Characterization of the role of MrpC in Myxococcus xanthus developmental cell fate determination

Myxococcus xanthus is an excellent model system for multicellular prokaryotic behaviour and Gram-negative differentiation. Under nutrient-limited conditions, the population enters a complex multicellular developmental program wherein cells undergo at least three distinct known cell fates: sporulatio...

Ausführliche Beschreibung

Gespeichert in:
1. Verfasser: Bhardwaj, Vidhi
Beteiligte: Higgs, Penelope (Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Englisch
Veröffentlicht: Philipps-Universität Marburg 2013
Biologie
Ausgabe:http://dx.doi.org/10.17192/z2013.0387
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

1. http://archiv.ub.uni-marburg.de/diss/z2009/0781


2. http://archiv.ub.uni-marburg.de/diss/z2012/1050


3. Laue BE & Gill RE (1995). Using a phase-locked mutant of Myxococcus xanthus to study the role of phase variation in development. J Bacteriol 177: 4089–4096. References 129


4. Ding N, Zheng Y, Wu Q & Mao Xiaohua (2008). The 5 ′ untranslated region of fruA mRNA is required for translational enhancement of FruA synthesis during Myxococcus xanthus development. Arch Microbiol 189: 279–288.


5. Nariya H & Inouye Masayori (2008). MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132: 55–66.


6. Hengge R (2009). Proteolysis of sigmaS (RpoS). and the general stress response in Escherichia coli. Res Microbiol 160: 667–676.


7. Robert L, Paul G, Chen Y, Taddei F, Baigl D & Lindner AB (2010). Pre- dispositions and epigenetic inheritance in the Escherichia coli lactose operon bistable switch. Mol Sys Biol 6: 357.


8. Ellehauge E, Nørregaard-Madsen M & Søgaard-Andersen L (1998). The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. Mol Microbiol 30: 807–817.


9. Cho K & Zusman D R (1999). Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol Microbiol 34: 714–725.


10. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.


11. Zhang D, Iyer LM & Aravind L (2011). A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems. Nucleic Acids Res 39: 4532–4552.


12. Søgaard-Andersen L, Slack FJ, Kimsey H & Kaiser D (1996). Intercellular C- signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev 10: 740–754.


13. Fujita M & Losick R (2003). The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division. Genes Dev 17: 1166–1174.


14. Harris BZ, Kaiser D & Singer M (1998). The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus . Genes Dev 12: 1022–1035.


15. Fujita M & Losick R (2005). Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev 19: 2236–2244.


16. Kearns DB & Losick R (2005). Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19: 3083–3094.


17. Vlamakis H, Aguilar C, Losick R & Kolter R (2008). Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22: 945–953.


18. Lobedanz S & Søgaard-Andersen Lotte (2003). Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev 17: 2151–2161.


19. Li S, Lee BU & Shimkets L J (1992). csgA expression entrains Myxococcus xanthus development. Genes Dev 6: 401–410.


20. Singer M & Kaiser D (1995). Ectopic production of guanosine penta-and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev 9: 1633–1644. References 133


21. Maamar H & Dubnau David (2005). Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 56: 615– 624.


22. Nariya H & Inouye Sumiko (2005). Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus development. Mol Microbiol 58: 367–379.


23. Stein E a, Cho Kyungyun, Higgs PI & Zusman David R (2006). Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthus. Mol Microbiol 60: 1414–1431.


24. Kaberdin VR & Bläsi U (2006). Translation initiation and the fate of bacterial mRNAs. FEMS Microbiol Rev 30: 967–979.


25. Lopez D, Vlamakis H & Kolter R (2009). Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33: 152–163.


26. González-Pastor JE (2011). Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol Rev 35: 415–424.


27. Tyagi S (2010). E. coli, what a noisy bug. Science 329: 518–519.


28. Laub MT, Shapiro L & McAdams HH (2007). Systems biology of Caulobacter.


29. Veening J-W, Smits WK & Kuipers OP (2008). Bistability, epigenetics, and bet- hedging in bacteria. Annu Review Microbiol 62: 193–210.


30. Osterås M & Jenal U (2000) Regulatory circuits in Caulobacter. Curr Opin Microbiol 3: 171–176.


31. Kaplan HB & Plamann L (1996). A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol Lett 139: 89–95.


32. Veening J, Hamoen LW & Kuipers OP (2005). Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. 56: 1481–1494.


33. Smits WK, Kuipers OP & Veening J-W (2006). Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4: 259–271.


34. Mensch B, Bachelor thesis (2009). Analysis of EspA dependent protein accumulation of MrpC, a developmental regulator in Myxococcus xanthus.


35. Balaban NQ, Merrin J, Chait R, Kowalik L & Leibler S (2004). Bacterial persistence as a phenotypic switch. Science 305: 1622–1625.


36. Reichenbach H (1993). Biology of the Myxobacteria: Ecology and Taxonomy.


37. Dubnau David & Losick R (2006). Bistability in bacteria. Mol Microbiol 61: 564– 572.


38. Letouvet-Pawlak B, Monnier C, Barray S, Hodgson DA & Guespin-Michel JF (1990). Comparison of beta-galactosidase production by two inducible promoters in Myxococcus xanthus. Res Microbiol 141: 425–435.


39. O'Connor K A & Zusman D R (1991c). Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores. J Bacteriol 173: 3318–3333.


40. Novick A & Weiner M (1957). Enzyme induction as an all-or-none phenomenon.


41. López D & Kolter R (2010). Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev 34: 134–149.


42. Blackhart BD & Zusman D R (1985). " Frizzy " genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc Natl Acad Sci USA 82: 8767–8770.


43. Ogawa M, Fujitani S, Mao X, Inouye S & Komano T (1996). FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol Microbiol 22: 757–767.


44. Davidson CJ & Surette MG (2008). Individuality in bacteria. Annu Rev Genet 42: 253–268.


45. McBride MJ, Köhler T & Zusman D R (1992). Methylation of FrzCD, a methyl- accepting taxis protein of Myxococcus xanthus, is correlated with factors affecting cell behavior. J Bacteriol 174: 4246–4257.


46. Pessi G, Blumer C & Haas D (2001). mRNA stabilizing or lacZ fusions report gene expression , don't they? Microbiol 147: 1993–1995.


47. Dworkin, M. & D. Kaiser, (1993). Myxobacteria II. American Society for Microbiology, Washington, DC.


48. Lewis K (2007). Persister cells, dormancy and infectious disease. Nat Rev. Microbiol 5: 48–56.


49. Owen P, Meehan M, De Loughry-Doherty H & Henderson I (1996). Phase- variable outer membrane proteins in Escherichia coli. FEMS immunology and medical microbiology 16: 63–76.


50. Stibitz S, Aaronson W, Monack D & Falkow S (1989). Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature 338: 266–269.


51. Hanlon WA, Inouye M & Inouye S (1997). Pkn9, a Ser/Thr protein kinase involved in the development of Myxococcus xanthus. Mol Microbiol 23: 459– 471.


52. Ueki T, Inouye S & Inouye M (1996). Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene 183: 153–157.


53. Gottesman S (2003). Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19: 565–587.


54. Kaiser Dale (2004). Signaling in myxobacteria. Annu Rev of Microbiol 58: 75– 98.


55. Reichenbach H (1999). The ecology of the myxobacteria. Environ Microbiol 1: 15–21.


56. Gronewold TM & Kaiser D (2001). The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol Microbiol 40: 744–756.


57. Nariya H & Inouye Sumiko (2006). A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol Microbiol 60: 1205– 1217.


58. Graumann PL (2006). Different genetic programmes within identical bacteria under identical conditions: the phenomenon of bistability greatly modifies our view on bacterial populations. Mol Microbiol 61: 560–563.


59. Odorico JS, Kaufman DS and Thomson JA (2001). Multilineage Differentiation from Human Embryonic Stem Cell Lines. Stem cells 19: 193–204.


60. Kunst F et al. (1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249–256.


61. Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. Proc Natl Acad Sci US 107: 8486–8491.


62. Maamar H, Raj A & Dubnau David (2007). Noise in gene expression determines cell fate in Bacillus subtilis. Science 317: 526–529.


63. Ubersax JA & Ferrell JE (2007). Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8: 530–541.


64. Licking E, Gorski L & Kaiser D (2000). A common step for changing cell shape in fruiting body and starvation-independent sporulation of Myxococcus xanthus. J Bacteriol 182: 3553–3558. References 130


65. Wall D, Kolenbrander PE & Kaiser D (1999). The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J Bacteriol 181: 24–33.


66. Jelsbak L & Kaiser Dale (2005). Regulating pilin expression reveals a threshold for S motility in Myxococcus xanthus. J Bacteriol 187: 2105–2112.


67. Lee B, Higgs P, Zusman DR & Cho Kyungyun (2005). EspC is involved in controlling the timing of development in Myxococcus xanthus. J Bacteriol 187: 5029–5031.


68. Turgay K, Hahn J, Burghoorn J & Dubnau D (1998). Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 17: 6730–6738.


69. Tzeng L & Singer Mitchell (2005). DNA replication during sporulation in Myxococcus xanthus fruiting bodies. Proc Natl Acad Sci USA 102: 14428– 14433. References 134


70. Four unusual two-component signal transduction homologs, RedC to RedF, are necessary for timely development in Myxococcus xanthus. J Bacteriol 187: 8191–8195.


71. Boysen A, Ellehauge E, Julien B & Søgaard-Andersen L (2002). The DevT protein stimulates synthesis of FruA, a signal transduction protein required for fruiting body morphogenesis in Myxococcus xanthus. J Bacteriol 184: 1540– 1546.


72. Tzeng L, Ellis T & Singer Mitchell (2006). DNA replication during aggregation phase is essential for Myxococcus xanthus development. J Bacteriol 188: 2774–2779.


73. Goldman BS et al. (2006). Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci USA 103: 15200–15205.


74. Ueki Toshiyuki & Inouye Sumiko (2003). Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proc Natl Acad Sci USA 100: 8782–8787.


75. Julien B, Kaiser a D & Garza a (2000). Spatial control of cell differentiation in Myxococcus xanthus. Proc Natl Acad Sci USA 97: 9098–9103.


76. Wu SS & Kaiser D (1996). Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J Bacteriol 178: 5817–5821.


77. Wu SS & Kaiser D (1997). Regulation of expression of the pilA gene in Myxococcus xanthus. J Bacteriol 179: 7748–7758. References 135


78. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J Bacteriol 189: 3738–3750.


79. Rasmussen AA & Søgaard-Andersen Lotte (2003). TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus. J Bacteriol 185: 5452–5464.


80. Leonardy S, Freymark G, Hebener S, Ellehauge Eva & Søgaard-Andersen Lotte (2007). Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus. EMBO J 26: 4433–4444.


81. McBride MJ & Zusman D R (1993). FrzCD, a methyl-accepting taxis protein from Myxococcus xanthus, shows modulated methylation during fruiting body formation. J Bacteriol 175: 4936–4940.


82. Kuspa A, Plamann L & Kaiser D (1992). Identification of heat-stable A-factor from Myxococcus xanthus. J Bacteriol 174: 3319–3326.


83. O'Connor K A & Zusman D R (1991a). Analysis of Myxococcus xanthus cell types by two-dimensional polyacrylamide gel electrophoresis. J Bacteriol 173: 3334–3341.


84. O'Connor K A & Zusman D R (1991b). Behavior of peripheral rods and their role in the life cycle of Myxococcus xanthus. J Bacteriol 173: 3342–3355.


85. O'Connor K a & Zusman D R (1988). Reexamination of the role of autolysis in the development of Myxococcus xanthus. J Bacteriol 170: 4103–4112.


86. Curtis PD, Taylor RG, Welch RD & Shimkets Lawrence J (2007). Spatial organization of Myxococcus xanthus during fruiting body formation. J Bacteriol 189: 9126–9130.


87. Rosenberg E, Keller KH & Dworkin M (1977). Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 129: 770–777.


88. Wireman JW & Dworkin M (1977). Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 129: 798–802.


89. Chai Y, Chu F, Kolter R & Losick R (2008). Bistability and biofilm formation in Bacillus subtilis. Mol Microbiol 67: 254–263.


90. Higgs PI, Jagadeesan S, Mann P & Zusman David R (2008). EspA, an orphan hybrid histidine protein kinase, regulates the timing of expression of key developmental proteins of Myxococcus xanthus. J Bacteriol 190: 4416–4426.


91. Brenneis M & Soppa J (2009). Regulation of translation in haloarchaea: 5'-and 3'-UTRs are essential and have to functionally interact in vivo. PloS One 4: e4484.


92. Mittal S & Kroos L (2009a). A combination of unusual transcription factors binds cooperatively to control Myxococcus xanthus developmental gene expression.


93. Mittal S & Kroos L (2009b). Combinatorial regulation by a novel arrangement of FruA and MrpC2 transcription factors during Myxococcus xanthus development.


94. García-Moreno D, Polanco MC, Navarro-Avilés G, Murillo FJ, Padmanabhan S & Elías-Arnanz M (2009). A Vitamin B12-Based System for Conditional Expression Reveals dksA To Be an Essential Gene in Myxococcus xanthus. J Bacteriol 191: 3108–3119.


95. Kumar K, Mella-Herrera R a & Golden JW (2010). Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2: a000315.


96. Müller F-D, Treuner-Lange A, Heider J, Huntley SM & Higgs PI (2010). Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC Genomics 11: 264.


97. Hoiczyk E, Ring MW, McHugh CA, Schwär G, Bode E, Krug D, Altmeyer MO, Lu JZ & Bode HB (2009). Lipid body formation plays a central role in cell fate determination during developmental differentiation of Myxococcus xanthus. Mol Microbiol 74: 497–517.


98. Kaiser Dale, Robinson M & Kroos L (2010). Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb Perspect Biol 2: a000380.


99. Cozy LM & Kearns DB (2010). Gene position in a long operon governs motility development in Bacillus subtilis. Mol Microbiol 76: 273–285. References 126


100. Lee J-S, Son B, Viswanathan P, Luethy PM & Kroos L (2011). Combinatorial regulation of fmgD by MrpC2 and FruA during Myxococcus xanthus development. J Bacteriol 193: 1681–1689.


101. Monier J-M & Lindow SE (2003). Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci USA 100: 15977–15982. References 131


102. Xie C, Zhang H, Shimkets Lawrence J & Igoshin OA (2011). Statistical image analysis reveals features affecting fates of Myxococcus xanthus developmental aggregates. Proc Natl Acad Sci USA 108: 5915–5920.


103. Koch MK, McHugh CA & Hoiczyk E (2011). BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape. Mol Microbiol 80: 1031–1051.


104. Waters LS & Storz G (2009). Regulatory RNAs in bacteria. Cell 136: 615–628.


105. Son B, Liu Y & Kroos L (2011). Combinatorial regulation by MrpC2 and FruA involves three sites in the fmgE promoter region during Myxococcus xanthus development. J Bacteriol 193: 2756–2766.


106. Lee B, Mann P, Grover V, Treuner-Lange A, Kahnt J & Higgs PI (2011). The Myxococcus xanthus spore cuticula protein C is a fragment of FibA, an extracellular metalloprotease produced exclusively in aggregated cells. PloS One 6: e28968.


107. Gómez-Santos N, Treuner-Lange A, Moraleda-Muñoz A, García-Bravo E, García-Hernández R, Martínez-Cayuela M, Pérez J, Søgaard-Andersen Lotte & Muñoz-Dorado José (2012). Comprehensive set of integrative plasmid vectors for copper-inducible gene expression in Myxococcus xanthus. Appl Environ Microbiol 78: 2515–2521. References 127


108. Lee B, Holkenbrink C, Treuner-Lange A & Higgs PI (2012). Myxococcus xanthus developmental cell fate production: heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. J Bacteriol 194: 3058–3068.


109. Schramm A, Lee B & Higgs PI (2012). Intra-and Interprotein Phosphorylation between Two-hybrid Histidine Kinases Controls Myxococcus xanthus Developmental Progression. J Biol Chem 287: 25060–25072.


110. Amon A (1998). Controlling cell cycle and cell fate: Common strategies in prokaryotes and eukaryotes. Proc Natl Acad Sci USA 95: 85–86.


111. Iniesta A A, García-Heras F, Abellón-Ruiz J, Gallego-García A & Elías-Arnanz M (2012). Two systems for conditional gene expression in Myxococcus xanthus inducible by isopropyl-β-D-thiogalactopyranoside or vanillate. J Bacteriol 194: 5875–5885. References 128


112. Willett JW & Kirby JR (2012). Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities. PLoS Genetics 8: e1003084.


113. Boynton TO, McMurry JL & Shimkets Lawrence J (2013). Characterization of Myxococcus xanthus MazF and implications for a new point of regulation. Mol Microbiol 87: 1267–1276.


114. Yewdell JW, Lacsina JR, Rechsteiner MC & Nicchitta C V (2011). Out with the old, in with the new? Comparing methods for measuring protein degradation. Cell Biol Intl 35: 457–462.


115. Shimkets L J (1990). Social and developmental biology of the myxobacteria. Microbiol Rev 54: 473–501.


116. Shi W, Ngok FK & Zusman D R (1996). Cell density regulates cellular reversal frequency in Myxococcus xanthus. Proc Natl Acad Sci USA 93: 4142–4146.


117. Søgaard-Andersen L & Kaiser D (1996). C factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. Proc Natl Acad Sci USA 93: 2675–2679.


118. Sun H & Shi Wenyuan (2001b). Analyses of mrp genes during Myxococcus xanthus development. J Bacteriol 183: 6733–6739.


119. Sun H & Shi Wenyuan (2001a). Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. J Bacteriol 183: 4786–4795.


120. Janssen GR & Dworkin M (1985). Cell-cell interactions in developmental lysis of Myxococcus xanthus. Dev Biol 112: 194–202.


121. Muñoz-Dorado J, Inouye S & Inouye M (1991). A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell 67: 995–1006.


122. Bignell C & Thomas CM (2001). The bacterial ParA-ParB partitioning proteins. J Biotech 91:1–34.


123. Leisner M, Stingl K, Frey E & Maier B (2008). Stochastic switching to competence. Curr Opin Microbiol 11: 553–559.