Furthermore, in contrast to the different prenylation patterns and positions of a given indole derivative by different enzymes, the same prenylation products of a hydroxynaphthalene were identified in the reaction mixtures with different enzymes. As shown in Fig. 3, naphthalenes with a hydroxyl group at C1 such as 1b, 1f, 1g and 1k produced usually one dominant product, i.e. with a regular prenyl moiety at para-position to this hydroxy group. Naphthalenes with a hydroxyl group at C2 such as 2i and 2j showed a lowed regioselectivity. In addition to the major product with a regular prenyl moiety at ortho-position of the hydroxyl group, i.e. 2i and 2j, up to seven minor products including O-prenylated, C- and C- as well as C- and O-diprenylated derivatives were obtained from the incubation mixtures (Fig. 4).

The relative high turnover numbers and catalytic efficiencies of these enzymes towards hydroxynaphthalenes provided experimental evidence for their potential application as catalysts for chemoenzymatic synthesis of prenylated hydroxynaphthalenes. It can be expected that high efficiency of the prenylation reaction for a given substrate could be achieved by choice of a suitable indole prenyltransferase, as demonstrated in this study.

As mentioned in ‘Introduction’, prenyltransferases of the DMATS superfamily show no noteworthy sequence similarity with prenyltransferases of the CloQ/NphB group, which use hydroxynaphthalenes or other nitrogen-free aromatic compounds as prenylation substrates (Haagen et al. 2010; Kremer et al. 2010). However, they share the common PT barrel in their protein structures (Jost et al. 2010; Kumano et al. 2008). Structural analysis of FgaPT2 and FtmPT1 revealed the presence of only one reaction chamber (Jost et al. 2010; Metzger et al. 2010). The acceptance of hydroxynaphthalenes by enzymes of the DMATS superfamily demonstrates probably just the flexibility of such reaction chambers. It would be now interesting to investigate the acceptance of tyrosine or indole derivatives by the members of the CloQ/NphB group.

Acknowledgements This work was supported within the LOEWE program of the State of Hessen (SynMikro to S.-M. Li). Xie acknowledges the Deutsche Forschungsgemeinschaft for funding theBruker AVANCE 600 spectrometer. Xia Yu is a recipient of a fellowship from China Scholarship Council. We thank Dr. Laufenberg for taking mass spectra and Marco Matuschek for synthesis of DMAPP.

References

Electronic Supplementary Material for:

Substrate promiscuity of secondary metabolite enzymes: Prenylation of hydroxynaphthalenes by fungal indole prenyltransferases

Xia Yu, Xiulan Xie, and Shu-Ming Li*

Xia Yu, Shu-Ming Li*

Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany

* Correspondence: shuming.li@staff.uni-marburg.de

Shu-Ming Li

Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, 35032 Marburg

Xiulan Xie

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
Table S1: Conversion rates of the five enzymes towards different substrates after incubation for 1h or 7h

<table>
<thead>
<tr>
<th>Substrate</th>
<th>AnaPT 1h</th>
<th>AnaPT 7h</th>
<th>7-DMATS 1h</th>
<th>7-DMATS 7h</th>
<th>CdpNPT 1h</th>
<th>CdpNPT 7h</th>
<th>CdpC3PT 1h</th>
<th>CdpC3PT 7h</th>
<th>SirD 1h</th>
<th>SirD 7h</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphthalene (1a)</td>
<td>-</td>
</tr>
<tr>
<td>1-naphthol (1b)</td>
<td>64.7</td>
<td>91.5</td>
<td>22.0</td>
<td>45.4</td>
<td>84.4</td>
<td>93.3</td>
<td>9.1</td>
<td>14.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-naphthol (1c)</td>
<td>13.3</td>
<td>19.7</td>
<td>5.1</td>
<td>9.7</td>
<td>8.1</td>
<td>14.3</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,4-dihydroxynaphthalene (1d)</td>
<td>0.7</td>
<td>1.1</td>
<td>0.7</td>
<td>1.3</td>
<td>0.6</td>
<td>0.7</td>
<td>1.8</td>
<td>4.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,5-dihydroxynaphthalene (1e)</td>
<td>6.7</td>
<td>13.2</td>
<td>14.6</td>
<td>37.9</td>
<td>10.3</td>
<td>16.4</td>
<td>0.7</td>
<td>1.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,6-dihydroxynaphthalene (1f)</td>
<td>11.8</td>
<td>17.8</td>
<td>73.3</td>
<td>92.6</td>
<td>21.3</td>
<td>24.7</td>
<td>0.4</td>
<td>2.1</td>
<td>1.1</td>
<td>2.3</td>
</tr>
<tr>
<td>1,7-dihydroxynaphthalene (1g)</td>
<td>68.8</td>
<td>88.7</td>
<td>50.6</td>
<td>88.5</td>
<td>37.3</td>
<td>46.7</td>
<td>3.5</td>
<td>9.8</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>2,3-dihydroxynaphthalene (1h)</td>
<td>13.8</td>
<td>21.9</td>
<td>9.1</td>
<td>26.4</td>
<td>4.1</td>
<td>6.4</td>
<td>0.5</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2,6-dihydroxynaphthalene (1i)</td>
<td>14.4</td>
<td>47.7</td>
<td>4.9</td>
<td>13.0</td>
<td>2.1</td>
<td>4.9</td>
<td>-</td>
<td>0.5</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>2,7-dihydroxynaphthalene (1j)</td>
<td>7.8</td>
<td>18.6</td>
<td>3.1</td>
<td>10.5</td>
<td>7.8</td>
<td>12.1</td>
<td>0.6</td>
<td>1.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5-dihydroxy-2-naphthoic acid (1k)</td>
<td>14.0</td>
<td>25.7</td>
<td>19.9</td>
<td>59.0</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,7-dihydroxy-2-naphthoic acid (1l)</td>
<td>20.5</td>
<td>42.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

-: not detected, conversion rate ≤0.3 %
Table S2: 1H- and 13C-NMR data of monoprenylted products in CD$_3$OD. Chemical shifts (δ) are given in ppm and coupling constants (J) in Hz.

<table>
<thead>
<tr>
<th>Compd</th>
<th>2b</th>
<th>2f</th>
<th>2g</th>
<th>2i</th>
<th>3i</th>
<th>2j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos.</td>
<td>δ_C</td>
<td>δ_H, multi., J</td>
<td>δ_C</td>
<td>δ_H, multi., J</td>
<td>δ_C</td>
<td>δ_H, multi., J</td>
</tr>
<tr>
<td>1</td>
<td>152.7 \</td>
<td>\</td>
<td>152.8 \</td>
<td>\</td>
<td>151.4 \</td>
<td>\</td>
</tr>
<tr>
<td>2</td>
<td>108.1 6.72, d, 7.7</td>
<td>105.5 6.52, d, 7.6</td>
<td>108.6 6.64, d, 7.6</td>
<td>150.3 \</td>
<td>\</td>
<td>\</td>
</tr>
<tr>
<td>3</td>
<td>126.4 7.09, d, 7.7</td>
<td>126.9 7.00, d, 7.0</td>
<td>123.5 6.88, d, 7.6</td>
<td>118.9 7.01, overlaps</td>
<td>7.04, dd, 9.2, 2.5a</td>
<td>115.5 6.87, d, 8.8</td>
</tr>
<tr>
<td>4</td>
<td>129.2 \</td>
<td>\</td>
<td>127.7 \</td>
<td>129.4 \</td>
<td>126.1 7.36, d, 8.8</td>
<td>7.53, d, 8.9b</td>
</tr>
<tr>
<td>5</td>
<td>124.5 7.90, d, 8.4</td>
<td>106.6 7.18, d, 2.4</td>
<td>126.4 7.78, d, 9.1</td>
<td>110.4 7.02, overlaps</td>
<td>7.13, d, 2.4 c</td>
<td>130.6 7.56, d, 8.8</td>
</tr>
<tr>
<td>6</td>
<td>126.5 7.45, ddd, 8.4, 6.8, 1.5</td>
<td>156.1 \</td>
<td>\</td>
<td>118.4 7.04, dd, 9.1, 2.6</td>
<td>153.2 \</td>
<td>\</td>
</tr>
<tr>
<td>7</td>
<td>124.8 7.40, ddd, 8.3, 6.8, 1.3</td>
<td>116.7 6.98, dd, 9.1, 2.4</td>
<td>154.8 \</td>
<td>\</td>
<td>118.6 7.01, overlaps</td>
<td>7.02, dd, 9.0, 2.5a</td>
</tr>
<tr>
<td>8</td>
<td>123.4 8.21, d, 8.4</td>
<td>125.2 8.07, d, 9.0</td>
<td>105.5 7.49, d, 2.6</td>
<td>125.4 7.70, d, 8.7</td>
<td>7.60, d, 8.8b</td>
<td>105.9 7.12, d, 2.4</td>
</tr>
<tr>
<td>9</td>
<td>134.0 \</td>
<td>\</td>
<td>135.8 \</td>
<td>128.9 \</td>
<td>131.4 \</td>
<td>\</td>
</tr>
<tr>
<td>10</td>
<td>126.5 \</td>
<td>\</td>
<td>121.1 \</td>
<td>128.0 \</td>
<td>129.3 \</td>
<td>\</td>
</tr>
<tr>
<td>11</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
</tr>
<tr>
<td>1$'$</td>
<td>31.8 3.65, d, 7.3</td>
<td>32.1 3.54, d, 6.8</td>
<td>32.0 3.59, d, 6.6</td>
<td>24.6 3.69, d, 6.6</td>
<td>4.60, overlaps</td>
<td>24.5 3.64, d, 6.7</td>
</tr>
<tr>
<td>2$'$</td>
<td>124.8 5.33, br.t, 7.0</td>
<td>124.7 5.33, br.t, 6.9</td>
<td>124.9 5.32, br.t, 7.0</td>
<td>124.8 5.17, br.t, 6.7</td>
<td>5.52, m</td>
<td>124.6 5.17, br.t, 6.6</td>
</tr>
<tr>
<td>3$'$</td>
<td>132.3 \</td>
<td>\</td>
<td>132.4 \</td>
<td>132.1 \</td>
<td>131.2 \</td>
<td>\</td>
</tr>
<tr>
<td>4$'$</td>
<td>17.5 1.80, s</td>
<td>17.6 1.79, s</td>
<td>17.6 1.78, s</td>
<td>17.7 1.87, s</td>
<td>1.81, s</td>
<td>17.7 1.87, s</td>
</tr>
<tr>
<td>5$'$</td>
<td>25.5 1.74, s</td>
<td>25.6 1.74, s</td>
<td>25.5 1.73, s</td>
<td>25.4 1.67, s</td>
<td>1.78, s</td>
<td>25.4 1.68, s</td>
</tr>
</tbody>
</table>

a, b, c: exchangeable protons

Signals were assigned by comparison of the spectra of the enzyme products with those of the substrate, and with each other, as well as by HSQC and HMBC correlations.
Table S2 (continued)

<table>
<thead>
<tr>
<th>Compd</th>
<th>3j</th>
<th>4j</th>
<th>2k</th>
<th>3k</th>
<th>2l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pos.</td>
<td>δ<sub>H</sub> multi., J</td>
<td>δ<sub>H</sub> multi., J</td>
<td>δ<sub>C</sub></td>
<td>δ<sub>H</sub> multi., J</td>
<td>δ<sub>C</sub></td>
</tr>
<tr>
<td>1</td>
<td>6.87, s</td>
<td>7.00, overlaps</td>
<td>129.9</td>
<td>8.64, s</td>
<td>133.2</td>
</tr>
<tr>
<td>2</td>
<td>\</td>
<td>\</td>
<td>115.2</td>
<td>\</td>
<td>115.3</td>
</tr>
<tr>
<td>3</td>
<td>\</td>
<td>\</td>
<td>6.88, dd, 8.9, 2.5</td>
<td>156.9</td>
<td>\</td>
</tr>
<tr>
<td>4</td>
<td>7.35, s</td>
<td>7.59, d, 8.8</td>
<td>107.6</td>
<td>7.57, s</td>
<td>106.3</td>
</tr>
<tr>
<td>5</td>
<td>7.49, d, 9.1</td>
<td>7.59, d, 8.8</td>
<td>151.5</td>
<td>\</td>
<td>148.4</td>
</tr>
<tr>
<td>6</td>
<td>6.79, dd, 8.7, 2.4</td>
<td>6.68, dd, 8.8, 2.4</td>
<td>110.8</td>
<td>6.74, d, 7.6</td>
<td>126.6</td>
</tr>
<tr>
<td>7</td>
<td>\</td>
<td>\</td>
<td>124.6</td>
<td>6.96, d, 7.6</td>
<td>126.9</td>
</tr>
<tr>
<td>8</td>
<td>6.85, d, 2.4</td>
<td>7.00, overlaps</td>
<td>131.0</td>
<td>\</td>
<td>122.2</td>
</tr>
<tr>
<td>9</td>
<td>\</td>
<td>\</td>
<td>131.4</td>
<td>\</td>
<td>131.6</td>
</tr>
<tr>
<td>10</td>
<td>\</td>
<td>\</td>
<td>127.8</td>
<td>\</td>
<td>128.2</td>
</tr>
<tr>
<td>11</td>
<td>\</td>
<td>\</td>
<td>173.2</td>
<td>\</td>
<td>173.3</td>
</tr>
<tr>
<td>1'</td>
<td>3.38, d, 6.9</td>
<td>4.61, d, 6.6</td>
<td>32.4</td>
<td>3.64, d, 7.0</td>
<td>29.3</td>
</tr>
<tr>
<td>2'</td>
<td>5.40, m</td>
<td>5.52, m</td>
<td>124.8</td>
<td>5.29, br.t, 7.1</td>
<td>123.4</td>
</tr>
<tr>
<td>3'</td>
<td>\</td>
<td>\</td>
<td>132.7</td>
<td>\</td>
<td>133.2</td>
</tr>
<tr>
<td>4'</td>
<td>1.77, s</td>
<td>1.81, s</td>
<td>17.7</td>
<td>1.84, s</td>
<td>17.7</td>
</tr>
<tr>
<td>5'</td>
<td>1.74, s</td>
<td>1.79, s</td>
<td>25.7</td>
<td>1.74, s</td>
<td>25.7</td>
</tr>
</tbody>
</table>

Signals were assigned by comparison of the spectra of the enzyme products with those of the substrate, and with each other, as well as by HSQC and HMBC correlations.
Table S3: 1H- and 13C-NMR data of diprenylated products in CD$_3$OD. Chemical shifts (δ) are given in ppm and coupling constants (J) in Hz.

<table>
<thead>
<tr>
<th>Compd</th>
<th>4i</th>
<th>5i</th>
<th>6i</th>
<th>7i</th>
<th>5j</th>
<th>6j</th>
<th>7j</th>
<th>8j</th>
<th>9j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos.</td>
<td>δ_1, multi., J</td>
</tr>
<tr>
<td>1</td>
<td>6.83, s</td>
<td>123.0</td>
<td>119.4</td>
<td>105.5</td>
<td>6.96, s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.03, d, 9.0</td>
<td>7.23, d, 9.0</td>
<td>7.04, d, 8.8</td>
<td>6.83, d, 8.7</td>
<td></td>
<td>154.9</td>
<td>153.3</td>
<td>157.2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.92, s</td>
<td>7.58, d, 9.0</td>
<td>7.49, d, 9.0</td>
<td>7.46, d, 8.8</td>
<td>7.36, d, 9.3</td>
<td>7.27, s</td>
<td>128.1</td>
<td>7.58, d, 8.9</td>
<td>127.8</td>
</tr>
<tr>
<td>4</td>
<td>7.21, d, 2.4</td>
<td>7.05, overlaps</td>
<td>7.12, d, 2.6</td>
<td>7.35, s</td>
<td>7.27, s</td>
<td>130.8</td>
<td>7.62, d, 8.8</td>
<td>130.6</td>
<td>7.60, d, 8.9</td>
</tr>
<tr>
<td>5</td>
<td>7.00, dd, 9.1, 2.5</td>
<td>7.03, d, 9.0</td>
<td>7.04, overlaps</td>
<td>7.06, dd, 9.3, 2.6</td>
<td></td>
<td>156.5</td>
<td>158.2</td>
<td>156.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7.71, d, 9.1</td>
<td>7.58, d, 9.0</td>
<td>7.76, d, 10.0</td>
<td>7.74, d, 9.3</td>
<td>7.11, s</td>
<td>6.83, s</td>
<td>106.2</td>
<td>7.17, d, 2.2</td>
<td>104.1</td>
</tr>
<tr>
<td>7</td>
<td>5.16, m</td>
<td>5.16, m</td>
<td>5.13, m</td>
<td>5.17, m</td>
<td>5.19, m</td>
<td>5.40, m</td>
<td>124.6</td>
<td>5.14, m</td>
<td>124.9</td>
</tr>
<tr>
<td>8</td>
<td>3.66, d, 6.6</td>
<td>3.69, d, 6.6</td>
<td>3.73, d, 6.6</td>
<td>3.70, d, 6.7</td>
<td>3.62, d, 6.4</td>
<td>3.36, d, 6.8</td>
<td>24.8</td>
<td>3.67, d, 6.6</td>
<td>24.7</td>
</tr>
<tr>
<td>9</td>
<td>5.16, m</td>
<td>5.16, m</td>
<td>5.13, m</td>
<td>5.17, m</td>
<td>5.19, m</td>
<td>5.40, m</td>
<td>124.6</td>
<td>5.14, m</td>
<td>124.9</td>
</tr>
<tr>
<td>10</td>
<td>1.86, s</td>
<td>1.87, s</td>
<td>1.86, s</td>
<td>1.87, s</td>
<td>1.87, s</td>
<td>1.77, s</td>
<td>17.8</td>
<td>1.86, s</td>
<td>17.8</td>
</tr>
<tr>
<td>11</td>
<td>1.67, s</td>
<td>1.67, s</td>
<td>1.67, s</td>
<td>1.67, s</td>
<td>1.67, s</td>
<td>1.73, s</td>
<td>25.5</td>
<td>1.67, s</td>
<td>25.6</td>
</tr>
<tr>
<td>12</td>
<td>3.59, d, 7.0</td>
<td>3.69, d, 6.6</td>
<td>4.59, d, 6.8</td>
<td>4.60, d, 6.6</td>
<td>3.38, d, 7.0</td>
<td>3.36, d, 6.8</td>
<td>67.2</td>
<td>4.62, d, 6.7</td>
<td>65.5</td>
</tr>
<tr>
<td>13</td>
<td>5.37, m</td>
<td>5.16, m</td>
<td>5.51, m</td>
<td>5.52, m</td>
<td>5.41, m</td>
<td>5.40, m</td>
<td>121.6</td>
<td>5.51, m</td>
<td>121.3</td>
</tr>
<tr>
<td>14</td>
<td>1.79, s</td>
<td>1.87, s</td>
<td>1.80, s</td>
<td>1.81, s</td>
<td>1.77, s</td>
<td>1.77, s</td>
<td>25.5</td>
<td>1.78, s</td>
<td>25.5</td>
</tr>
<tr>
<td>15</td>
<td>1.77, s</td>
<td>1.67, s</td>
<td>1.73, s</td>
<td>1.78, s</td>
<td>1.74, s</td>
<td>1.73, s</td>
<td>17.8</td>
<td>1.75, s</td>
<td>17.9</td>
</tr>
</tbody>
</table>

Signals were assigned by comparison of the spectra of the enzyme products with those of the substrate, and with each other, as well as by HSQC and HMBC correlations.
Figure. S1 HMBC connectivities of enzyme products 2b, 2f, 2g, 2i, 7j, 8j, 9j, 2j, 2k, 3k and 2l.
Figure S2.1 1H-NMR spectrum of 2b in CD$_3$OD (500 MHz)

Figure S2.2 HSQC spectrum of 2b in CD$_3$OD (500 MHz)
Figure S2.3 HMBC spectrum of 2b in CD$_3$OD (500 MHz)

Figure S3.1 1H-NMR spectrum of 2f in CD$_3$OD (600 MHz)
Figure S3.2 HSQC spectrum of 2f in CD$_3$OD (600 MHz)

Figure S3.3 HMBC spectrum of 2f in CD$_3$OD (600 MHz)
Figure S4.1 1H-NMR spectrum of 2g in CD$_3$OD (500 MHz)

Figure S4.2 HSQC spectrum of 2g in CD$_3$OD (500 MHz)
Figure S4.3 HMBC spectrum of 2g in CD$_3$OD (500 MHz)

Figure S5.1 1H-NMR spectrum of 2i in CD$_3$OD (600 MHz)
Figure S5.2 HSQC spectrum of 2i in CD$_3$OD (600 MHz)

Figure S5.3 HMBC spectrum of 2i in CD$_3$OD (600 MHz)
Figure S6 1H-NMR spectrum of 3i in CD$_3$OD (500 MHz)

Figure S7 1H-NMR spectrum of 4i in CD$_3$OD (500 MHz)
Figure S8 1H-NMR spectrum of 5i in CD$_3$OD (500 MHz)

Figure S9 1H-NMR spectrum of 6i in CD$_3$OD (500 MHz)
Figure S10 1H-NMR spectrum of 7i in CD$_3$OD (500 MHz)

Figure S11.1 1H-NMR spectrum of 2j in CD$_3$OD (500 MHz)
Figure S11.2 HSQC spectrum of 2j in CD$_3$OD (500 MHz)

Figure S11.3 HMBC spectrum of 2j in CD$_3$OD (500 MHz)
Figure S12 1H-NMR spectrum of 3j in CD$_3$OD (400 MHz)

Figure S13 1H-NMR spectrum of 4j in CD$_3$OD (400 MHz)
Figure S14 1H-NMR spectrum of 5j in CD$_3$OD (400 MHz)

Figure S15 1H-NMR spectrum of 6j in CD$_3$OD (400 MHz)
Figure S16.1 1H-NMR spectrum of 7j in CD$_3$OD (600 MHz)

Figure S16.2 HSQC spectrum of 7j in CD$_3$OD (600 MHz)
Figure S16.3 HMBC spectrum of 7j in CD$_3$OD (600 MHz)

Figure S17.1 1H-NMR spectrum of 8j in CD$_3$OD (600 MHz)
Figure S17.2 HSQC spectrum of \(8j \) in CD\(_3\)OD (600 MHz)

Figure S17.3 HMBC spectrum of \(8j \) in CD\(_3\)OD (600 MHz)
Figure S18.1 1H-NMR spectrum of 9j in CD$_3$OD (600 MHz)

Figure S18.2 HSQC spectrum of 9j in CD$_3$OD (600 MHz)
Figure S18.3 HMBC spectrum of 9j in CD$_3$OD (600 MHz)

Figure S19.1 1H-NMR spectrum of 2k in CD$_3$OD (600 MHz)
Figure S19.2 HSQC spectrum of 2k in CD$_3$OD (600 MHz)

Figure S19.3 HMBC spectrum of 2k in CD$_3$OD (600 MHz)
Figure S20.1 1H-NMR spectrum of $3k$ in CD$_3$OD (600 MHz)

Figure S20.2 HSQC spectrum of $3k$ in CD$_3$OD (600 MHz)
Figure S20.3 HMBC spectrum of 3k in CD$_3$OD (600 MHz)

Figure S21.1 1H-NMR spectrum of 2l in CD$_3$OD (500 MHz)
Figure S21.2 HSQC spectrum of 2l in CD$_3$OD (500 MHz)

Figure S21.3 HMBC spectrum of 2l in CD$_3$OD (500 MHz)
5.7 Prenylation of flavonoids by using a dimethylallyltryptophan synthase 7-DMATS from *Aspergillus fumigatus*
Prenylation of Flavonoids by Using a Dimethylallyltryptophan Synthase, 7-DMATS, from Aspergillus fumigatus

Xia Yu[a] and Shu-Ming Li*[a, b]

Prenylated flavonoids including prenylated chalcones and iso-flavonoids are widely distributed in the nature, predominantly in plants.[1–3] Prenylation often improves the affinity for biomembranes and the interaction with proteins of a compound,[2] and therefore dramatically increases the biological activity. Diverse biological and pharmacological activities such as antifungal, antibacterial, antiviral, antiparasitic, anti-inflammatory, antitumor, cancer chemoprevention, estrogenic, and anti-estrogenic activities have been described for prenylated flavonoids.[1–8]

Due to the broad pharmacological activities of prenylated flavonoids, various strategies have been developed for their regioselective chemical synthesis, especially for C-prenylated flavonoids.[4, 5] Meanwhile, significant progress has also been made in the identification of enzymes that catalyze the transfer of prenyl moieties onto the flavonoid skeleton.[6] Three membrane-bound prenyltransferases from Saphora flavescens have been cloned, expressed, and characterized biochemically.[7, 8] The identified enzymes include a naringenin 8-prenyltransferase (SfN8DT-1),[8] an isoflavone-specific C6-prenyltransferase (SfG6DT), and the chalcone-specific isoliquiritigenin dimethylallyltransferase (SfIcDLT).[7] Those enzymes showed very high substrate specificities and accepted only their natural substrates or just a few substances with very similar structures. This feature prohibits their potential application as catalysts for the chemoenzymatic synthesis of prenylated flavonoids. Furthermore, these membrane-bound enzymes are generally more difficult to overproduce and purify than soluble enzymes.

Fortunately, it has been demonstrated that some prenyltransferases of the CloQ/NphB group from the soil bacteria Streptomyces are also capable of catalyzing the prenylation of flavonoids. For example, the 4-hydroxyphenylpyruvate C3-prenyltransferase NovQ also accepted flavonoids as substrates and catalyzed O- and C-prenylations at ring B.[9] NphB is a hydroxynaphthalene geranyltransferase.[10] This enzyme also catalyzed O- and C-geranylation at 7-OH or C-6 in flavonoid and isoflavonoid ring A.[11] The SCO7190 protein, a homologue of NphB from Streptomyces coelicolor, catalyzed the prenylation of naringenin at position C-6 in the presence of dimethylallyl diphosphate (DMAPP).[11] In summary, many prenylated flavonoids have been produced by using recombinant enzymes. However, only a few such derivatives have a dimethylallyl moiety at position C-6. No acceptance of flavonoids by a prenyltransferase from the DMATS superfamily had been reported prior to this study. This is not surprising because fungi produce almost no flavonoids. The members of the DMATS superfamily are secondary-metabolite enzymes of ascomycota and mainly involved in the biosynthesis of prenylated indole alkaloids.[12] They catalyze prenylation at the indole moieties of diverse substrates including tryptophan and tryptophan-containing cyclic dipeptides.[12] Recent studies have shown that several members of the DMATS superfamily also accept tyrosine or xanthones as natural substrates.[13, 14] Furthermore, we have recently demonstrated that some of the fungal indole prenyltransferases also accept hydroxynaphthalene derivatives, and convert them to prenylated derivatives.[15] (Hydroxynaphthalenes are natural substrates of some prenyltransferases of the CloQ/NphB group.[16] These results encouraged us to test the acceptance of flavonoids, including chalcones and isoflavonoids, by members of the DMATS superfamily.

Incubation of up to 30 flavonoids with seven fungal prenyltransferases, 7-DMATS, AnaPT, CdpC3PT, CdpNPT, SirD, FtmPT1 and FgaPT2,[12, 13] showed that 7-DMATS has a more flexible substrate specificity towards these compounds than the other enzymes (data not shown). A detailed study was therefore carried out with 7-DMATS from Aspergillus fumigatus, which catalyzes the prenylation of tryptophan and derivatives at position C7.[17, 18] In total, 16 flavonoids and analogues were incubated with purified, recombinant 7-DMATS from Escherichia coli in the presence of DMAPP (Supporting Information).[18] HPLC analysis was used to monitor product formation. Incubation with protein that had been heat-inactivated by being boiled for 20 min was used as a negative control. Product formation was detected for 14 substrates after incubation with 14 μg protein per 100 μL assay at 37 °C for 16 h (data not shown), six yields were more than 12% (1a–6a, Figure 1). Chalcones, isoflavonoids, and flavanones were much better accepted than flavones and flavonols. For example, total conversion yields of 22.8, 18.7, 12.3, 46.2, 24.1, and 14.5%, respectively, were calculated for the isoflavones 1a and 2a, flavanones 3a, 4a and 5a as well as for the chalcone 6a. The corresponding flavones of 3a and 4a, that is, apigenin and luteolin, were also accepted by 7-DMATS, but only with conversion yields of 3.8 and 8.2%, respectively. The corresponding flavonoids of these compounds, that is, kaempferol and quercetin, were accepted with conversion yields of 4.7 and 2.7%, respectively.

As shown in Figure 1, one dominant product peak was detected for each of the incubation mixtures of 1a, 2a, 3a, and 6a. In the cases of 4a and 5a, at least two product peaks

[a] X. Yu, Prof. Dr. S.-M. Li
Institut für Pharmazeutische Biologie und Biotechnologie
Philipps-Universität Marburg
Deutschhausstrasse 17A, 35037 Marburg (Germany)
E-mail: shuming.li@staff.uni-marburg.de
[b] Prof. Dr. S.-M. Li
Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg
35032 Marburg (Germany)
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cbic.201100413.
Figure 1. HPLC chromatograms and prenyltransfer reactions catalyzed by 7-DMATS. The absorption at 277 nm is illustrated.
between 0.9 and 7.7 % were calculated for 1b, 2b, 3b, 4b, 4c, and 6b corresponded well to those of the plant metabolites wighteone,[3] gancaconin A,[19,20] 6-prenylarigenin,[21] 6-prenyleriodictyol,[22] sigmoidin B,[23] and 6-dimethylallyl-5,7,9,1’-tetrahydroxydihydrochalcone,[24] respectively.

Comparing the signals in the spectrum of 5b with those of the substrate (data not shown) revealed that the signals of the ABX system in ring B were almost unchanged. The singlet at δH = 6.04 ppm represented one aromatic proton in ring A and indicated that the prenylation was at position C-6 or C-8. The singlet of 5-OH at δH = 12.46 confirmed the attachment of the dimethylallyl moiety at position C-6.[5] Comparing the signals of 4d and 5c in the NMR spectra with those of the respective substrate (data not shown) showed that the ABX systems for ring B protons in the spectra of substrates had disappeared. Instead, two doublets with a coupling constant of 8.3 or 8.5 Hz were observed, thus proving the prenylation at position C-2’. (Figure 1 and Table S2). The structure of 4d was assigned to a prenylated flavanone isolated from Lycopersicon esculentum (Figure 1 and Table S2). The structure of 4d was assigned to a prenylated flavanone isolated from Lyco.

From the structures of the enzyme products, it is obvious that the favorable prenylation position for 7-DMATS was C-6, between the two hydroxyl groups. C6-prenylated derivatives were isolated from all of the six investigated substrates. In the incubation mixtures of four compounds (1a, 2a, 3a, and 6a), only compounds with C6-prenyl moieties were detected (Figure 1). Even in the incubation mixture of 5a, in which a product with prenylation at ring B was also observed, the C6-prenylated derivative remained the dominant product.

To test the acceptance of prenylated flavonoids, the nine isolated products (0.2–0.4 mm) were incubated with 7-DMATS in the presence of DMAPP for 16 h and then analyzed by HPLC. Product peaks were detected in eight of the incubation mixtures; no conversion was detected for 2b. Conversion yields of between 0.9 and 7.7 % were calculated for 1b, 3b, 5b, 5c, and 6b. Much higher conversion yields of 71, 100, and 48 % were observed for 4b–d, respectively. Unfortunately, at least three product peaks were detected in each of the incubation mixtures of 4b–d, respectively. Due to the low amounts, the structures of these products could not be elucidated in this study.

To get information on the catalytic efficiency of 7-DMATS toward flavonoids, kinetic parameters including Michaelis–Menten constants (Km) and turnover numbers (kcat) were determined for 1a–6a by Hanes–Woolf and Eadie–Hofstee plots and compared to those obtained by using L-tryptophan as a substrate (Table 1). Compounds 1a, 2a, and 6a were found to

Table 1. Kinetic parameters of 7-DMATS toward L-tryptophan and flavonoids.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Km [mM]</th>
<th>kcat [s⁻¹]</th>
<th>kcat/Km [s⁻¹ M⁻¹]</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Trp[9]</td>
<td>0.14</td>
<td>0.23</td>
<td>1643</td>
<td>100</td>
</tr>
<tr>
<td>genistein (1a)</td>
<td>0.16</td>
<td>0.027</td>
<td>171</td>
<td>10.4</td>
</tr>
<tr>
<td>biochanin A (2a)</td>
<td>0.07</td>
<td>0.019</td>
<td>261</td>
<td>15.9</td>
</tr>
<tr>
<td>naringenin (3a)</td>
<td>0.99</td>
<td>0.023</td>
<td>23</td>
<td>1.4</td>
</tr>
<tr>
<td>eriodictyol (4a)</td>
<td>1.26</td>
<td>0.39</td>
<td>312</td>
<td>19.0</td>
</tr>
<tr>
<td>hesperetin (5a)</td>
<td>1.10</td>
<td>0.026</td>
<td>24</td>
<td>1.4</td>
</tr>
<tr>
<td>phloretin (6a)[9]</td>
<td>0.13</td>
<td>0.036</td>
<td>286</td>
<td>17.4</td>
</tr>
</tbody>
</table>

[a] The kcat/Km obtained with l-tryptophan as substrate was defined as 100%. [b] Data are taken from ref. [18]. [c] Substrate inhibition at 1 mM or higher concentrations.

Experimental Section

For materials and methods as well as spectra and data see the Supporting Information.

Acknowledgements

This work was supported within the LOEWE program of the State of Hessen (SynMikro to S.-M.L.). X.Y. is a recipient of a fellowship from the China Scholarship Council. We thank Dr. Thomas Kämper for NMR and Dr. Gabriele Laufenberg for MS analysis.

were observed. To elucidate the structures, nine products were isolated from the incubation mixtures of these six substrates and subjected to MS and NMR analyses (Supporting Information). HR-El-MS (Table S1) indicated the presence of one prenyl moiety each in the enzyme products by showing molecular masses that are 68 Da larger than those of the respective substrates. The 1H NMR signals at δH = 3.21–3.53 (d, 2H-1’), 5.15–5.35 (m, H-2’), 1.68–1.78 (s, 3H-4’), and 1.62–1.71 ppm (s, 3H-5’; Figures S1–S9 and Table S2) confirmed the presence of a regular dimethylallyl moiety. The resonance of H-1’ in the range of 3.21–3.53 ppm proved their attachment to aromatic carbon atoms.[15] A literature search revealed that the 1H NMR data of 1b, 2b, 3b, 4b, 4c, and 6b were observed for 4b–d, respectively. Unfortunately, at least three product peaks were detected in each of the incubation mixtures of 4b–d, respectively. Due to the low amounts, the structures of these products could not be elucidated in this study.

To get information on the catalytic efficiency of 7-DMATS toward flavonoids, kinetic parameters including Michaelis–Menten constants (Km) and turnover numbers (kcat) were determined for 1a–6a by Hanes–Woolf and Eadie–Hofstee plots and compared to those obtained by using L-tryptophan as a substrate (Table 1). Compounds 1a, 2a, and 6a were found to have comparable affinities to L-Trp for 7-DMATS (Table 1), with Km values in the range of 0.07 to 0.16 mM. The Km values of 3a, 4a, and 5a, at about 1 mM, are significantly higher, but still within the concentration range expected for many secondary-metabolite enzymes. The turnover numbers were found to be from 0.019 to 0.39 s⁻¹. The calculated catalytic efficiencies (kcat/Km) of 7-DMATS toward flavonoids are in the range of 20 to 320 s⁻¹ M⁻¹, that is, 1.4–19.0% of that of the best substrate, L-Trp. These data provide evidence that the tryptophan prenyltransferase 7-DMATS can also be used for the production of prenylated flavonoids, especially for C6- or ring B-prenylated flavonanes and isoflavonoids by chemoenzymatic approach and therefore complement the production gap of other reported prenyltransferases for prenylated flavonoids.[7,9,11,27] It may be expected that other members of the DMATS superfamily from fungi could also be used for the production of prenylated flavonoids.

Table 1. Kinetic parameters of 7-DMATS toward L-tryptophan and flavonoids.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Km [mM]</th>
<th>kcat [s⁻¹]</th>
<th>kcat/Km [s⁻¹ M⁻¹]</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Trp[9]</td>
<td>0.14</td>
<td>0.23</td>
<td>1643</td>
<td>100</td>
</tr>
<tr>
<td>genistein (1a)</td>
<td>0.16</td>
<td>0.027</td>
<td>171</td>
<td>10.4</td>
</tr>
<tr>
<td>biochanin A (2a)</td>
<td>0.07</td>
<td>0.019</td>
<td>261</td>
<td>15.9</td>
</tr>
<tr>
<td>naringenin (3a)</td>
<td>0.99</td>
<td>0.023</td>
<td>23</td>
<td>1.4</td>
</tr>
<tr>
<td>eriodictyol (4a)</td>
<td>1.26</td>
<td>0.39</td>
<td>312</td>
<td>19.0</td>
</tr>
<tr>
<td>hesperetin (5a)</td>
<td>1.10</td>
<td>0.026</td>
<td>24</td>
<td>1.4</td>
</tr>
<tr>
<td>phloretin (6a)[9]</td>
<td>0.13</td>
<td>0.036</td>
<td>286</td>
<td>17.4</td>
</tr>
</tbody>
</table>

[a] The kcat/Km obtained with l-tryptophan as substrate was defined as 100%. [b] Data are taken from ref. [18]. [c] Substrate inhibition at 1 mM or higher concentrations.

Experimental Section

For materials and methods as well as spectra and data see the Supporting Information.

Acknowledgements

This work was supported within the LOEWE program of the State of Hessen (SynMikro to S.-M.L.). X.Y. is a recipient of a fellowship from the China Scholarship Council. We thank Dr. Thomas Kämper for NMR and Dr. Gabriele Laufenberg for MS analysis.

Keywords: flavonoids · fungi · indoles · prenylation · synthases · transferases

Received: June 27, 2011
Published online on August 25, 2011
Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2011

Prenylation of Flavonoids by Using a Dimethylallyltryptophan Synthase, 7-DMATS, from Aspergillus fumigatus

Xia Yu[a] and Shu-Ming Li[a, b]

cbic_201100413_sm_miscellaneous_information.pdf
Experimental section

Chemicals

Dimethylallyl diphosphate (DMAPP) was prepared according to the method described for geranyl diphosphate by Woodside et al. Flavonoids of the highest available purity were purchased from Alfa Aesar, Roth and TCI.

Overproduction and purification of the recombinant protein as well as enzyme assays with recombinant 7-DMATS

7-DMATS was overproduced in E. coli and purified as described by Kremer et al. The enzymatic reaction mixtures (100 µl) for determination of the relative activities with different flavonoids contained 50 mM Tris-HCl (pH 7.5), 10 mM CaCl₂, 1 mM substrate, 2 mM DMAPP, 0.15 % (v/v) glycerol, 5 % (v/v) DMSO and 14 µg of purified recombinant protein. The reaction mixtures were incubated at 37 °C for 16 h. The enzyme reactions were terminated by addition of 100 µl methanol per 100 µl reaction mixtures. For determination of the kinetic parameters, the assays contained DMAPP at a final concentration of 2 mM and flavonoids at final concentrations of 0.02, 0.05, 0.1, 0.2, 0.5, 1 and 2 mM. For 1a and 2a, the final concentrations were up to 1 and 0.5 mM, respectively. The protein amount was 2 µg (4a) or 7 µg (other substrates), and the incubation time was 30 min.
HPLC conditions for analysis and isolation of the enzyme products

The enzyme products of the incubation mixtures were analyzed by HPLC on an Agilent series 1200 by using a Multospher 120 RP-18 column (125 x 4 mm, 5 µm) at a flow rate of 1 ml•min⁻¹. Water (solvent A) and methanol (solvent B) were used as solvents. For analysis of enzyme products, a linear gradient of 50 - 80 % (v/v) solvent B in 10 min and then 80- 100 % (v/v) solvent B in 5 min were used. The column was then washed with 100 % solvent B for 5 min and equilibrated with 50 % (v/v) solvent B for 5 min. Conversion yields of the enzyme reactions were calculated by ratios of peak areas of the product to sum of product and substrate detected at 277 nm. For isolation of the enzyme products, the same HPLC equipment with a Multospher 120 RP-18 column (250 x 10 mm, 5 µm) was used. The flow rate was 2.5 mL•min⁻¹.

Spectroscopic analysis

High-resolution electron impact mass spectrometry (HR-EI-MS) was taken on Auto SPEC. Positive HR-EI-MS data of the enzyme products are listed in Table S1. NMR Spectra (Figures S1-S9) were recorded on a JEOL ECA-500 spectrometer. Chemical shifts (Table S2) were referenced to the signal of acetone-d_6 or DMSO-d_6.
HR-EI-MS and 1H- NMR data

Table S1: HR-EI-MS data of the enzyme products of flavonoids.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical formula</th>
<th>HR-EI-MS data</th>
<th>Deviation (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculated (M$^+$)</td>
<td>Measured</td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>C${20}$H${18}$O$_{5}$</td>
<td>338.1154</td>
<td>338.1165</td>
</tr>
<tr>
<td>2b</td>
<td>C${21}$H${20}$O$_{5}$</td>
<td>352.1311</td>
<td>352.1321</td>
</tr>
<tr>
<td>3b</td>
<td>C${20}$H${20}$O$_{5}$</td>
<td>340.1311</td>
<td>340.1333</td>
</tr>
<tr>
<td>4b</td>
<td>C${20}$H${20}$O$_{6}$</td>
<td>356.1260</td>
<td>356.1238</td>
</tr>
<tr>
<td>4c</td>
<td>C${20}$H${20}$O$_{6}$</td>
<td>356.1260</td>
<td>356.1262</td>
</tr>
<tr>
<td>4d</td>
<td>C${20}$H${20}$O$_{6}$</td>
<td>356.1260</td>
<td>356.1236</td>
</tr>
<tr>
<td>5b</td>
<td>C${21}$H${22}$O$_{6}$</td>
<td>370.1416</td>
<td>370.1402</td>
</tr>
<tr>
<td>5c</td>
<td>C${21}$H${22}$O$_{6}$</td>
<td>370.1416</td>
<td>370.1379</td>
</tr>
<tr>
<td>6b</td>
<td>C${20}$H${22}$O$_{5}$</td>
<td>342.1467</td>
<td>342.1419</td>
</tr>
</tbody>
</table>
Table S2: 1H-NMR data (500 MHz) of prenylated products in (CD$_3$)$_2$CO or DMSO-d$_6$ (4c). Chemical shifts (δ) are given in ppm and coupling constants (J) in Hz.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.15, s</td>
<td>8.18, s</td>
<td>5.43, dd, 12.9, 3.0</td>
<td>5.37, dd, 12.8, 3.0</td>
<td>5.41, dd, 12.6, 3.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>/</td>
<td>/</td>
<td>3.17, dd, 17.1, 12.9</td>
<td>3.12, overlaps</td>
<td>3.14, dd, 17.1, 12.6</td>
</tr>
<tr>
<td></td>
<td>3'</td>
<td>/</td>
<td>/</td>
<td>2.72, dd, 17.1, 3.0</td>
<td>2.71, dd, 17.1, 2.9</td>
<td>2.74, dd, 17.1, 3.1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.50, s</td>
<td>6.50, s</td>
<td>6.03, s</td>
<td>6.03, s</td>
<td>6.04, s</td>
</tr>
<tr>
<td>2'</td>
<td>7.45, d, 8.8</td>
<td>7.54, d, 8.9</td>
<td>7.39, d, 8.3</td>
<td>7.02, br.s</td>
<td>7.04, d, 2.0</td>
<td>7.09, d, 8.5</td>
</tr>
<tr>
<td>3'</td>
<td>6.90, d, 8.8</td>
<td>7.00, d, 8.9</td>
<td>6.89, d, 8.6</td>
<td>/</td>
<td>/</td>
<td>6.74, d, 8.5</td>
</tr>
<tr>
<td>5'</td>
<td>6.90, d, 8.8</td>
<td>7.00, d, 8.9</td>
<td>6.89, d, 8.6</td>
<td>6.86, br.s</td>
<td>6.99, d, 8.2</td>
<td>6.74, d, 8.5</td>
</tr>
<tr>
<td>6'</td>
<td>7.45, d, 8.8</td>
<td>7.54, d, 8.9</td>
<td>7.39, d, 8.3</td>
<td>6.86, br.s</td>
<td>6.96, dd, 8.3, 2.0</td>
<td>7.09, d, 8.5</td>
</tr>
<tr>
<td>7'</td>
<td>3.84, s</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>3.86, s</td>
<td>/</td>
</tr>
<tr>
<td>1''</td>
<td>3.37, d, 7.2</td>
<td>3.37, d, 7.2</td>
<td>3.25, d, 7.2</td>
<td>3.24, d, 7.1</td>
<td>3.24, d, 7.2</td>
<td>3.24, d, 2.3</td>
</tr>
<tr>
<td>2''</td>
<td>5.28, m</td>
<td>5.28, m</td>
<td>5.23, m</td>
<td>5.23, m</td>
<td>5.23, m</td>
<td>5.22, m</td>
</tr>
<tr>
<td>4''</td>
<td>1.78, s</td>
<td>1.78, s</td>
<td>1.75, s</td>
<td>1.75, s</td>
<td>1.75, s</td>
<td>1.74, s</td>
</tr>
<tr>
<td>5''</td>
<td>1.65, s</td>
<td>1.65, s</td>
<td>1.64, s</td>
<td>1.63, s</td>
<td>1.64, s</td>
<td>1.62, s</td>
</tr>
<tr>
<td>OH</td>
<td>13.33, s</td>
<td>13.30, s</td>
<td>12.47, s</td>
<td>12.47, s</td>
<td>12.46, s</td>
<td>9.49, s</td>
</tr>
<tr>
<td>OH</td>
<td>9.65, s</td>
<td>9.67, s</td>
<td>8.52, s</td>
<td>8.02, s</td>
<td>7.74, s</td>
<td>9.05, s</td>
</tr>
<tr>
<td>OH</td>
<td>8.49, s</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>8.05, s</td>
</tr>
</tbody>
</table>

1: Addition of D$_2$O was used to prove active protons.
Table S2 (continued)

<table>
<thead>
<tr>
<th>Compd</th>
<th>4c</th>
<th>4c2</th>
<th>4d</th>
<th>5c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.36, dd, 12.6, 3.1</td>
<td>5.35, dd, 12.2, 3.0</td>
<td>5.61, dd, 13.3, 2.7</td>
<td>5.65, dd, 13.3, 2.8</td>
</tr>
<tr>
<td>3</td>
<td>3.12, dd, 17.1, 12.6</td>
<td>3.13, dd, 17.2, 12.2</td>
<td>3.17, dd, 17.1, 13.3</td>
<td>3.19, dd, 17.1, 13.2</td>
</tr>
<tr>
<td>3'</td>
<td>2.71, dd, 17.1, 3.1</td>
<td>2.67, dd, 17.1, 3.2</td>
<td>2.65, dd, 17.2, 2.8</td>
<td>2.67, dd, 17.1, 2.8</td>
</tr>
<tr>
<td>6</td>
<td>5.94, d, 2.2</td>
<td>5.85, s</td>
<td>5.95, s</td>
<td>5.96, s</td>
</tr>
<tr>
<td>8</td>
<td>5.94, d, 2.2</td>
<td>5.85, s</td>
<td>5.95, s</td>
<td>5.96, s</td>
</tr>
<tr>
<td>2'</td>
<td>6.90, d, 2.1</td>
<td>6.75, d, 2.0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>3'</td>
<td>/ / / /</td>
<td>/ / / /</td>
<td>/ / / /</td>
<td>/ / / /</td>
</tr>
<tr>
<td>5'</td>
<td>/ / / /</td>
<td>6.81, d, 8.3</td>
<td>6.93, d, 8.5</td>
<td></td>
</tr>
<tr>
<td>6'</td>
<td>6.81, d, 2.1</td>
<td>6.63, d, 2.0</td>
<td>6.96, d, 8.3</td>
<td>7.08, d, 8.5</td>
</tr>
<tr>
<td>7'</td>
<td>/ / / /</td>
<td>/ / / /</td>
<td>/ / / /</td>
<td>3.88, s</td>
</tr>
<tr>
<td>1''</td>
<td>3.35, d, 7.4</td>
<td>3.21, d, 7.3</td>
<td>3.53, d, 6.8</td>
<td>3.53, d, 6.9</td>
</tr>
<tr>
<td>2''</td>
<td>5.35, m</td>
<td>5.26, m</td>
<td>5.16, m</td>
<td>5.15, m</td>
</tr>
<tr>
<td>4''</td>
<td>1.72, s</td>
<td>1.68, s</td>
<td>1.68, s</td>
<td>1.68, s</td>
</tr>
<tr>
<td>5''</td>
<td>1.71, s</td>
<td>1.66, s</td>
<td>1.64, s</td>
<td>1.64, s</td>
</tr>
<tr>
<td>OH</td>
<td>12.18, s</td>
<td>/</td>
<td>12.19, s</td>
<td>12.19, s</td>
</tr>
<tr>
<td>OH</td>
<td>8.02, s</td>
<td>/</td>
<td>/</td>
<td>7.57, s</td>
</tr>
</tbody>
</table>

2: Taken in DMSO-_{d6}.
Figure S1 1H-NMR spectrum of 1b in (CD$_3$)$_2$CO (500 MHz)

Figure S2 1H-NMR spectrum of 2b in (CD$_3$)$_2$CO (500 MHz)
Figure S3 1H-NMR spectrum of 3b in (CD$_3$)$_2$CO (500 MHz)

Figure S4 1H-NMR spectrum of 4b in (CD$_3$)$_2$CO (500 MHz)
Figure S5.1 1H-NMR spectrum of 4c in (CD$_3$)$_2$CO (500 MHz)

Figure S5.2 1H-NMR spectrum of 4c in DMSO-d_6 (500 MHz)
Figure S6 1H-NMR spectrum of 4d in (CD$_3$)$_2$CO (500 MHz)

Figure S7 1H-NMR spectrum of 5b in (CD$_3$)$_2$CO (500 MHz)
Figure S8 1H-NMR spectrum of 5c in (CD$_3$)$_2$CO (500 MHz)

Figure S9.1 1H-NMR spectrum of 6b in (CD$_3$)$_2$CO (500 MHz)
Figure S9.2 1H-NMR spectrum of 6b in (CD$_3$)$_2$CO after addition of D$_2$O (500 MHz)

Reference List

5.8 Prenyltransferases of the dimethylallyltryptophan synthase superfamily
CHAPTER THIRTEEN

Prenyltransferases of the Dimethylallyltryptophan Synthase Superfamily

Xia Yu, Shu-Ming Li

Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, Marburg, Germany

1Corresponding author: e-mail address: shuming.li@staff.uni-marburg.de

Contents

1. Introduction 260
2. Spore Preparation 263
3. Cultivation of Fungi 264
4. RNA and DNA Isolation and cDNA Synthesis 264
 4.1 RNA isolation and cDNA synthesis 264
 4.2 DNA isolation 265
5. Gene Cloning 265
 5.1 PCR amplification from cDNA 266
 5.2 Fusion PCR amplification from genomic DNA 266
6. Protein Overproduction 267
 6.1 Protein overproduction in E. coli 267
 6.2 Protein overproduction in S. cerevisiae 269
7. Preparation of Stock Solutions for Enzyme Assays 270
8. Biochemical Characterization of Prenyltransferases 271
 8.1 Enzyme assays 271
 8.2 Kinetic parameters 271
9. Chemoenzymatic Synthesis of Prenylated Compounds 272
 9.1 Incubations 273
 9.2 Sample preparation for HPLC 273
10. HPLC 274
 10.1 HPLC components 274
 10.2 HPLC conditions 275
11. Summary 276
Acknowledgments 276
References 276

Abstract

Prenylated natural products often have interesting biological and pharmacological activities clearly distinct from their nonprenylated precursors. Prenyltransferases are
responsible for the attachment of prenyl moieties to a number of acceptors and contribute significantly to structural and biological diversity of these compounds in nature. In the past 8 years, significant progress has been achieved in the molecular biological, biochemical, and structural biological investigation of the prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily. These soluble enzymes are involved in the biosynthesis of fungal secondary metabolites and mainly catalyze prenylation of diverse indole derivatives, including tryptophan and tryptophan-containing cyclic dipeptides. The members of the DMATS superfamily show promising flexibility toward their aromatic substrates and catalyze highly regio- and stereoselective prenyltranfer reactions. These features were successfully used for chemoenzymatic synthesis, not only for production of prenylated simple indoles and cyclic dipeptides but also for prenylated hydroxynaphthalenes and flavonoids, which are usually found in bacteria and plants, respectively.

1. INTRODUCTION

Dimethylallyltryptophan synthase (DMATS) was identified as the first pathway-specific enzyme in the biosynthesis of ergot alkaloids (Tsai, Wang, Gebler, Poulter, & Scharl, 1995; Unsöld & Li, 2005). It catalyzes the prenylation of l-tryptophan at C-4 of the indole ring and therefore functions as an indole prenyltransferase (Steffan, Grundmann, Yin, Kremer, & Li, 2009; Unsöld & Li, 2005). Analysis of a vast volume of released sequences from fungal genome projects revealed nearly 200 putative genes with sequence homology to DMATS by bioinformatic approaches (at the beginning of 2012, GenBank). These genes are classified as prenyltransferase genes of the DMATS superfamily. Biochemical characterization of the encoded enzymes began in summer 2004 after availability of the genome sequence for Aspergillus fumigatus (Unsöld & Li, 2005). To the end of January 2012, results for 17 such enzymes have been reported, for example, six from A. fumigatus (Li, 2009b) and two each from Neosartorya fischeri (Li, 2009b; Yin, Yu, Xie, & Li, 2010), Aspergillus oryzae (Liu & Walsh, 2009; Zou, Xie, Linne, Zheng, & Li, 2010), and Aspergillus sp. (Ding et al., 2010). The characterized enzymes accepted almost only dimethylallyl diphosphate (DMAPP) as prenyl donor and catalyzed via enzyme-bound cations the prenyltransfer reactions to aromatic substrates in “regular” or “reverse” connection (Figs. 13.1 and 13.2) (Luk & Tanner, 2009; Metzger et al., 2009; Yin et al., 2010; Zou et al., 2010). In the enzyme products of the “regular” prenyltransferases, for example, 5-DMATS,
7-DMATS, CpaD, DmaW, FgaPT2, FtmPT1, FtmPT2, and MaPT, (Ding, Williams, & Sherman, 2008; Grundmann, Kuznetsova, Afiatullo, & Li, 2008; Grundmann & Li, 2005; Kremer, Westrich, & Li, 2007; Liu & Walsh, 2009; Markert et al., 2008; Unsöld & Li, 2005; Yu, Liu, Xie, Zheng, & Li, 2012), the prenyl moiety is attached via its C-1 to the
aromatic nucleus. In contrast, the “reverse” prenyltransferases, for example, AnaPT, CdpC3PT, CTrpPT, and FgaPT1 (Unsöld & Li, 2006; Yin, Grundmann, Cheng, & Li, 2009; Yin et al., 2010; Zou et al., 2010), catalyze connection of the prenyl moieties via C-3 to the aromatic substrate.

The prenyltransferases of the DMATS superfamily are involved in the biosynthesis of diverse fungal secondary metabolites, especially prenylated indole alkaloids (Li, 2010). Prenylated indole alkaloids, including a number of important mycotoxins and drugs, are hybrid natural products containing both indole and isoprenoid moieties. They are widely distributed in terrestrial and marine organisms and mainly found in ascomycetes, for example, members of the genera Claviceps, Penicillium, and Aspergillus (Li, 2010). These compounds often possess biological activities clearly distinct from their non-prenylated precursors (Jain et al., 2008). Most prenyltransferases of the DMATS superfamily catalyze prenylation reactions at the indole ring and play an important role in the biosynthesis of structurally diverse prenylated indole alkaloids in fungi. Many of these enzymes accept tryptophan and tryptophan-containing cyclic dipeptides as aromatic substrates and catalyze regio- and stereospecific prenylation reactions. As mentioned above, DmaW, FgaPT2, and MaPT catalyze prenylation of L-tryptophan at C-4 of the indole ring and function as 4-DMATS. 5-DMATS and 7-DMATS accept also L-tryptophan as substrate but prenylate it at C-5 and C-7, respectively (Fig. 13.2). CTrpPT, FtmPT1, and CdpC3PT accept tryptophan-containing cyclic dipeptides and catalyze regiospecific prenylations at N-1, C-2, and C-3, respectively. As shown in Fig. 13.2, members of the DMATS superfamily also accept more complicated indole derivatives as substrates. For example, FtmPT2, FgaPT1, TdiB, AnaPT, and CpaD use 12,13-dihydroxy fumitremorgin C, fumigaclavine A, didemethylasterquinone D, (R)-benzodiazepinedione, and cyclo-acetoacetyl-L-tryptophan as substrates and catalyze regiospecific prenylations at the indole ring (Fig. 13.2).

In contrast to the indole prenyltransferases mentioned above, some members of the DMATS superfamily accept other aromatic substances as substrates. For example, SirD is an O-prenyltransferase for tyrosine (Kremer & Li, 2010). Based on results obtained from knockout mutants, it was suggested that XptA and XptB are involved in the prenylation of xanthones (Sanchez et al., 2011). Sequence analysis revealed that the members of the DMATS superfamily contain no DDxxD motifs, which are essential for binding of prenyl diphosphate via metal ions, for example, Mg\(^{2+}\) or Mn\(^{2+}\), in trans-prenyltransferases (Lu, Liu, & Liang, 2009) in the biosynthesis of terpenoids or membrane-bound aromatic prenyltransferases in the biosynthesis of
Prenylated flavonoids or benzoic acids (Yazaki, Sasaki, & Tsurumaru, 2009). Biochemical investigations showed that reactions catalyzed by members of the DMATS superfamily were independent of metal ions, although Ca\(^{2+}\) enhanced the reaction velocity (Li, 2010; Steffan et al., 2009). Structural biological analysis and site-directed mutagenesis experiments have proven that the formation of prenyl cations is facilitated by binding of the phosphate residues of DMAPP with several basic amino acids (Jost et al., 2010; Metzger et al., 2009; Stec et al., 2008).

Detailed investigations on the substrate specificities of the DMATS enzymes in recent years have provided experimental evidence for their effective use in the production of prenylated compounds. They accepted a number of structural analogues of their natural substrates such as tryptophan, tyrosine, or cyclic dipeptides and catalyzed regio- and stereospecific prenylations. Promisingly, prenylated hydroxynaphthalenes or flavonoids can also be regiospecifically produced by using prenyltransferases of the DMATS superfamily (Yu & Li, 2011; Yu, Xie, & Li, 2011). These compounds have not been found in fungi, but in bacteria or plants, respectively.

In this chapter, we provide general protocols for biochemical investigation of prenyltransferases of the DMATS superfamily, including DNA and RNA propagation, gene cloning and expression, enzyme assays, and chemoenzymatic synthesis of prenylated compounds.

2. SPORE PREPARATION

1. Prepare sterile 0.1% (v/v) Tween-20 and sterile 20% (v/v) glycerol.
2. Prepare Czapek-Dox with yeast extract solid medium consisting of 3.5% (w/v) Czapek-Dox, 0.5% (w/v) yeast extract, and 2% (w/v) agar; autoclave at 121 °C for 20 min; and use for preparation of agar plates.
3. Spread 1000–10,000 spores on each plate and cultivate the plates for approximately 2 weeks at 26 °C in darkness.
4. Wash each plate thoroughly (spores and mycelia) three times with 4 ml of 0.1% Tween-20 and collect and transfer the suspension to sterile 50-ml Falcon tubes with some autoclaved glass beads with a diameter of 2.85–3.3 mm. Vortex the suspension exhaustively.
5. Filter the suspension over sterile cotton wool. Centrifuge for 5 min at 3000 rpm and resuspend the pellets in 20% (v/v) glycerol (use 100 μl for spores from one plate). Use fresh spores for inoculation or store them at −80 °C.
3. CULTIVATION OF FUNGI

Fungal mycelia are used for RNA and DNA isolation.

1. Prepare liquid yeast extract medium with sucrose, consisting of 0.6% (w/v) yeast extract and 0.2% (w/v) sucrose, pH 5.8, for cultivation of *N. fischeri* (Yin et al., 2009, 2010) and *A. oryzae* (Zou et al., 2010). Solid media for agar plates contain 2% (w/v) agar.

2. Prepare yeast malt extract medium consisting of 0.4% (w/v) yeast extract, 1% (w/v) malt extract, and 0.4% (w/v) glucose, pH 7.3, for cultivation of *Aspergillus clavatus* (Yu et al., 2012). Solid media for agar plates contain 2% (w/v) agar.

3. Spread a small portion of spore suspensions on agar plates and incubate at 30 °C or 26 °C for 5–7 days.

4. Take mycelia with agar (1 × 1 cm) from the agar plates and inoculate into 300-ml Erlenmeyer flasks containing 100 ml liquid medium from step 1 or 2.

5. Cultivate at 26 °C or 30 °C and 160 rpm in a dark room for 3–7 days.

4. RNA AND DNA ISOLATION AND cDNA Synthesis

4.1. RNA isolation and cDNA synthesis

1. Prepare sterile, RNase-free glass and plastic wares and double distilled water by twice autoclaving.

2. Prepare buffer RB/2-mercaptoethanol by adding 20 μl 2-mercaptoethanol to 1 ml of buffer RB from E.Z.N.A.™ Fungal RNA Kit (OmegaBio-Tek) before use.

3. Collect fungal cultures in 50-ml Falcon tubes by centrifugation at 5000 rpm for 5 min. Wash the pellets with ice-cold double distilled water twice by suspension and centrifugation.

4. Add liquid nitrogen to the pellets and grind the frozen mycelia to a fine powder in a twice-autoclaved mortar.

5. Take 50 mg of the powder and transfer it to a 1.5-ml microtube. Immediately add 500 μl of buffer RB/2-mercaptoethanol to the tube.

6. Isolate the RNA by using a Homogenization Spin Column (Green) followed by a HiBind® RNA spin column from the kit according to the manufacturer’s protocol.

7. Use the isolated RNA directly to synthesize cDNA or store it at −80 °C.
8. For synthesis of cDNA, carry out the reaction with RNA in a volume of 20 μl by using Transcriptor High Fidelity cDNA Synthesis Kit (Roche Diagnostics GmbH).

9. Heat to 85 °C for 5 min to inactivate reverse transcriptase. Then store it at −20 °C.

4.2. DNA isolation

1. Prepare sterile phosphate-buffered saline buffer (PBS buffer, 137 mM NaCl, 2.7 mM KCl, 1.0 mM Na₂HPO₄, and 0.18 mM KH₂PO₄).

2. Prepare sterile digestion buffer consisting of 100 mM NaCl, 10 mM Tris–HCl, 25 mM EDTA, and 0.5% (w/v) SDS, pH 8.0. Add proteinase K to a final concentration of 0.1 mg ml⁻¹ before use.

3. Collect fungal cultures in sterile 50-ml Falcon tubes by centrifugation at 5000 rpm at 4 °C for 5 min, and then wash the pellets with ice-cold PBS buffer twice by suspension and centrifugation.

4. Add liquid nitrogen to the pellets and grind the frozen mycelia to a fine powder in an autoclaved mortar.

5. Transfer 100 mg of mycelial powder into a sterile 1.5-ml microtube and add 1.2 ml digestion buffer. Incubate the mixture at 50 °C and 160 rpm for 2 h.

6. Extract twice with 1 volume of phenol/chloroform/isoamyl alcohol mixture (25:24:1) by inversion for 10 min and centrifuge at 4 °C and 4000 rpm for 5–10 min.

7. Add 1/10 volume of ice-cold 3 M sodium acetate and 1 volume of ice-cold isopropanol to the aqueous phase and keep for 20 min at −80 °C.

8. Centrifuge at 4 °C and 6000 rpm for 30 min and wash the DNA pellets twice with 3 ml ice-cold 70% (v/v) ethanol.

9. Dry DNA pellets at 60 °C for approximately 30 min. Dissolve DNA in sterile double distilled water and store at −20 °C.

5. GENE CLONING

Analysis of genomic DNA and cDNA sequences of the known prenyltransferase genes of the DMATS superfamily revealed the presence of one to three short intron sequences at the 3’-end of the genes (Steffan et al., 2009). For heterologous gene expression in Escherichia coli or Saccharomyces cerevisiae, these intron sequences must be removed. This can be achieved by PCR amplification of the coding region from cDNA or by fusion PCR from genomic DNA.
5.1. PCR amplification from cDNA

1. Synthesize cDNA with the Transcriptor High Fidelity cDNA Synthesis Kit (Roche Diagnostics GmbH) from mRNA as described above (Section 4.1).
2. Synthesize primers with mutations at the start and stop codon to generate the respective restriction sites for cloning into expression vector and His-tagged fusion protein for purification.
3. Use synthesized cDNA as template in a gradient PCR with Taq polymerase in a volume of 50 µl to optimize PCR conditions.
4. Carry out PCR amplification in a volume of 50 µl by using Expand High Fidelity Kit (Roche Diagnostics GmbH) and the conditions in step 3.

5.2. Fusion PCR amplification from genomic DNA

Fusion PCR amplification consists of at least two rounds and is therefore somewhat more complicated than normal PCR. We demonstrate this approach by using genes containing only one intron as an example (Fig. 13.3):

1. Synthesize two PCR primer pairs: exon1a and exon1b for the first exon at the 5’-end and exon2a and exon2b for the second exon at the 3’-end of the gene. The primers exon1b and exon2a contain approximately 36 bp overlapping sequence of the two exons. Primers exon1a and exon2b contain suitable restriction sites at the start and stop codon, respectively, which are considered for cloning into the expression vector and for His-tagged fusion protein.

![Figure 13.3](Image) Amplification of the coding sequence of a gene of interest from gDNA by two rounds fusion PCR.
2. In the first round, amplify the two exons from genomic DNA by using primers exon1a and exon1b, and exon2a and exon2b, respectively. Optimize PCR conditions by gradient PCR with Taq polymerase and carry out PCR amplification by using Expand High Fidelity Kit (Roche Diagnostics GmbH).

3. Use PCR products of the two exons from the first round PCR as primers and templates (in a molar ratio of 1:1) for the second round PCR to obtain the entire coding region. Addition of the primers exon1a and exon2b to the reaction mixture often enhances the yield of the PCR amplification.

6. PROTEIN OVERPRODUCTION

The PCR product is subsequently cloned into an expression vector directly (Schneider, Weber, & Hoffmeister, 2008; Yin, Ruan, Westrich, Grundmann, & Li, 2007) or via a cloning vector, for example, pGEM-T easy or pBluescript KS (–) (Grundmann et al., 2008; Grundmann & Li, 2005; Kremer et al., 2007; Markert et al., 2008; Steffan, Unsöld, & Li, 2007; Unsöld & Li, 2005, 2006). Protein overproduction can be carried out in *E. coli* or *S. cerevisiae* (Steffan et al., 2009).

6.1. Protein overproduction in *E. coli*

6.1.1 Gene induction

Most prenyltransferases of the DMATS superfamily were successfully overproduced in *E. coli* strains. The commonly used vectors are pQE60 and pQE70 with *E. coli* XL1 Blue or M15 as expression hosts (Kremer et al., 2007; Yin et al., 2009, 2007, 2010; Yu et al., 2012; Zou et al., 2010). pRSET B and pET28 or its derivative pHis8 was expressed in *E. coli* BL21 (Schneider et al., 2008; Steffan et al., 2007; Unsöld & Li, 2006). For overproduction of soluble proteins in *E. coli*, the following steps are involved:

1. Prepare sterile Luria–Bertani (LB) medium consisting of 1.0% (w/v) tryptone, 1.0% (w/v) NaCl, and 0.5% (w/v) yeast extract.
2. Prepare sterile potassium phosphate buffer (0.17 M KH₂PO₄ and 0.72 M K₂HPO₄).
3. Prepare sterile Terrific-Broth medium (TB medium, per 900 ml medium: 12 g tryptone, 24 g yeast extract, and 4 ml glycerol; add 100 ml potassium phosphate buffer before use).
4. Transfer the expression plasmid by transformation into calcium-competent *E. coli* cells.

5. Inoculate a colony from the LB agar plate or take several microliter glycerol stocks into glass tubes containing 5 ml LB or TB medium supplemented with the respective antibiotics. Cultivate at 37 °C and 220 rpm overnight.

6. Inoculate 2 ml overnight culture into a 250-ml Erlenmeyer flask containing 100 ml liquid LB or TB medium supplemented with the respective antibiotics. Grow the cells at 37 °C and 220 rpm to an adsorption of approximately 0.6 at 600 nm.

7. Add isopropyl thiogalactoside (IPTG) to a final concentration of 0.1–2 mM and cultivate the cells for further 6–16 h at 18–37 °C before harvest. Change temperature and IPTG concentration to obtain the desired recombinant soluble protein.

8. Carry out cultivation in 2000-ml Erlenmeyer flasks containing 1000 ml medium, if necessary.

9. Collect *E. coli* cells by centrifugation at 3000 rpm for 20 min and store the cells at −20 °C.

6.1.2 Protein purification

His-tagged fusion proteins can be purified by using Ni-NTA agarose and judged by SDS-PAGE. The amount of Ni-NTA resin, pH value, and imidazole concentration in buffers are important factors influencing the yield and purity of the purified proteins. For condition optimization, please take these factors into consideration.

1. Prepare lysis buffer (10 mM imidazole, 50 mM NaH$_2$PO$_4$, and 300 mM NaCl, pH 8.0), wash buffer (20–50 mM imidazole, 50 mM NaH$_2$PO$_4$, and 300 mM NaCl, pH 8.0), and elution buffer (250 mM imidazole, 50 mM NaH$_2$PO$_4$, and 300 mM NaCl, pH 8.0).

2. All the following steps are carried out at 4 °C.

3. Resuspend the frozen *E. coli* cells in lysis buffer at 2–5 ml g$^{-1}$ wet weight. Add lysozyme to a final concentration of 1 mg ml$^{-1}$ and incubate for 30 min. Sonicate the cells six times for 10 s, each time at 200 W, with 10 s for cooling after each burst.

4. Centrifuge the lysate at 13,000 rpm for 30 min to separate soluble proteins from cellular debris. If the lysate is very viscous, for example, the lysate of *E. coli* BL21 cells, add RNAase and DNAase to a final concentration of 10 and 5 μg ml$^{-1}$ 15 min before sonication, respectively.
5. Mix soluble proteins with Ni-NTA agarose resin (Qiagen) according to the manufacturer’s instructions and stir the mixture for 1 h. The volume of resin depends on the yield of protein; try 50 μl for the lysate from 100 ml culture first.

6. Load the mixture to a column with bottom sieve. Wash the residue on the sieve with 4 ml wash buffer twice to remove nonbound proteins.

7. Elute the target protein with 2.5 ml elution buffer and check protein purity on SDS-PAGE.

8. Change the protein buffer by passing a column with Sephadex G-25, for example, PD-10 (GE Healthcare), which has been equilibrated with 50 mM Tris–HCl containing 15% (v/v) glycerol, pH 7.5, previously.

9. Collect the purified protein and store aliquots at −80 °C for enzyme assays.

6.2. Protein overproduction in *S. cerevisiae*

6.2.1 Gene expression

A few prenyltransferases were overproduced in *S. cerevisiae* INVSc1 with pYES2/NT as expression vector (Grundmann et al., 2008; Markert et al., 2008; Unsöld & Li, 2005). For overproduction of soluble proteins in *S. cerevisiae*, the following steps are involved:

1. Prepare sterile minimal medium consisting of 0.67% (w/v) yeast nitrogen base (without amino acids but with ammonium sulfate), 0.01% (w/v) each of adenine, arginine, cysteine, leucine, lysine, threonine, and tryptophan, 0.005% (w/v) each of aspartic acid, histidine, isoleucine, methionine, phenylalanine, proline, serine, tyrosine, and valine. Add 2% (w/v) agar for a solid medium.

2. Transfer the expression plasmid into *S. cerevisiae* cells by electroporation and select the resulting transformants on minimal medium plate.

3. Grow cells in 500-ml Erlenmeyer flasks containing 250 ml liquid minimal medium with 2% (w/v) glucose at 30 °C for 36 h.

4. Centrifuge cells at 3000 rpm for 5 min and wash the pellets with liquid minimal medium without glucose.

5. Transfer the washed cells into 1000-ml Erlenmeyer flasks containing 500 ml induction medium consisting of minimal medium with 1% (w/v) raffinose and 2% (w/v) galactose. Incubate at 30 °C for 16 h before harvest.

6. Collect the cells by centrifugation at 3000 rpm for 5 min and store them at −20 °C.
6.2.2 Protein purification

The purification procedure of proteins from *S. cerevisiae* is similar to that from *E. coli*, that is, breaking cells followed by affinity chromatography with Ni-NTA agarose.

1. Prepare extraction buffer consisting of 50 mM Tris–HCl, 15% (v/v) glycerol, 1 mM DTT, and 1 mM phenylmethylsulfonyl fluoride, pH 7.5. Prepare buffers for purification as described in step 1 in Section 6.1.2.

2. All the following steps are carried out at 4 °C.

3. Resuspend the resulting yeast pellets (Section 6.2.1) in an adequate amount of ice-cold water and press the suspension by using an injection syringe into a mortar with liquid nitrogen. Grind the cells to a fine powder.

4. Resuspend 1 g powder in 2 ml extraction buffer and stir the mixture for 15 min.

5. Centrifuge the mixture at 13,000 rpm for 15 min to separate soluble proteins from cellular debris and use the supernatant for protein purification.

6. Do the same as steps 5–9 in Section 6.1.2.

7. PREPARATION OF STOCK SOLUTIONS FOR ENZYME ASSAYS

Stock solutions for DMAPP, tryptophan-containing cyclic dipeptides, hydroxynaphthalenes, flavonoid aglycones, simple indoles, tyrosine derivatives, and Ca$^{2+}$ are prepared as follows:

1. Weigh accurately desired amount of a given substance in a 1.5-ml microtube.

2. Dissolve DMAPP in a calculated volume of 50 mM Tris–HCl buffer (pH 7.5) to give a final concentration of 20 mM.

3. Considering the difference in their solubility in aqueous system, stock solutions of 20 mM, 10 mM, or 4 mM in DMSO, 50 mM Tris–HCl buffer (pH 7.5), or both are prepared for simple indoles and tyrosine derivatives. Owing to the inhibiting potential of DMSO for enzyme reactions, keep the DMSO concentration as low as possible.

4. Dissolve tryptophan-containing cyclic dipeptides, hydroxynaphthalenes, and flavonoid aglycones in DMSO to give a final concentration of 20 mM.

5. Dissolve CaCl$_2$ in 50 mM Tris–HCl buffer (pH 7.5) to give a final concentration of 100 mM.
8. BIOCHEMICAL CHARACTERIZATION OF PRENYLTRANSFERASES

8.1. Enzyme assays

Purified prenyltransferases are incubated with different aromatic substrates in the presence of DMAPP. The reaction mixtures are analyzed on HPLC.

1. In general, each assay (100 μl) contains 50 mM Tris–HCl (pH 7.5), 5 or 10 mM Ca\(^{2+}\), 1 mM aromatic substrate, 2 mM DMAPP, 0.3–5% (v/v) glycerol, 0–5% (v/v) DMSO, and 1–20 μg of purified recombinant protein.

2. Add a calculated volume of 50 mM Tris–HCl (pH 7.5) in a 1.5-ml microtube to ensure the final volume to be 100 μl, followed by adding stock solutions of Ca\(^{2+}\) and aromatic substrate.

3. Add DMAPP and protein solution as last assay components and mix thoroughly by pipetting.

4. Incubate the reaction mixture at 37 °C or 30 °C for 0.5–7 h and terminate the enzyme reaction by adding 100 μl methanol to the mixture.

5. Centrifuge the mixture at 13,000 rpm for 20 min to remove proteins before injection on HPLC.

6. Carry out negative controls with heat-inactivated protein by boiling it for 20 min.

Keep in mind that the reactions catalyzed by the prenyltransferases of the DMATS superfamily are usually independent of the presence of metal ions. However, Ca\(^{2+}\) often enhanced the reaction velocity. The optimal Ca\(^{2+}\) concentration was estimated in the range of 5–10 mM for known enzymes (Steffan et al., 2009).

8.2. Kinetic parameters

Kinetic parameters of the prenyltransferases for aromatic substrates and DMAPP are determined in 100 μl assays. Linear dependences of the enzyme reactions on reaction time and protein amount should be carried out previously. The values for known prenyltransferases were estimated to be up to 150 min and 20 μg, respectively. The \(K_M\) values of the best known prenyltransferases of the DMATS superfamily were found to be 1–500 μM for DMAPP and 2–300 μM for natural or best aromatic substrates.

8.2.1 Kinetic parameter for DMAPP

1. Use natural or the best accepted aromatic substrate for kinetic assays for DMAPP.
2. Dilute the 20 mM DMAPP stock solution to different concentrations for assays. Always use newly prepared stock solution.

3. Each assay contains 50 mM Tris–HCl (pH 7.5), 5 or 10 mM Ca\(^{2+}\), 1 mM aromatic substrate, 0.3–5% (v/v) glycerol, 0–5% (v/v) DMSO, a given amount of purified recombinant protein and DMAPP at final concentrations of 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, and 2 mM.

4. Carry out assay incubation and termination and sample preparation for HPLC in the same manner as described in steps 2–5 of Section 8.1. Use protein amount and incubation time in the linear region of the reactions.

5. Use assays without DMAPP as negative controls.

6. Adjust DMAPP concentrations and repeat the experiments, if necessary.

8.2.2 Kinetic parameters for aromatic substrates

1. Use the same solvents as described in Section 7 to prepare 100 mM stock solutions and dilute them to concentrations of 40, 20, 10, 4, 2, 1, 0.4, and 0.2 mM. Owing to limited solubility, stock solutions with a maximal concentration of 40 or 20 mM are prepared for some substrates.

2. Each assay contains 50 mM Tris–HCl (pH 7.5), 5 or 10 mM of Ca\(^{2+}\), 2 mM DMAPP, 0.3–5% (v/v) glycerol, 0–5% (v/v) DMSO, a given amount of purified recombinant protein and aromatic substrate at final concentrations of 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, and 5 mM. Owing to different solubility, the maximal concentration can be changed.

3. Carry out assay incubation and termination and sample preparation for HPLC in the same manner as described in steps 2–5 of Section 8.1. Use protein amount and incubation time in the linear region of reactions.

4. Use assays without aromatic substrate as negative controls.

5. Adjust the concentrations of aromatic substrate and repeat the experiments, if necessary.

9. CHEMOENZYMATIC SYNTHESIS OF PRENYLATED COMPOUNDS

Prenyltransferases of the DMATS superfamily have been successfully used for production of prenylated compounds including analogues of their natural substrates such as simple indoles, tryptophan-containing cyclic dipeptides, and tyrosine derivatives (Li, 2009a, 2010; Zou, Xie, Zheng & Li, 2011; Fig. 13.4). Interestingly, some enzymes from this family are also able to prenylate hydroxynaphthalenes and flavonoid aglycones, resulting in formation of prenylated derivatives (Yu & Li, 2011; Yu, Xie & Li, 2011).
9.1. Incubations

Reactions for chemoenzymatic synthesis and structure elucidation are taken in large scales (10–50 ml), which are carried out as following:

1. Each assay contains 50 mM Tris–HCl (pH 7.5), 5 or 10 mM Ca$^{2+}$, 1 mM aromatic substrate, 2 mM DMAPP, 0.3–5% (v/v) glycerol, 0–5% (v/v) DMSO, and 0.5–4 mg purified recombinant protein for 10 ml assays.

2. First add the calculated volume of 50 mM Tris–HCl (pH 7.5) to a 50- or 100-ml glass flask, followed by adding Ca$^{2+}$ and aromatic substrate solutions.

3. Add DMAPP and protein solution as last components and mix thoroughly.

4. Incubate the mixture at 30°C or 37°C for 16–24 h. Mix occasionally during the incubation.

9.2. Sample preparation for HPLC

Owing to solubility difference of the enzyme products, reaction mixtures are treated in different ways before purification on an HPLC system.

9.2.1 Reaction mixtures with simple indoles and tyrosine derivatives

1. After incubation for 16–24 h, terminate the assays by mixing with an equal volume of methanol. Centrifuge at 13,000 rpm for 20 min to remove precipitated proteins.
2. Concentrate the resulting supernatant on a rotating vacuum evaporator at 30 °C to a final volume of 1–3 ml before injection onto HPLC.

3. Transfer the sample for HPLC into an autosampler tube or a new reaction tube for manual injection. Keep in mind that insoluble particles in the samples could block and damage the column and HPLC system. If the reaction mixture is poorly dissolved, try to improve the solubility by adding DMSO. However, DMSO in the sample could influence the chromatographic behavior of the compounds. It is preferable to centrifuge the samples for 10 min at 13,000 rpm or filter them through a 13-mm syringe filter (0.2 µm PTFE) before injection, to remove insoluble components.

9.2.2 Reaction mixtures with tryptophan-containing cyclic dipeptides, hydroxynaphthalenes, and flavonoid aglycones

1. After 16–24 h incubation, transfer the reaction mixture to a separatory funnel and extract it with an equal volume of ethyl acetate three times. Collect the upper layers (ethyl acetate phase) in a flask.

2. Evaporate solvents with a rotating vacuum evaporator at 30 °C to obtain the residues containing both substrate and enzyme products.

3. Dissolve the residues in methanol (500 µl or more if necessary). As described in Section 9.2.1, DMSO can also be used to improve the solubility. It is recommended to centrifuge or filter the sample before injection.

4. Transfer the sample into an autosampler tube or a new reaction tube for the application on HPLC.

10. HPLC

HPLC is used for analysis and purification of the enzyme products.

10.1. HPLC components

1. Use an HPLC system equipped with a photo diode array detector and an autosampler, if possible.

2. Use an RP-18 column (250 × 4 mm, 5 µm) for analyzing enzyme assays and RP-18 column (250 × 10 mm, 5 µm) for purifying enzyme products.

3. Use solvents A and B as mobile phases for analyzing enzyme assays. Solvent A: water with 0.5% (v/v) trifluoroacetic acid (TFA); solvent B: methanol with 0.5% (v/v) TFA.
4. Use solvents C and D for purification. Solvent C: water without acid; solvent D: methanol without acid. TFA in the mobile phase for reverse phase HPLC sharpens the peaks and improves resolution. However, it can influence the stability of some compounds and is better not used in the mobile phases for substance isolation.

5. Use flow rate of 1 ml min\(^{-1}\) for analysis and 2.5 ml min\(^{-1}\) for purification of the enzyme products.

6. Set detection wavelength between 250 and 300 nm.

10.2. HPLC conditions

10.2.1 Analysis of enzyme assays with simple indoles or tyrosine derivatives as substrates

1. Equilibrate the HPLC column with 20\% (v/v) solvent B in A for 5 min.
2. Inject the sample and use a linear gradient from 20\% (v/v) solvent B in A to 100\% (v/v) solvent B in 15 min for separation.
3. Rinse the column with 100\% (v/v) solvent B for 5 min and equilibrate subsequently with 20\% (v/v) solvent B in A for 5 min.

10.2.2 Purification of prenylated products of simple indoles or tyrosine derivatives

1. Equilibrate the HPLC column with 20\% (v/v) solvent D in C for 8 min.
2. Inject the sample and use a linear gradient from 20\% (v/v) solvent D in C to 100\% (v/v) solvent D for 30 min for separation.
3. Rinse the column with 100\% (v/v) solvent D for 8 min and equilibrate subsequently with 20\% (v/v) solvent D in C for 8 min.
4. For assays with more than one product, optimize the method for better separation, if necessary.
5. Collect product peaks and evaporate at 30 °C to dryness.
6. Use the purified products for NMR and MS analyses.

10.2.3 Analysis of enzyme assay with tryptophan-containing cyclic dipeptides, hydroxynaphthalenes, or flavonoid aglycones as substrates

1. Equilibrate the HPLC column with 40\% (v/v) solvent B in A for 5 min.
2. Inject the sample and use a linear gradient from 40\% (v/v) solvent B in A to 100\% (v/v) solvent B for 15 min for separation.
3. Rinse the column with 100\% (v/v) solvent B for 5 min and equilibrate subsequently with 40\% (v/v) solvent B in A for 5 min for elution.
10.2.4 Purification of prenylated tryptophan-containing cyclic dipeptides, hydroxynaphthalenes, or flavonoid aglycones

1. Equilibrate the HPLC column with 40% (v/v) solvent D in C for 8 min.
2. Inject the sample and use a linear gradient from 40% (v/v) solvent D in C to 100% (v/v) solvent D for 30 min for separation.
3. Rinse the column with 100% (v/v) solvent D for 8 min and equilibrate subsequently with 40% (v/v) solvent D in C for 8 min for elution.
4. For assays with more than one product, optimize the method for better separation, if necessary.
5. Do the same as described in steps 5 and 6 in Section 10.2.2.

11. SUMMARY

Prenyltransferases of the DMATS superfamily mainly catalyze the prenylation of diverse indole derivatives and are involved in the biosynthesis of indole alkaloids in ascomycetes. Recent studies have revealed that these enzymes showed high tolerance toward diverse tryptophan and tyrosine derivatives and accepted even hydroxynaphthalenes and flavonoid aglycones as substrates. They usually catalyze regio- and stereospecific prenylations and can be used as efficient catalysts for chemoenzymatic synthesis of novel prenylated compounds, which can be then tested for their biological activities in drug discovery and development programs. Therefore, these enzymes are attractive not only for biologists but also for biotechnologists and medicinal chemists. We hope that the described procedures for biochemical characterization of prenyltransferases in this chapter can meet the challenges for finding additional enzymes to be used as novel catalysts.

ACKNOWLEDGMENTS

Work in the authors’ laboratory was supported by a grant from the Deutsche Forschungsgemeinschaft (LI844/4-1 to S.-M. Li). X. Y. is a recipient of a fellowship from the China Scholarship Council.

REFERENCES

6 Conclusions and future prospects

In this thesis, novel strategies for chemoenzymatic synthesis of prenylated compounds were developed by function elucidation of indole prenyltransferases as well as by substrate promiscuity study. Firstly, three indole prenyltransferases of the DMATS superfamily were characterized. The C3-prenyltransferase CdpC3PT from N. fischeri catalyzed reverse prenylation of tryptophan-containing cyclic dipeptides of the indole ring and the formation of a 6/5/5/6 tetracyclic ring system. Five monoprenylated and one diprenylated derivatives were obtained from five cyclic dipeptides containing L-form tryptophanyl moiety. 5-DMATS was identified from A. clavatus and proven to catalyze the regiospecific C5-prenylation of indole derivatives. It is the first enzyme reported to catalyze prenylation at position C-5 of indole derivatives and fills herewith the last gap in the search for indole prenyltransferases regarding their prenylation positions. Twelve C5-prenylated derivatives of simple indole derivatives were produced. In contrast to the low flexibility of NotF from Aspergillus sp. MF297-2, we demonstrated that the NotF homologue BrePT from A. versicolor showed substrate promiscuity for at least twelve substrates from which reversely C2-prenylated products were produced and subsequently identified by MS and NMR analyses. The broad substrate promiscuity and high regiospecificity of CdpC3PT, 5-DMATS and BrePT provides experimental evidence for their application as effective catalysts for chemoenzymatic synthesis. The natural substrates of CdpC3PT and 5-DMATS can’t be detected in this thesis. Concerning BrePT, it can be speculated that the natural substrate of BrePT should be brevianamide F based on the high sequence similarity of BrePT with NotF. Subsequently, CdpC3PT, 5-DMATS and BrePT obtained in this thesis as well as other known indole prenyltransferases of the DMATS superfamily were successfully applied for chemoenzymatic synthesis of prenylated derivatives. AnaPT, CdpC3PT and CdpNPT constructed eight prenylated pyrroloindoline diketopiperazine stereoisomers with one 6/5/5/6 tetracyclic framework and six prenylated pyrroloindoline diketopiperazine stereoisomers containing one 6/5/5/6/5 pentacyclic framework from cyclo-Trp-Ala and cyclo-Trp-Pro isomers, respectively. Experimental data in this thesis provided information on the structure dependence of the stereoselectivity of these enzymes towards the tested cyclic dipeptides. The stereoselectivity of AnaPT and CdpC3PT was largely dependent on the configuration of tryptophanyl moiety in substrates and always complemented to each other, while CdpNPT showed lower stereoselectivity but higher conversion ability. Indolocarbazoles were also accepted by indole prenyltransferases. 5-DMATS and FgaPT2 were capable to catalyze regiospecific prenylation of indolocarbazoles at the para-position of the indole N-atom. Five prenylated indolocarbazoles were generated in this study. Since prenylated indolocarbazoles
have been reported neither from natural sources, nor by chemical synthetic approaches, this is the first report on prenylated indolocarbazoles.

Indole prenyltransferases of the DMATS superfamily also showed substrate specificity towards hydroxynaphthalene derivatives, which were substrates for enzymes of the CloQ/NphB group. In contrast to the different prenylation patterns and positions of a given indole derivative by different enzymes, the same major prenylated products were identified in the reaction mixtures with hydroxynaphthalenes, *i.e.* with a regular C-prenyl moiety at para- or ortho-position to a hydroxyl group. O-prenylated and diprenylated derivatives were also identified as enzyme products in incubation mixtures with low conversion. Twenty prenylated hydroxynaphthalenes have been isolated in this study. Furthermore, 7-DMATS showed the capability to catalyze C-prenylation of flavonoids, which were substrates for the members of the UbiA superfamily. Regularly C6-prenylated flavonoids were identified in all of six investigated flavonoids as enzyme products, revealing that the catalytic preference of prenylation at position C-6 between two hydroxyl groups in flavonoids by 7-DMATS.

These results expand the potential usage of prenyltransferases of the DMATS superfamily as biocatalysts for chemoenzymatic synthesis, and meanwhile, increase the structural diversity of prenylated compounds and provide new opportunities for drug discovery and development. In addition to the works on indole prenyltransferases, another two genes involved in the biosynthetic pathway of the prenylated indole alkaloid HAS were successfully cloned, *i.e.* the putative O-methyltransferase gene *hasC* and the putative cytochrome P450 gene *hasH*. The gene *hasC* was cloned into pQE60 and overexpressed in *E. coli*. Recombinant His6-HasC was successfully overproduced and detected by SDS-PAGE. Three expression vectors have been constructed for the overexpression of *hasH*, including the normal expression vectors with myc epitope tag or His6-tag and the co-expression vector containing the reductase gene *NFIA_083630*. Unfortunately, due to time limit of scholarship, these projects can’t be finished. For the future prospects, the following works should be performed:

1. Further investigation on the putative O-methyltransferase gene *hasC* and the putative cytochrome P450 gene *hasH* from *A. fumigatus*.
2. Investigation on the prenylation of indole alkaloids by prenyltransferases of the CloQ/NphB group and the UbiA superfamily.
7 References

References

References

References

8 Acknowledgments

Firstly, I would like to express my deepest gratitude to Prof. Dr. Shu-Ming Li for his excellent supervision, support and care for my work. I learned a lot of knowledge on biochemistry and molecular biology from him, and my personal development has greatly benefited from his scientific thinking as well as high efficiency in work.

I am grateful to Prof. Dr. Michael Keusgen for acting as second referee and examiner.

I am especially grateful to the financial support of China Scholarship Council during the PhD period.

Great thanks to Dr. Xiulan Xie for 2D-NMR measurement for enzyme products of cyclic dipeptides, simple indole derivatives and hydroxynaphthalenes catalyzed by indole prenyltransferases.

I would like to thank Dr. Thomas Kämpchen, Dr. Regina Ortmann and Stefan Newel for taking \(^1\)H-NMR spectra and Dr. Gabriela Laufenberg for taking mass spectra.

I am grateful to Dr. Wen-Bing Yin and Yan Liu for their works on CdpC3PT and 5-DMATS, respectively, as well as Qing Wang and Suqin Yin for their study on BrePT.

I would like to thank Lena and Dr. Marco Matuschek for synthesis of DMAPP and Dr. Edyta Stec for synthesis of GPP and FPP, as well as their help during the works.

Many thanks to Dr. Edyta Stec, Dr. Ole Rigbers, Dr. Christiane Wallwey and Kathrin Mundt for their kindly help for my living in Marburg as well as help and discussion during the work.

I would like to thank Mr. Rudl for preparing media for *E. coli* cultivation.

I express my thanks to AOR Dr. Dieter Kreusch and Sabine Bouaraba for ordering chemicals as well as lab supplies and maintenance of laboratory equipment.

Especial thanks to Kathrin Mundt and Carsten Wunsch for translating the abstract into German as well as Beate Wollinsky for reading this thesis.

Thanks also go to all current and former colleagues at the institute for the wonderful time that we shared as well as the help and discussion during the work, including Aili Fan, Alexander Frehse, Anne Döring, Daniel Pockrandt, Jennifer Robinson, Julia Winkelblech, Kirsten Brockmeyer, Lennart Poppe, Mike Liebhold, Nina Gerhards, Peter Mai, Soheil Pezeshki, Stefan Wolters, Sylwia Tarcz, Viola Wohlgemuth.

I am deeply indebted to my parents who always give me love and support me over the past years. I would like to give my personal thanks to my friends outside of the laboratory for the nice friendship.
9 Curriculum vitae

Personal data
Name: Xia Yu
Date of Birth: 05.08.1986
Place of Birth: Hunan Province, P. R. China

Education
1991-1994 Primary school student at Affiliated School to Xiangzhong Machinery Factory, Hunan Province, P. R. China.
1994-1997 Primary school student at Affiliated School to Huada Machinery Factory, Hunan Province, P. R. China.
1997-1999 Junior middle school student at Affiliated School to Huada Machinery Factory, Hunan Province, P. R. China.
1999-2000 Junior middle school student at the No. 1 Middle School of Loudi, Hunan Province, P. R. China.
2000-2003 Senior middle school student at the No. 1 Middle School of Loudi, Hunan Province, P. R. China.
09/2003-06/2007 Undergraduate student at Peking University, School of Pharmaceutical Sciences, Beijing, P. R. China.
06/2007 Bachelor of Science
09/2007-06/2009 Master candidate at Peking University, School of Pharmaceutical Sciences, Beijing, P. R. China. Master thesis supervised by Prof. Dr. Wenhan Lin; Title: “Investigation on chemical constituents and their bioactivities from Chinese Mangrove plant *Cerbera manghas* L.”.
06/2009 Master of Science
10/2009–07/2013 PhD candidate at the University of Marburg, Institute of Pharmaceutical biology and biotechnology, Marburg, Germany. Doctoral thesis supervised by Prof. Dr. Shu-Ming Li; Title: “Molecular biological and biochemical investigations on the biosynthetic enzymes of prenylated indole alkaloids from fungi.”