Publikationsserver der Universitätsbibliothek Marburg

Titel:Klonierung und Expression von Shigella-Pathogenitätsgenen sowie Interaktionsstudien mit ihren Produkten
Autor:Hasewinkel, Christian
Weitere Beteiligte: Reuter, Klaus (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0376
DOI: https://doi.org/10.17192/z2013.0376
URN: urn:nbn:de:hebis:04-z2013-03761
DDC: Naturwissenschaften
Titel (trans.):Cloning and expression of Shigella-pathogenic-genes and interaction studies of their products
Publikationsdatum:2013-08-13
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Shigella, Expression, Ruhr, Pathogenitätsgene, -, Klonierung

Zusammenfassung:
Durch die Klonierung und rekombinante Expression verschiedener Pathogenitätsgene aus Shigella flexneri in Escherichia coli sowie die Aufreinigung der resultierenden Genprodukte konnten verschiedene biochemische Untersuchungen und Kristallisationsversuche an IpgA, IpgB, IpgC, IpgD, OSpD1, Spa15, IpaA, IpaB, IpaC und weitern durchgeführt werden. Diese Produkte sind Teil des Typ III-Translokationssystems und wichtig für die Invasion von Shigella in die Epithelzellen des Darms.

Bibliographie / References

  1. Pilonieta, M.C., Munson, G.P. (2008) The Chaperone IpgC Copurifies with the Virulence Regulator MxiE. J. Bacteriol. 71, 2249-2251.
  2. Page, A.-L., Sansonetti, P., Parsot, C. (2002) Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway. Mol. Microbiol. 43, 1533-1542
  3. Ogawa, M., Suzuki, T., Tatsuno, I., Abe, H., and Sasakawa, C. (2003) IcsB, secreted via the type III secretion system, is chaperoned by IpgA and required at the post-invasion stage of Shigella pathogenicity. Mol. Microbiol. 48, 913-931.
  4. Kueltzo, L.A., Osiecki, J., Barker, J., Picking, W.L., Ersoy, B., Picking, W., Middaugh, C.R. (2003) Structure-function analysis of invasion plasmid antigen C (IpaC) from Shigella flexneri. J. Biol. Chem. 278, 2792-2798
  5. Cordes, F.S., Komoriya, K., Larquet, E., Yang, S., Egelman, E.H., Blocker, A., Lea, S.A. (2003) Helical structure of the needle of the type III secretion system of Shigella flexneri. J. Biol. Chem. 278, 17103-17107
  6. Zahrl, D., Wagner, M., Bischof, K., Bayer, M., Zavecz, B., Beranek, A., Ruckenstuhl, C., Zarfeland, G. E. and Koraimann, G. (2005) Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology 151, 3455-3467.
  7. Penno, C., Sansonetti, P, and Parsot, C. (2005) Frameshifting by transcriptional slippage is involved in production of MxiE, the transcriptional activator regulated by the activity of the type III secretion apparatus in Shigella flexneri. Mol. Microbiol. 56, 204-214.
  8. Mavris, M., Sansonetti, P., and Parsot, C. (2002) Identification of the cis-acting site involved in activation of promoters regulated by activity of the types III secretion apparatus in Shigella flexneri. J. Bacteriol. 184, 6751-6759.
  9. Niebuhr, K., Jouihri, N., Allaoui, A., Gounon, P., Sansonetti, P.J., Parsot, C. (2000) IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol. Microbiol. 38, 8-19
  10. Allaoui, A., Mounier, J., Prévost, M.-C., Sansonetti, P.J., and Parsot, C. (1992) icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread. Mol. Microbiol. 6, 1605-1616.
  11. Fernandez-Prada, C.M., Hoover, D.L., Tall, B.D., Hartman, A.B., Kopelowitz, J., Venkatesan, M.M. (2000) Shigella flexneri IpaH(7,8) facilitates escape of virulent bacteria from the endocytic vacuoles of mouse and human Makrophages. Infect. Immun. 68, 3608-3619
  12. Page, A.-L., Fromont-Racine, M., Sansonetti, P., Legrain, P., Parsot, C. (2001) Characterization of the interaction partners of secreted proteins and chaperons of Shigella flexneri. Mol. Microbiol. 42, 1133-1145
  13. Roy, R.K. (1989) Congo Red-Mediated Regulation of Levels of Shigella flexneri 2a Membran Proteins. American Society for Microbiology. 57(8), 2364-2371.
  14. Niebuhr, K., Giuriato, S., Pedron, T., Philpott, D.J., Gaits, F., Sable, J., Sheetz, M.P., Parsot, C., Sansonetti, P.J., and Payrastre, B. (2002) Conversion of PtdIns(4,5)P 2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 5069-5078.
  15. E R K L Ä R U N G Ich versichere, dass ich meine Dissertation " Klonierung und Expression von Shigella- Pathogenitätsgenen sowie Interaktionsstudien mit ihren Produkten " selbständig ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen bedient habe.
  16. Clerc, P.L., Sansonetti, P.J. (1987) Entry of Shigella flexneri into HeLa cells: evidence for directed phagoZytosis involving actin polymerization and myosin accumulation. Infect. Immun. 55/11, 2681-2688
  17. Folgende trunkierte Varianten wurden in dieser Arbeit konstruiert (siehe Tabelle 7.2), welche analog zur Konstruktion der verkürzten IpgD-Variante pHW1-ipgD-30,-8 (siehe 4.2.1)
  18. IpgC0,-4S gC_f, gC-4_b BamHI/NotI IpgC∆152-155+Stopp-Codon IpgC-9,0S gC-9_f, gC_b BamHI/NotI IpgC∆1-9+Stopp-Codon IpgC-9,-4S gC-9_f, gC-4_b BamHI/NotI IpgC∆1-9∆152-155+Stopp-Codon MxiE-F1 Mx1_f, Mx1_b BamHI/NotI MxiE∆71-251
  19. Black, R.A. Kronheim S.R., Cantrell M., Deeley M.C., March C.J., Prickett K.S., Wignall J., Conlon P.J., Cosman D., Hopp T.P., et al. (1988) Generation of biologically active interleukine-1α by proteolytic cleavage of the inactive precursor. J. Biol. Chem. 263, 9437-9442
  20. Kostura, M.J., Tocchi, M.J., Limjuco, G., Chin, J., Cameron, P., Hillman, A.G., Chartrain, N.A., Schmidt, J.A. (1988) Identification of a monocyte specific pre- interleukin 1β convertase activity. Proc. Natl. Acad. Sci. USA 86, 5227-5231
  21. Alto, N.M., Shao, F., Lazar, C.S., Brost, R.L., Chua, G.; Mattoo , S., McMahon, S.A., Ghosh; P. Hughes, T.R., Boone, C., Dixon, J.E, (2006) Identification of an bacterial type III effektor family with G protein mimicry function. Cell 124, 133-145.
  22. Kadurugamuwa, J.L., Rhode, M., Wehland, J., Timmis, K.N. (1991) Intercellular spread of Shigella flexneri through a monolayer mediated by membranous protrusions and associated with reorganisation of the Zytoskeletal protein vinculin. Infect. Immun. 59, 3463-3471
  23. Lunelli, M., Lokareddy, R. K., Zychlinsky, A. and Kolbe, M. (2009) IpaB–IpgC interaction defines Binde Motiv for type III secretion translocator. PNAS, 106, 9661- 9666.
  24. Zychlinsky, A., Kenny, B., Ménard, R., Prévost, M.C., Holland, I.B., Sansonetti, P.J. (1994) IpaB mediates Makrophage apoptosis induced by Shigella flexneri. Mol. Microbiol. 11, 619-627
  25. Ohya, K., Handa, Y., Ogawa, M., Suzuki, M., and Sasakawa, C. (2005) IpgB1 is a novel Shigella effector protein in bacterial invasion of host cells. J. Biol. Chem. 280, 24022- 24034.
  26. IpgD31-329 gD-30_f, gD329_b BamHI/NotI IpgD∆1-30∆330-538
  27. IpgD330-530 gD330_f, gD-8_b BamHI/NotI IpgD∆1-329∆531-538
  28. Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P., and Duhr, S. (2011) Molecular interaction studies using microscale thermophoresis. ASSAY and Drug Development Technologies 9, 342-353.
  29. Allaoui, A., Sansonetti, P.J, Parsot, C. (1993) MxiD, an outer membrane protein necessary for the secretion of the Shigella Ipa invasins. Mol. Microbiol. 7, 59-68
  30. Tabelle 7.2: Verkürzte Varianten mit Primer, Schnittstellen und Beschreibung der Konstrukte. Name Primer Schnittstelle Beschreibung IpgE0,-3S gE_f, gE-3_b NdeI/XhoI IpgE∆118-120+Stopp-Codon IpgE0,-6S gE_f, gE-6_b NdeI/XhoI IpgE∆115-120+Stopp-Codon IpgE0,-9S gE_f, gE-9_b NdeI/XhoI IpgE∆111-120+Stopp-Codon IpgE-3,-3S gE-3_f, gE-3_b NdeI/XhoI IpgE∆1-3∆118-120+Stopp-Codon IpgE-3,-6S gE-3_f, gE-6_b NdeI/XhoI IpgE∆1-3∆115-120+Stopp-Codon IpgE-3,-9S gE-3_f, gE-9_b NdeI/XhoI IpgE∆1-3∆111-120+Stopp-Codon IpgD-30,-8 gD-30_f, gD-8_b BamHI/NotI IpgD∆1-30∆531-538
  31. OspD1-15,-4 D1-15_f, D1-4_b NdeI/XhoI OspD1∆1-15∆222-225
  32. OspD1-80,-4 D1-80_f, D1-4_b NdeI/XhoI OspD1∆1-80∆222-225
  33. Kuwae, A., Yoshida, S., Tamano, K., Mimuro, H., Suzuki, T., Sasakawa, C. (2001) Shigella invasion of Makrophage requires the insertion of IpaC into the host plasma membrane. J. Biol. Chem. 276, 32230-32239
  34. Marquart, M.E., Picking, W.L., and Picking, W.D. (1996) Soluble invasion plasmid antigen C (IpaC) from Shigella flexneri elicits epithelil cell responses related to pathogen invasion. Infect. Immun. 64, 4182-4187.
  35. Harrington, A.T., Hearn, P.D., Picking, W.L., Barker, J.L., Wessel, A., and Picking, W.D. (2003) Structural characterization of the N-terminus of IpaC from Shigella flexneri. Infect Immun. 71, 1255-1264.
  36. Chang, J.-Y. (1985) Thrombin specificity -Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur. J. Biochem. 151, 217-224.
  37. Studier, F.W., Moffatt, B.A. (1986) Use of bacteriophage t7RNA polymerase to direct selective high-level expression of cloned genes. J.Biol.Chem. 189(1), 113-130
  38. Mavris, M., Page, A.-L., Tournebize, R., Demers, B., Sansonetti, P., and Parsot, C. (2002) Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus. Mol. Microbiol. 43, 1543-1553.
  39. Benjelloun-Touimi, Z., Sansonetti, P.J., Parsot, C. (1995) SepA, the major extracellular protein of Shigella flexneri: Autonomous secretion and involvement in tissue invasion.
  40. Parsot, C., Ageron, E., Penno, C., Mavris, M., Jamoussi, K., d´Hauteville, H., Sansonetti, P., Demers, B. (2005) A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri. Mol. Microbiol. 56, 1627-1635
  41. Athman, R., Fernandez, M.-I., Gounon, P., Sansonetti, P., Louvard, D., Philpot, D., Robine, S. (2005) Shigella flexneri infection is dependent on villin in the mouse intestine and in primary cultures of intestinal epithelial cells. Cell. Microbiol. 7, 1109-1116
  42. Petersen, B., Petersen, N. T., Andersen, P., Nielsen, M. and Lundegaard, C. (2009) A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Structural Biology, 9:51.
  43. Picking, W.L., Nishioka, H., Hearn, P.D., Baxter, M.A., Harrington, A.T., Blocker, A., Picking, W.D. (2005) IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect. Immun. 73, 1432-1440
  44. Van Nhieu, G.T., Ben-Ze´ev, A., Sansonetti, P.J. (1997) Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J. 16, 2717-2729
  45. Van Nhieu, G.T., Caron, E., Hall, A., and Sansonetti, P.J. (1999) IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18, 3249-3262.
  46. van Eerde, A., Hamiaux, C., Pérez, J., Parsot, C., Dijkstra, B.W. (2004) Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity. EMBO Reports 5, 477-483
  47. Pendaries, C., Tronchere, H., Arbibe, L., et al. (2006) PtdIns(5)P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J. 25(5), 1024-1034
  48. Mantis, N., Prévost, M.-C., Sansonetti, P. (1996) Analysis of epithelial cell stress response during infection by Shigella flexneri. Infect. Immun. 64/8, 2474-2482
  49. Venkatesan, M.M., Buysee, J.M., Oaks, E.V. (1992) Surface presentation of Shigella flexneri invasion plasmid antigens requires the products of the spa locus. J. Bacteriol. 174, 1990-2001
  50. Ménard, R., Sansonetti, P.J., and Parsot, C. (1993) Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J. Bacteriol. 175, 5899-5906.
  51. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147, 683-693
  52. Andrews, G.P., Maurelli, A.T. (1992) mxiA of Shigella flexneri 2a, which facilitates export of invasion plasmid antigens, encodes a homolog of the low-calcium-response protein, LcrD, of Yersinia pestis. Infect. Immun. 60, 3287-3295
  53. Allaoui, A., Ménard, R., Sansonetti. P.J., Parsot, C. (1993) Characterization of the Shigella flexneri ipgD and ipgF genes, which are located in the proximal part of the mxi locus. Infect. Immun. 61, 1707-1714
  54. Tamano, K., Aizawa, S.-I., Katayama, E., Nonaka, T., Imajoh-Ohmi, S., Kuwae, A., Nagai, S., Sasakawa, C. (2000) Supramolecular structure of the Shigella type III secretion machinery: the needle is changeable in length and essential for delivery of effectors.
  55. Derewenda, Z. S. (2010) Application of protein engineering to enhance crystallizability and improve crystal properties. Acta Crystallogr. Sect. D 66, 604-615.
  56. Hale, T.L., Morris, R.E., Bonventre, P.F. (1979) Shigella infection of Henle intestinal epithelial cells: role of the host cell. Infect. Immun. 24/3, 887-894
  57. Chen, Y., Smith., M.R., Thirumalai, K., Zychlinsky, A. (1996) A bacterial invasin induces Makrophage apoptosis by Binde directly to ICE. EMBO J. 15:3853-3860
  58. Venkatesan, M.M., Alexander, W.A. and Fernandez-Prada, C. (1996) A Shigella flexneri invasion plasmid gene, ipgH, with homology to IS629 and sequences encoding bacterial sugar phosphate transport proteins. Gene 175, 23-27.
  59. Hilbi, H., Moss, J.E., Hersh, D., Chen, Y., Arondel, J., Banerjee, S., Flavell, R.A., Yuan, J., Sansonetti, P.J., Zychlinsky, A. (1998) Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273, 32895-32900


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten