Publikationsserver der Universitätsbibliothek Marburg

Titel:Flagellen-vermittelte Motilität in Shewanella : Mechanismen zur effektiven Fortbewegung in S. putrefaciens CN-32 und S. oneidensis MR-1
Autor:Bubendorfer, Sebastian
Weitere Beteiligte: Thormann, Kai M. (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0337
URN: urn:nbn:de:hebis:04-z2013-03375
DOI: https://doi.org/10.17192/z2013.0337
DDC: Biowissenschaften, Biologie
Titel (trans.):Flagella-mediated Motility in Shewanella : Mechanisms for effective motility in S. putrefaciens CN-32 and S. oneidensis MR-1
Publikationsdatum:2013-06-03
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Flagella, Glykosylierung, Motility, Flagelle, Shewanella, lateral, Motilität, lateral, Glycosylation, Schwimmen, dual, Shewanella, dual, Modification

Zusammenfassung:
Bakterien können sich mittels der Rotation helikaler Proteinfilamente – den Flagellen – höchst effizient durch ihre Umwelt bewegen. In einer sich ständig verändernden Umgebung ermöglicht diese Art der Fortbewegung eine gerichtete Bewegung hin zu optimalen Bedingungen. Über ein breites chemosensorisches Potential nehmen Bakterien spezifische Reize wahr und reagieren durch eine Modulierung der Bewegungsmaschinerie, die Stimulus-abhängige Chemotaxis entlang von Gradienten ermöglicht. Verschiedene Habitate führen in Mikroorganismen zu einer spezifischen Anpassung der Flagellensysteme, was zu einer hohen Variabilität der Charakteristika von Flagellensystemen unterschiedlicher Organismen führt. Manche Bakterien besitzen neben dem primären, meist polaren, Flagellensystem auch sekundäre laterale Flagellen, die eine Fortbewegung unter Bedingungen ermöglichen, welche die Funktion der polaren Flagelle einschränken können. So gewährleisten diese zum Beispiel die Fortbewegung in Umgebungen mit hoher Viskosität oder das Schwärmen von Zellen über Oberflächen. Die Produktion des kostspieligen zweiten Flagellen-systems unterliegt dabei einer strikten regulatorischen Kontrolle. Shewanella putrefaciens CN-32 besitzt, neben einer Na+-getriebenen polaren Flagelle, ebenfalls ein sekundäres H+-getriebenes Flagellensystem, das Ähnlichkeit zu lateralen Flagellensystemen anderer Organismen aufweist. Erstaunlicherweise produziert eine Subpopulation in S. putrefaciens CN-32 ein bis zwei laterale, zufällig lokalisierende Flagellen bereits während des exponentiellen Wachstums in planktonischer Kultur. Phänotypische und fluoreszenzmikroskopische Analysen de-monstrierten, dass beide Flagellensysteme in S. putrefaciens CN-32 auf struktureller Ebene hoch-spezifisch sind. Ein Chemotaxissystem induziert spezifisch den Richtungswechsel der bidirektional rotierenden polaren Flagelle, aber nicht den der unidirektional drehenden lateralen Flagelle. Die Rotation der polaren Flagelle ist ausreichend, um maximale Schwimmgeschwindigkeit in planktonischer Kultur zu erreichen. Dennoch zeigen Zellen, die ein bis zwei zusätzliche laterale Flagellen besitzen, eine effektivere, gerichtete Schwimmbewegung, die vermutlich mit der effizienten Neuorientierung der Zellkörper einhergeht. Eine solche Eigenschaft für ein laterales Flagellensystem wurde bisher noch nicht beschrieben und könnte daher ein neuartiges System zur erfolgreichen Exploration neuer Habitate darstellen. Die Präsenz von dualen Flagellensystemen in einer Vielzahl von aquatisch vorkommenden Bakterien ist ein Indiz für ähnliche Funktionsweisen der Flagellensysteme in anderen Organismen. Im Gegensatz zu S. putrefaciens CN-32 nutzt Shewanella oneidensis MR-1 nur eine einzelne polare Flagelle mit einem dualen Statorsystem, um sich bei unterschiedlichen Natriumkonzen-trationen fortbewegen zu können. Das Flagellenfilament besteht aus den homologen Flagellinen FlaA und FlaB, deren posttranslationale Modifizierung essentiell für die Assemblierung der Flagelle ist. MS-Untersuchungen, sowie im Rahmen dieser Arbeit durchgeführte Genort-spezifische Muta-tionen zeigten, dass FlaA und FlaB an mindestens vier Serinen über O-glykosidische Bindungen modifiziert werden. Detaillierte Analysen der Modifizierung wiesen darauf hin, dass diese sich aus einem Pseudaminsäure-Derivat (Pse) und einer strukturell unbekannten, 264 Da schweren Einheit zusammensetzt. Partiell konservierte Gene innerhalb der Modifizierungsregion neben variablen Bereichen, wie z.B. dem sfmABCDE-Operon, lassen einen allgemeinen Mechanismus der Flagellin-Glykosylierung mit Spezies-spezifischen Zucker-Resten in anderen Shewanella-Vertretern vermuten. Meine Ergebnisse zeigen, dass ein synchron funktionierendes duales Flagellensystem in S. putrefaciens CN-32 effektives gerichtetes Schwimmverhalten vermitteln kann und demonstrieren die essentielle Bedeutung der Glykosylierung von Flagellin mit Pse für die Motilität von S. oneidensis MR-1. Die Erkenntnisse dieser Arbeit erweitern das Wissen über Flagellen-vermittelte Fortbewe-gung in Bakterien und verdeutlichen die Komplexität und Variabilität der Flagellensysteme in Bezug auf die evolutionäre Anpassung homologer Proteinkomplexe und regulatorischer Netzwerke an die Umwelt.

Bibliographie / References

  1. Toffin, L., A. Bidault, P. Pignet, B.J. Tindall, A. Slobodkin, C. Kato, and D. Prieur (2004). "Shewanella profunda sp. nov., isolated from deep marine sediment of the Nankai Trough." Int J Syst Evol Microbiol 54(Pt 6): 1943‐9. 362.
  2. Paulick, A. (2012). "Flagellar motor tuning: The hybrid motor in Shewanella oneidensis MR‐1." Doktorarbeit. 270.
  3. Wang, F., J. Wang, H. Jian, B. Zhang, S. Li, X. Zeng, L. Gao, D.H. Bartlett, J. Yu, S. Hu, and X. Xiao (2008). "Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep‐sea iron reducing bacterium Shewanella piezotolerans WP3." PLoS One 3(4): e1937. 384.
  4. Thormann, K.M., R.M. Saville, S. Shukla, D.A. Pelletier, and A.M. Spormann (2004). "Initial Phases of biofilm formation in Shewanella oneidensis MR‐1." J Bacteriol 186(23): 8096‐104.
  5. Kirov, S.M., B.C. Tassell, A.B. Semmler, L.A. O'Donovan, A.A. Rabaan, and J.G. Shaw (2002). "Lateral flagella and swarming motility in Aeromonas species." J Bacteriol 184(2): 547‐55.
  6. Klonowska, A., T. Heulin, and A. Vermeglio (2005). "Selenite and tellurite reduction by Shewanella oneidensis." Appl Environ Microbiol 71(9): 5607‐5609.
  7. Paul, K., J.G. Harmon, and D.F. Blair (2006). "Mutational analysis of the flagellar rotor protein FliN: identification of surfaces important for flagellar assembly and switching." J Bacteriol 188(14): 5240‐8.
  8. Sourjik, V. (2004). "Receptor clustering and signal processing in E. coli chemotaxis." Trends Microbiol 12(12): 569‐76. 334.
  9. Reid, S.W., M.C. Leake, J.H. Chandler, C.J. Lo, J.P. Armitage, and R.M. Berry (2006). "The maximum number of torque‐ generating units in the flagellar motor of Escherichia coli is at least 11." Proc Natl Acad Sci U S A 103(21): 8066‐71. 288.
  10. Okabe, M., T. Yakushi, and M. Homma (2005). "Interactions of MotX with MotY and with the PomA/PomB sodium ion channel complex of the Vibrio alginolyticus polar flagellum." J Biol Chem 280(27): 25659‐64. 259.
  11. Turner, L., W.S. Ryu, and H.C. Berg (2000). "Real‐time imaging of fluorescent flagellar filaments." J Bacteriol 182(10): 2793‐801. 370.
  12. Jarrell, K.F., D.P. Bayley, and A.S. Kostyukova (1996). "The archaeal flagellum: a unique motility structure." J Bacteriol 178(17): 5057‐64.
  13. Scharf, B.E., K.A. Fahrner, and H.C. Berg (1998). "CheZ has no effect on flagellar motors activated by CheY13DK106YW." J Bacteriol 180(19): 5123‐8.
  14. Kawagishi, I., Y. Maekawa, T. Atsumi, M. Homma, and Y. Imae (1995). "Isolation of the polar and lateral flagellum‐ defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources." J Bacteriol 177(17): 5158‐60. 147.
  15. Minamino, T. and R.M. Macnab (2000). "Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching." J Bacteriol 182(17): 4906‐14. 235.
  16. Mitchell, J.G., L. Pearson, and S. Dillon (1996). "Clustering of marine bacteria in seawater enrichments." Appl Environ Microbiol 62(10): 3716‐21.
  17. Roden, E.E. and J.M. Zachara (1996). "Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth." Environ Sci Technol 30(5): 1618‐1628.
  18. Urrutia, M.M., E.E. Roden, and J.M. Zachara (1999). "Influence of aqueous and solid‐phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides." Environ Sci Technol 33(22): 4022‐4028. 374.
  19. Sjoblad, R.D., C.W. Emala, and R.N. Doetsch (1983). "Invited review: bacterial flagellar sheaths: structures in search of a function." Cell Motil 3(1): 93‐103.
  20. Ulitzur, S. (1975). "Effect of temperature, salts, pH, and other factors on the development of peritrichous flagella in Vibrio alginolyticus." Arch Microbiol 104(3): 285‐8.
  21. Nogi, Y., C. Kato, and K. Horikoshi (1998). "Taxonomic studies of deep‐sea barophilic Shewanella strains and description of Shewanella violacea sp. nov." Arch Microbiol 170(5): 331‐8.
  22. Kim, K.K., Y.O. Kim, S. Park, S.J. Kang, B.H. Nam, D.N. Kim, T.K. Oh, and J.H. Yoon (2011). "Shewanella upenei sp. nov., a lipolytic bacterium isolated from bensasi goatfish Upeneus bensasi." J Microbiol 49(3): 381‐6. 154.
  23. Khan, S., M. Dapice, and T.S. Reese (1988). "Effects of mot gene expression on the structure of the flagellar motor." J Mol Biol 202(3): 575‐84.
  24. Kentner, D. and V. Sourjik (2006). "Spatial organization of the bacterial chemotaxis system." Curr Opin Microbiol 9(6): 619‐24. 150.
  25. Minamino, T., K. Imada, and K. Namba (2008). "Molecular motors of the bacterial flagella." Curr Opin Struct Biol 18(6): 693‐701.
  26. Miyata, M. (2008). "Centipede and inchworm models to explain Mycoplasma gliding." Trends Microbiol 16(1): 6‐12. 237.
  27. Kamiya, R., S. Asakura, and S. Yamaguchi (1980). "Formation of helical filaments by copolymerization of two types of 'straight' flagellins." Nature 286(5773): 628‐30.
  28. Yamashita, I., K. Hasegawa, H. Suzuki, F. Vonderviszt, Y. Mimori‐Kiyosue, and K. Namba (1998). "Structure and switching of bacterial flagellar filaments studied by X‐ray fiber diffraction." Nat Struct Biol 5(2): 125‐32. 404.
  29. Jarrell, K.F. and M.J. McBride (2008). "The surprisingly diverse ways that prokaryotes move." Nat Rev Microbiol 6(6): 466‐76.
  30. Ottemann, K.M. and J.F. Miller (1997). "Roles for motility in bacterial‐host interactions." Mol Microbiol 24(6): 1109‐17. 261.
  31. Sato, K. and M. Homma (2000). "Multimeric structure of PomA, a component of the Na+‐driven polar flagellar motor of Vibrio alginolyticus." J Biol Chem 275(26): 20223‐8.
  32. Josenhans, C. and S. Suerbaum (2002). "The role of motility as a virulence factor in bacteria." Int J Med Microbiol 291(8): 605‐14.
  33. Urrutia, M.M., E.E. Roden, J.K. Fredrickson, and J.M. Zachara (1998). "Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory iron‐reducing bacterium Shewanella alga." Geomicrobiology Journal 15(4): 269‐291.
  34. Schoenhofen, I.C., E. Vinogradov, D.M. Whitfield, J.R. Brisson, and S.M. Logan (2009). "The CMP‐legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP‐linked precursors." Glycobiology 19(7): 715‐25. 317.
  35. Toft, C. and M.A. Fares (2008). "The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes." Mol Biol Evol 25(9): 2069‐76.
  36. Okabe, M., T. Yakushi, Y. Asai, and M. Homma (2001). "Cloning and characterization of motX, a Vibrio alginolyticus sodium‐driven flagellar motor gene." J Biochem 130(6): 879‐84.
  37. Park, S.C., K.S. Baik, M.S. Kim, D. Kim, and C.N. Seong (2009). "Shewanella marina sp. nov., isolated from seawater." Int J Syst Evol Microbiol 59(Pt 8): 1888‐94. 263.
  38. Sucharita, K., C. Sasikala, S.C. Park, K.S. Baik, C.N. Seong, and V. Ramana Ch (2009). "Shewanella chilikensis sp. nov., a moderately alkaliphilic gammaproteobacterium isolated from a lagoon." Int J Syst Evol Microbiol 59(Pt 12): 3111‐5. 344.
  39. Shnit‐Orland, M., A. Sivan, and A. Kushmaro (2010). "Shewanella corallii sp. nov., a marine bacterium isolated from a Red Sea coral." Int J Syst Evol Microbiol 60(Pt 10): 2293‐7. 325.
  40. Kim, S.J., S.J. Park, Y.S. Oh, S.A. Lee, K.S. Shin, D.H. Roh, and S.K. Rhee (2012). "Shewanella arctica sp. nov., an iron‐ reducing bacterium isolated from Arctic marine sediment." Int J Syst Evol Microbiol 62(Pt 5): 1128‐33. 155.
  41. Sung, H.R., J.H. Yoon, and S.Y. Ghim (2012). "Shewanella dokdonensis sp. nov., isolated from seawater." Int J Syst Evol Microbiol 62(Pt 7): 1636‐43.
  42. Yang, S.H., J.H. Lee, J.S. Ryu, C. Kato, and S.J. Kim (2007). "Shewanella donghaensis sp. nov., a psychrophilic, piezosensitive bacterium producing high levels of polyunsaturated fatty acid, isolated from deep‐sea sediments." Int J Syst Evol Microbiol 57(Pt 2): 208‐12.
  43. Yang, S.H., K.K. Kwon, H.S. Lee, and S.J. Kim (2006). "Shewanella spongiae sp. nov., isolated from a marine sponge." Int J Syst Evol Microbiol 56(Pt 12): 2879‐82. 405.
  44. Zhao, J.S., D. Manno, S. Thiboutot, G. Ampleman, and J. Hawari (2007). "Shewanella canadensis sp. nov. and Shewanella atlantica sp. nov., manganese dioxide‐ and hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine‐reducing, psychrophilic marine bacteria." Int J Syst Evol Microbiol 57(Pt 9): 2155‐62. 414.
  45. Thormann, K.M. and A. Paulick (2010). "Tuning the flagellar motor." Microbiology 156(Pt 5): 1275‐83. 359.
  46. Pallen, M.J., C.M. Bailey, and S.A. Beatson (2006). "Evolutionary links between FliH/YscL‐like proteins from bacterial type III secretion systems and second‐stalk components of the FoF1 and vacuolar ATPases." Protein Sci 15(4): 935‐41. 262.
  47. Shinoda, S., I. Yakiyama, S. Yasui, Y.M. Kim, B. Ono, and S. Nakagami (1992). "Lateral flagella of vibrios: serological classification and genetical similarity." Microbiol Immunol 36(3): 303‐9.
  48. Kawagishi, I., M. Imagawa, Y. Imae, L. McCarter, and M. Homma (1996). "The sodium‐driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression." Mol Microbiol 20(4): 693‐9. 146.
  49. Terashima, H., H. Fukuoka, T. Yakushi, S. Kojima, and M. Homma (2006). "The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na‐driven flagella and required for stator formation." Mol Microbiol 62(4): 1170‐ 80.
  50. Kojima, M., R. Kubo, T. Yakushi, M. Homma, and I. Kawagishi (2007). "The bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species." Mol Microbiol 64(1): 57‐67. 165.
  51. Rodriguez‐Navarro, D.N., M.S. Dardanelli, and J.E. Ruiz‐Sainz (2007). "Attachment of bacteria to the roots of higher plants." FEMS Microbiol Lett 272(2): 127‐36.
  52. Perry, K.A., J.E. Kostka, G.W. Luther, 3rd, and K.H. Nealson (1993). "Mediation of sulfur speciation by a black sea facultative anaerobe." Science 259(5096): 801‐3.
  53. Schirm, M., M. Kalmokoff, A. Aubry, P. Thibault, M. Sandoz, and S.M. Logan (2004). "Flagellin from Listeria monocytogenes is glycosylated with beta‐O‐linked N‐acetylglucosamine." J Bacteriol 186(20): 6721‐7.
  54. Parkinson, J.S. (2010). "Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases." Annu Rev Microbiol 64: 101‐22.
  55. Ng, S.Y., B. Chaban, and K.F. Jarrell (2006). "Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications." J Mol Microbiol Biotechnol 11(3‐5): 167‐91.
  56. Skerratt, J.H., J.P. Bowman, and P.D. Nichols (2002). "Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids." Int J Syst Evol Microbiol 52(Pt 6): 2101‐6. 329.
  57. Kirov, S.M. (2003). "Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis." FEMS Microbiol Lett 224(2): 151‐9.
  58. Wieland, F., G. Paul, and M. Sumper (1985). "Halobacterial flagellins are sulfated glycoproteins." J Biol Chem 260(28): 15180‐5.
  59. Kelley, L.A. and M.J. Sternberg (2009). "Protein structure prediction on the Web: a case study using the Phyre server." Nat Protoc 4(3): 363‐71.
  60. Tarrand, J.J., N.R. Krieg, and J. Dobereiner (1978). "A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov." Can J Microbiol 24(8): 967‐80.
  61. Ping, L., J. Birkenbeil, and S. Monajembashi (2013). "Swimming behavior of the monotrichous bacterium Pseudomonas fluorescens SBW25." FEMS Microbiol Ecol.
  62. Wilhelms, M., V. Gonzalez, J.M. Tomas, and S. Merino (2013). "Aeromonas hydrophila lateral flagella gene transcriptional hierarchy." J Bacteriol.
  63. Parker, J.L., M.J. Day‐Williams, J.M. Tomas, G.P. Stafford, and J.G. Shaw (2012). "Identification of a putative glycosyltransferase responsible for the transfer of pseudaminic acid onto the polar flagellin of Aeromonas caviae Sch3N." Microbiologyopen 1(2): 149‐60. 264.
  64. Kirov, S.M., M. Castrisios, and J.G. Shaw (2004). "Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces." Infect Immun 72(4): 1939‐45.
  65. "Shewanella fodinae sp. nov., isolated from a coal mine and from a marine lagoon." Int J Syst Evol Microbiol 60(Pt 7): 1649‐54.
  66. Verma, P., P.K. Pandey, A.K. Gupta, H.J. Kim, K.S. Baik, C.N. Seong, M.S. Patole, and Y.S. Shouche (2011). "Shewanella indica sp. nov., isolated from sediment of the Arabian Sea." Int J Syst Evol Microbiol 61(Pt 9): 2058‐64. 379. Vladimirov, N. and V. Sourjik (2009). "Chemotaxis: how bacteria use memory." Biol Chem 390(11): 1097‐104. 380.
  67. Yoon, J.H., K.H. Kang, T.K. Oh, and Y.H. Park (2004). "Shewanella gaetbuli sp. nov., a slight halophile isolated from a tidal flat in Korea." Int J Syst Evol Microbiol 54(Pt 2): 487‐91.
  68. Miyazaki, M., Y. Nogi, R. Usami, and K. Horikoshi (2006). "Shewanella surugensis sp. nov., Shewanella kaireitica sp. nov. and Shewanella abyssi sp. nov., isolated from deep‐sea sediments of Suruga Bay, Japan." Int J Syst Evol Microbiol 56(Pt 7): 1607‐13.
  69. Kim, D., K.S. Baik, M.S. Kim, B.M. Jung, T.S. Shin, G.H. Chung, M.S. Rhee, and C.N. Seong (2007). "Shewanella haliotis sp. nov., isolated from the gut microflora of abalone, Haliotis discus hannai." Int J Syst Evol Microbiol 57(Pt 12): 2926‐ 31. 153.
  70. Poggio, S., C. Abreu‐Goodger, S. Fabela, A. Osorio, G. Dreyfus, P. Vinuesa, and L. Camarena (2007). "A complete set of flagellar genes acquired by horizontal transfer coexists with the endogenous flagellar system in Rhodobacter sphaeroides." J Bacteriol 189(8): 3208‐16.
  71. Van Dellen, K.L., L. Houot, and P.I. Watnick (2008). "Genetic analysis of Vibrio cholerae monolayer formation reveals a key role for ∆Ψ in the transition to permanent attachment." J Bacteriol 190(24): 8185‐96. 375.
  72. Wilhelms, M., S. Vilches, R. Molero, J.G. Shaw, J.M. Tomas, and S. Merino (2009). "Two redundant sodium‐driven stator motor proteins are involved in Aeromonas hydrophila polar flagellum rotation." J Bacteriol 191(7): 2206‐17. 396.
  73. Mukherjee, S., P. Babitzke, and D.B. Kearns (2013). "FliW and FliS function independently to control cytoplasmic flagellin levels in Bacillus subtilis." J Bacteriol 195(2): 297‐306.
  74. Sambrook, J. and D.W. Russell (2001). "Molecular Cloning: A Laboratory Manual." third ed: Cold Spring Harbor Laboratory Press.
  75. Ohnishi, K., K. Kutsukake, H. Suzuki, and T. Iino (1990). "Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium." Mol Gen Genet 221(2): 139‐47.
  76. Wang, F., P. Wang, M. Chen, and X. Xiao (2004). "Isolation of extremophiles with the detection and retrieval of Shewanella strains in deep‐sea sediments from the west Pacific." Extremophiles 8(2): 165‐8. 385.
  77. Shen, A., H.D. Kamp, A. Grundling, and D.E. Higgins (2006). "A bifunctional O‐GlcNAc transferase governs flagellar motility through anti‐repression." Genes Dev 20(23): 3283‐95. 319.
  78. Sowa, Y. and R.M. Berry (2008). "Bacterial flagellar motor." Q Rev Biophys 41(2): 103‐32. 338. Spudich, J.L. and D.E. Koshland, Jr. (1976). "Non‐genetic individuality: chance in the single cell." Nature 262(5568): 467‐71.
  79. Shi, X., S. Wegener‐Feldbrugge, S. Huntley, N. Hamann, R. Hedderich, and L. Sogaard‐Andersen (2008). "Bioinformatics and experimental analysis of proteins of two‐component systems in Myxococcus xanthus." J Bacteriol 190(2): 613‐24.
  80. Romling, U., M. Gomelsky, and M.Y. Galperin (2005). "C‐di‐GMP: the dawning of a novel bacterial signalling system." Mol Microbiol 57(3): 629‐39.
  81. Josenhans, C., R.L. Ferrero, A. Labigne, and S. Suerbaum (1999). "Cloning and allelic exchange mutagenesis of two flagellin genes of Helicobacter felis." Mol Microbiol 33(2): 350‐62.
  82. Yonekura, K., S. Maki‐Yonekura, and K. Namba (2003). "Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy." Nature 424(6949): 643‐50. 408.
  83. Satomi, M., B.F. Vogel, K. Venkateswaran, and L. Gram (2007). "Description of Shewanella glacialipiscicola sp. nov. and Shewanella algidipiscicola sp. nov., isolated from marine fish of the Danish Baltic Sea, and proposal that Shewanella affinis is a later heterotypic synonym of Shewanella colwelliana." Int J Syst Evol Microbiol 57(Pt 2): 347‐52. 306.
  84. Samuelsson, M.O. (1985). "Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens." Appl Environ Microbiol 50(4): 812‐5. 299.
  85. Obuekwe, C.O. and D.W. Westlake (1982). "Effects of medium composition on cell pigmentation, cytochrome content, and ferric iron reduction in a Pseudomonas sp. isolated from crude oil." Can J Microbiol 28(8): 989‐92. 256.
  86. Pedelacq, J.D., S. Cabantous, T. Tran, T.C. Terwilliger, and G.S. Waldo (2006). "Engineering and characterization of a superfolder green fluorescent protein." Nat Biotechnol 24(1): 79‐88.
  87. Novick, A. and M. Weiner (1957). "Enzyme Induction as an All‐or‐None Phenomenon." Proc Natl Acad Sci U S A 43(7): 553‐566.
  88. Song, Y.C., S. Jin, H. Louie, D. Ng, R. Lau, Y. Zhang, R. Weerasekera, S. Al Rashid, L.A. Ward, S.D. Der, and V.L. Chan (2004). "FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion." Mol Microbiol 53(2): 541‐53. 332.
  89. Xie, L., T. Altindal, S. Chattopadhyay, and X.L. Wu (2011). "From the Cover: Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis." Proc Natl Acad Sci U S A 108(6): 2246‐51.
  90. Shigenobu, S., H. Watanabe, M. Hattori, Y. Sakaki, and H. Ishikawa (2000). "Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS." Nature 407(6800): 81‐6.
  91. Simm, R., M. Morr, A. Kader, M. Nimtz, and U. Romling (2004). "GGDEF and EAL domains inversely regulate cyclic di‐ GMP levels and transition from sessility to motility." Mol Microbiol 53(4): 1123‐34. 327.
  92. Voisin, S., R.S. Houliston, J. Kelly, J.R. Brisson, D. Watson, S.L. Bardy, K.F. Jarrell, and S.M. Logan (2005). "Identification and characterization of the unique N‐linked glycan common to the flagellins and S‐layer glycoprotein of Methanococcus voltae." J Biol Chem 280(17): 16586‐93.
  93. Sanders, D.A., B.L. Gillece‐Castro, A.M. Stock, A.L. Burlingame, and D.E. Koshland, Jr. (1989). "Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY." J Biol Chem 264(36): 21770‐8. Quellenverzeichnis 129
  94. Morett, E. and M. Buck (1989). "In vivo studies on the interaction of RNA polymerase‐sigma 54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. The role of NifA in the formation of an open promoter complex." J Mol Biol 210(1): 65‐77.
  95. Vegh, B.M., P. Gal, J. Dobo, P. Zavodszky, and F. Vonderviszt (2006). "Localization of the flagellum‐specific secretion signal in Salmonella flagellin." Biochem Biophys Res Commun 345(1): 93‐8. 376. Venkateswaran, K., M.E. Dollhopf, R. Aller, E. Stackebrandt, and K.H. Nealson (1998). "Shewanella amazonensis sp. nov., a novel metal‐reducing facultative anaerobe from Amazonian shelf muds." Int J Syst Bacteriol 48 Pt 3: 965‐72. 377.
  96. Ragatz, L., Z.Y. Jiang, C.E. Bauer, and H. Gest (1995). "Macroscopic phototactic behavior of the purple photosynthetic bacterium Rhodospirillum centenum." Arch Microbiol 163(1): 1‐6.
  97. Jenal, U. and J. Malone (2006). "Mechanisms of cyclic‐di‐GMP signaling in bacteria." Annu Rev Genet 40: 385‐407. 138.
  98. Zhou, J., R.T. Fazzio, and D.F. Blair (1995). "Membrane topology of the MotA protein of Escherichia coli." J Mol Biol 251(2): 237‐42.
  99. Sockett, H., S. Yamaguchi, M. Kihara, V.M. Irikura, and R.M. Macnab (1992). "Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium." J Bacteriol 174(3): 793‐806. 330. Song, W., F.S. Juhn, D.Q. Naiman, K.T. Konstantinidis, T.S. Gardner, and M.J. Ward (2008). "Predicting sigma 28 promoters in eleven Shewanella genomes." FEMS Microbiol Lett 283(2): 223‐30.
  100. Tripepi, M., J. You, S. Temel, O. Onder, D. Brisson, and M. Pohlschroder (2012). "N‐glycosylation of Haloferax volcanii flagellins requires known Agl proteins and is essential for biosynthesis of stable flagella." J Bacteriol 194(18): 4876‐87. 368.
  101. Scheludko, A.V., E.I. Katsy, N.A. Ostudin, O.K. Gringauz, and V.I. Panasenko (1998). "Novel classes of Azospirillum brasilense mutants with defects in the assembly and functioning of polar and lateral flagella." Mol Gen Mikrobiol Virusol(4): 33‐7.
  102. Shimada, T., R. Sakazaki, and K. Suzuki (1985). "Peritrichous flagella in mesophilic strains of Aeromonas." Jpn J Med Sci Biol 38(3): 141‐5.
  103. Welch, M., K. Oosawa, S. Aizawa, and M. Eisenbach (1993). "Phosphorylation‐dependent binding of a signal molecule to the flagellar switch of bacteria." Proc Natl Acad Sci U S A 90(19): 8787‐91. 388.
  104. VanDyke, and J. Wu (2009). "Pili and Flagella ‐ Current Research and Future Trends." Pili and Flagella ‐ Current Research and Future Trends. ed. K.F. Jarrell. Norfolk, UK: Caister Academic Press. 136.
  105. Venkateswaran, K., D.P. Moser, M.E. Dollhopf, D.P. Lies, D.A. Saffarini, B.J. MacGregor, D.B. Ringelberg, D.C. White, M. Nishijima, H. Sano, J. Burghardt, E. Stackebrandt, and K.H. Nealson (1999). "Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov." Int J Syst Bacteriol 49 Pt 2: 705‐24. 378.
  106. Taguchi, F., R. Shimizu, Y. Inagaki, K. Toyoda, T. Shiraishi, and Y. Ichinose (2003). "Post‐translational modification of flagellin determines the specificity of HR induction." Plant Cell Physiol 44(3): 342‐9. 347.
  107. Toutain, C.M., N.C. Caizza, M.E. Zegans, and G.A. O'Toole (2007). "Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa." Res Microbiol 158(5): 471‐7.
  108. Soo, E.C., A.J. Aubry, S.M. Logan, P. Guerry, J.F. Kelly, N.M. Young, and P. Thibault (2004). "Selective detection and identification of sugar nucleotides by CE‐electrospray‐MS and its application to bacterial metabolomics." Anal Chem 76(3): 619‐26.
  109. Xu, M., J. Guo, Y. Cen, X. Zhong, W. Cao, and G. Sun (2005). "Shewanella decolorationis sp. nov., a dye‐decolorizing bacterium isolated from activated sludge of a waste‐water treatment plant." Int J Syst Evol Microbiol 55(Pt 1): 363‐8. 401.
  110. Satomi, M., H. Oikawa, and Y. Yano (2003). "Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic‐acid‐producing marine bacteria isolated from sea‐animal intestines." Int J Syst Evol Microbiol 53(Pt 2): 491‐9. 304.
  111. Yoon, J.H., S.H. Yeo, I.G. Kim, and T.K. Oh (2004). "Shewanella marisflavi sp. nov. and Shewanella aquimarina sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea." Int J Syst Evol Microbiol 54(Pt 6): 2347‐ 52. 411.
  112. Yoon, J.H., S. Park, Y.T. Jung, and J.S. Lee (2012). "Shewanella seohaensis sp. nov., isolated from a tidal flat sediment." Antonie Van Leeuwenhoek 102(1): 149‐56. 410.
  113. Porter, S.L., G.H. Wadhams, and J.P. Armitage (2011). "Signal processing in complex chemotaxis pathways." Nat Rev Microbiol 9(3): 153‐65. 279. Pospiech, A. and B. Neumann (1995). "A versatile quick‐prep of genomic DNA from gram‐positive bacteria." Trends Genet 11(6): 217‐8.
  114. Schoenhofen, I.C., V.V. Lunin, J.P. Julien, Y. Li, E. Ajamian, A. Matte, M. Cygler, J.R. Brisson, A. Aubry, S.M. Logan, S. Bhatia, W.W. Wakarchuk, and N.M. Young (2006). "Structural and functional characterization of PseC, an aminotransferase involved in the biosynthesis of pseudaminic acid, an essential flagellar modification in Helicobacter pylori." J Biol Chem 281(13): 8907‐16. 314. Schoenhofen, I.C., D.J. McNally, J.R. Brisson, and S.M. Logan (2006). "Elucidation of the CMP‐pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP‐N‐acetylglucosamine by a single enzymatic reaction." Glycobiology 16(9): 8C‐14C.
  115. Samatey, F.A., K. Imada, S. Nagashima, F. Vonderviszt, T. Kumasaka, M. Yamamoto, and K. Namba (2001). "Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling." Nature 410(6826): 331‐7. 296.
  116. Simidu, U., K. Kita‐Tsukamoto, T. Yasumoto, and M. Yotsu (1990). "Taxonomy of four marine bacterial strains that produce tetrodotoxin." Int J Syst Bacteriol 40(4): 331‐6.
  117. Ren, C.P., S.A. Beatson, J. Parkhill, and M.J. Pallen (2005). "The Flag‐2 locus, an ancestral gene cluster, is potentially associated with a novel flagellar system from Escherichia coli." J Bacteriol 187(4): 1430‐40. 289. Rivera‐Amill, V., B.J. Kim, J. Seshu, and M.E. Konkel (2001). "Secretion of the virulence‐associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal." J Infect Dis 183(11): 1607‐16. 290.
  118. Prouty, M.G., N.E. Correa, and K.E. Klose (2001). "The novel sigma54‐ and sigma28‐dependent flagellar gene transcription hierarchy of Vibrio cholerae." Mol Microbiol 39(6): 1595‐609. 283. Purcell, E.M. (1977). "Life at Low Reynolds‐Number." Am J Phys 45(1): 3‐11. 284.
  119. Paulick, A., A. Koerdt, J. Lassak, S. Huntley, I. Wilms, F. Narberhaus, and K.M. Thormann (2009). "Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR‐1." Mol Microbiol 71(4): 836‐50. 271.
  120. Windel, N. (2011). "Untersuchung der Motilität und des bakteriellen Immunsystems in Shewanella putrefaciens CN‐32." Bachelor of Science Arbeit.
  121. Molero, R., M. Wilhelms, B. Infanzon, J.M. Tomas, and S. Merino (2011). "Aeromonas hydrophila motY is essential for polar flagellum function, and requires coordinate expression of motX and Pom proteins." Microbiology 157(Pt 10): 2772‐84.
  122. Zhao, J.S., D. Manno, C. Beaulieu, L. Paquet, and J. Hawari (2005). "Shewanella sediminis sp. nov., a novel Na+‐ requiring and hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine‐degrading bacterium from marine sediment." Int J Syst Evol Microbiol 55(Pt 4): 1511‐20.
  123. Zhao, J.S., D. Manno, C. Leggiadro, D. O'Neil, and J. Hawari (2006). "Shewanella halifaxensis sp. nov., a novel obligately respiratory and denitrifying psychrophile." Int J Syst Evol Microbiol 56(Pt 1): 205‐12. 413.
  124. Schoenhofen, I.C., D.J. McNally, E. Vinogradov, D. Whitfield, N.M. Young, S. Dick, W.W. Wakarchuk, J.R. Brisson, and S.M. Logan (2006). "Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways." J Biol Chem 281(2): 723‐32.
  125. Schirm, M., I.C. Schoenhofen, S.M. Logan, K.C. Waldron, and P. Thibault (2005). "Identification of unusual bacterial glycosylation by tandem mass spectrometry analyses of intact proteins." Anal Chem 77(23): 7774‐82. 311.
  126. Thibault, P., S.M. Logan, J.F. Kelly, J.R. Brisson, C.P. Ewing, T.J. Trust, and P. Guerry (2001). "Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin." J Biol Chem 276(37): 34862‐70. 357.
  127. Schirm, M., E.C. Soo, A.J. Aubry, J. Austin, P. Thibault, and S.M. Logan (2003). "Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori." Mol Microbiol 48(6): 1579‐92. 312.
  128. Pratt, L.A. and R. Kolter (1998). "Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili." Mol Microbiol 30(2): 285‐93. 282.
  129. Muir, R.E. and J.W. Gober (2001). "Regulation of late flagellar gene transcription and cell division by flagellum assembly in Caulobacter crescentus." Mol Microbiol 41(1): 117‐30. 244.
  130. Satomi, M., B.F. Vogel, L. Gram, and K. Venkateswaran (2006). "Shewanella hafniensis sp. nov. and Shewanella morhuae sp. nov., isolated from marine fish of the Baltic Sea." Int J Syst Evol Microbiol 56(Pt 1): 243‐9. 305.
  131. Yasuda, Y. Inagaki, K. Toyoda, T. Shiraishi, and Y. Ichinose (2006). "Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci." Cell Microbiol 8(6): 923‐38. 348.
  132. Wielinga, B., M.M. Mizuba, C.M. Hansel, and S. Fendorf (2001). "Iron promoted reduction of chromate by dissimilatory iron‐reducing bacteria." Environ Sci Technol 35(3): 522‐7. 390. Wigneshweraraj, S., D. Bose, P.C. Burrows, N. Joly, J. Schumacher, M. Rappas, T. Pape, X. Zhang, P. Stockley, K. Severinov, and M. Buck (2008). "Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter‐ specificity factor." Mol Microbiol 68(3): 538‐46.
  133. Johansen, J.E., J. Pinhassi, N. Blackburn, U.L. Zweifel, and A. Hagstrom (2002). "Variability in motility characteristics among marine bacteria." Aquat Microb Ecol 28(3): 229‐237. 140.
  134. Nicolau, and R. Christen (2003). "Shewanella fidelis sp. nov., isolated from sediments and sea water." Int J Syst Evol Microbiol 53(Pt 2): 577‐82.
  135. Yonekura, K., S. Maki, D.G. Morgan, D.J. DeRosier, F. Vonderviszt, K. Imada, and K. Namba (2000). "The bacterial flagellar cap as the rotary promoter of flagellin self‐assembly." Science 290(5499): 2148‐52.
  136. Myers, C.R. and K.H. Nealson (1988). "Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor." Science 240(4857): 1319‐21. 248.
  137. Wadhams, G.H. and J.P. Armitage (2004). "Making sense of it all: bacterial chemotaxis." Nat Rev Mol Cell Biol 5(12): 1024‐37. 383.
  138. Klose, K.E. and J.J. Mekalanos (1998). "Differential regulation of multiple flagellins in Vibrio cholerae." J Bacteriol 180(2): 303‐16.
  139. Jiang, Z.Y., B.G. Rushing, Y. Bai, H. Gest, and C.E. Bauer (1998). "Isolation of Rhodospirillum centenum mutants defective in phototactic colony motility by transposon mutagenesis." J Bacteriol 180(5): 1248‐55. 139.
  140. Schoenhals, G.J., M. Kihara, and R.M. Macnab (1998). "Translation of the flagellar gene fliO of Salmonella typhimurium from putative tandem starts." J Bacteriol 180(11): 2936‐42.
  141. "Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens." Appl Environ Microbiol 66(6): 2451‐60.
  142. Wang, Q., A. Suzuki, S. Mariconda, S. Porwollik, and R.M. Harshey (2005). "Sensing wetness: a new role for the bacterial flagellum." EMBO J 24(11): 2034‐42. 386.
  143. Ramia, M., D.L. Tullock, and N. Phan‐Thien (1993). "The role of hydrodynamic interaction in the locomotion of microorganisms." Biophys J 65(2): 755‐78. 287.
  144. Yakushi, T., J. Yang, H. Fukuoka, M. Homma, and D.F. Blair (2006). "Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+‐driven and Na+‐driven motors in Escherichia coli." J Bacteriol 188(4): 1466‐72.
  145. Thormann, K.M., S. Duttler, R.M. Saville, M. Hyodo, S. Shukla, Y. Hayakawa, and A.M. Spormann (2006). "Control of formation and cellular detachment from Shewanella oneidensis MR‐1 biofilms by cyclic di‐GMP." J Bacteriol 188(7): 2681‐91.
  146. Paul, K. and D.F. Blair (2006). "Organization of FliN subunits in the flagellar motor of Escherichia coli." J Bacteriol 188(7): 2502‐11.
  147. Thattai, M. and A. van Oudenaarden (2004). "Stochastic gene expression in fluctuating environments." Genetics 167(1): 523‐30.
  148. Saltikov, C.W., A. Cifuentes, K. Venkateswaran, and D.K. Newman (2003). "The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA‐3." Appl Environ Microbiol 69(5): 2800‐9.
  149. Stewart, B.J. and L.L. McCarter (2003). "Lateral flagellar gene system of Vibrio parahaemolyticus." J Bacteriol 185(15): 4508‐18.
  150. Tang, H., S. Billings, X. Wang, L. Sharp, and D.F. Blair (1995). "Regulated underexpression and overexpression of the FliN protein of Escherichia coli and evidence for an interaction between FliN and FliM in the flagellar motor." J Bacteriol 177(12): 3496‐503.
  151. Moens, S., K. Michiels, V. Keijers, F. Van Leuven, and J. Vanderleyden (1995). "Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7." J Bacteriol 177(19): 5419‐26. 239.
  152. Williams, A.W., S. Yamaguchi, F. Togashi, S.I. Aizawa, I. Kawagishi, and R.M. Macnab (1996). "Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium." J Bacteriol 178(10): 2960‐70. 397.
  153. Moens, S., M. Schloter, and J. Vanderleyden (1996). "Expression of the structural gene, laf1, encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7." J Bacteriol 178(16): 5017‐9.
  154. Toker, A.S., M. Kihara, and R.M. Macnab (1996). "Deletion analysis of the FliM flagellar switch protein of Salmonella typhimurium." J Bacteriol 178(24): 7069‐79.
  155. Platzer, J., W. Sterr, M. Hausmann, and R. Schmitt (1997). "Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti." J Bacteriol 179(20): 6391‐9.
  156. Kanbe, M., J. Yagasaki, S. Zehner, M. Gottfert, and S. Aizawa (2007). "Characterization of two sets of subpolar flagella in Bradyrhizobium japonicum." J Bacteriol 189(3): 1083‐9.
  157. Parks, A.R. and J.E. Peters (2007). "Transposon Tn7 is widespread in diverse bacteria and forms genomic islands." J Bacteriol 189(5): 2170‐3.
  158. "Heterogeneity of a Campylobacter jejuni protein that is secreted through the flagellar filament." Infect Immun 75(8): 3859‐67. 278.
  159. Power, M.E., P. Guerry, W.D. McCubbin, C.M. Kay, and T.J. Trust (1994). "Structural and antigenic characteristics of Campylobacter coli FlaA flagellin." J Bacteriol 176(11): 3303‐13.
  160. Morett, E. and L. Segovia (1993). "The sigma 54 bacterial enhancer‐binding protein family: mechanism of action and phylogenetic relationship of their functional domains." J Bacteriol 175(19): 6067‐74. 243.
  161. Vogler, A.P., M. Homma, V.M. Irikura, and R.M. Macnab (1991). "Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits." J Bacteriol 173(11): 3564‐72.
  162. Sar, N., L. McCarter, M. Simon, and M. Silverman (1990). "Chemotactic control of the two flagellar systems of Vibrio parahaemolyticus." J Bacteriol 172(1): 334‐41.
  163. Miller, V.L. and J.J. Mekalanos (1988). "A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR." J Bacteriol 170(6): 2575‐83.
  164. Yamaguchi, S., S. Aizawa, M. Kihara, M. Isomura, C.J. Jones, and R.M. Macnab (1986). "Genetic evidence for a switching and energy‐transducing complex in the flagellar motor of Salmonella typhimurium." J Bacteriol 168(3): 1172‐ 9. 403.
  165. Stader, J., P. Matsumura, D. Vacante, G.E. Dean, and R.M. Macnab (1986). "Nucleotide sequence of the Escherichia coli motB gene and site‐limited incorporation of its product into the cytoplasmic membrane." J Bacteriol 166(1): 244‐ 52.
  166. Johnson, R.C., D.M. Ferber, and B. Ely (1983). "Synthesis and assembly of flagellar components by Caulobacter crescentus motility mutants." J Bacteriol 154(3): 1137‐44.
  167. Taguchi, F., S. Shibata, T. Suzuki, Y. Ogawa, S. Aizawa, K. Takeuchi, and Y. Ichinose (2008). "Effects of glycosylation on swimming ability and flagellar polymorphic transformation in Pseudomonas syringae pv. tabaci 6605." J Bacteriol 190(2): 764‐8.
  168. Shinoda, S. and K. Okamoto (1977). "Formation and function of Vibrio parahaemolyticus lateral flagella." J Bacteriol 129(3): 1266‐71.
  169. Stenberg, E., E. Ringo, and A.R. Strom (1984). "Trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735: Na+‐stimulated anaerobic transport in cells and membrane vesicles." Appl Environ Microbiol 47(5): 1090‐5. 342.
  170. Kimura, K., S. Tateiri, and H. Iida (1979). "Effects of pH of the medium on flagellation of Vibrio parahaemolyticus." Appl Environ Microbiol 37(6): 1248‐9.
  171. Taylor, B.L. and D.E. Koshland, Jr. (1974). "Reversal of flagellar rotation in monotrichous and peritrichous bacteria: generation of changes in direction." J Bacteriol 119(2): 640‐2.
  172. Tso, W.W. and J. Adler (1974). "Negative chemotaxis in Escherichia coli." J Bacteriol 118(2): 560‐76. 369.
  173. Takeuchi, K., F. Taguchi, Y. Inagaki, K. Toyoda, T. Shiraishi, and Y. Ichinose (2003). "Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity." J Bacteriol 185(22): 6658‐65. 349.
  174. Roy, K., G.M. Hilliard, D.J. Hamilton, J. Luo, M.M. Ostmann, and J.M. Fleckenstein (2009). "Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells." Nature 457(7229): 594‐8. 294.
  175. Pilizota, T., M.T. Brown, M.C. Leake, R.W. Branch, R.M. Berry, and J.P. Armitage (2009). "A molecular brake, not a clutch, stops the Rhodobacter sphaeroides flagellar motor." Proc Natl Acad Sci U S A 106(28): 11582‐7. 274.
  176. Koerdt, A., A. Paulick, M. Mock, K. Jost, and K.M. Thormann (2009). "MotX and MotY are required for flagellar rotation in Shewanella oneidensis MR‐1." J Bacteriol 191(16): 5085‐93.
  177. Sarkar, M.K., K. Paul, and D. Blair (2010). "Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli." Proc Natl Acad Sci U S A 107(20): 9370‐5. 302.
  178. Sourjik, V. and J.P. Armitage (2010). "Spatial organization in bacterial chemotaxis." EMBO J 29(16): 2724‐33. 335.
  179. Wei, Y., X. Wang, J. Liu, I. Nememan, A.H. Singh, H. Weiss, and B.R. Levin (2011). "The population dynamics of bacteria in physically structured habitats and the adaptive virtue of random motility." Proc Natl Acad Sci U S A 108(10): 4047‐52. 387.
  180. Wu, L., J. Wang, P. Tang, H. Chen, and H. Gao (2011). "Genetic and molecular characterization of flagellar assembly in Shewanella oneidensis." PLoS One 6(6): e21479. 399.
  181. Kearns, D.B. (2010). "A field guide to bacterial swarming motility." Nat Rev Microbiol 8(9): 634‐44. 148.
  182. Wilhelms, M., R. Molero, J.G. Shaw, J.M. Tomas, and S. Merino (2011). "Transcriptional hierarchy of Aeromonas hydrophila polar‐flagellum genes." J Bacteriol 193(19): 5179‐90.
  183. Mukherjee, S., H. Yakhnin, D. Kysela, J. Sokoloski, P. Babitzke, and D.B. Kearns (2011). "CsrA‐FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis." Mol Microbiol 82(2): 447‐61. 246.
  184. Patrick, J.E. and D.B. Kearns (2012). "Swarming motility and the control of master regulators of flagellar biosynthesis." Mol Microbiol 83(1): 14‐23.
  185. Sourjik, V. and N.S. Wingreen (2012). "Responding to chemical gradients: bacterial chemotaxis." Curr Opin Cell Biol 24(2): 262‐8.
  186. Turner, L., A.S. Stern, and H.C. Berg (2012). "Growth of flagellar filaments of Escherichia coli is independent of filament length." J Bacteriol 194(10): 2437‐42.
  187. Wilhelms, M., K.M. Fulton, S.M. Twine, J.M. Tomas, and S. Merino (2012). "Differential glycosylation of polar and lateral flagellins in Aeromonas hydrophila AH‐3." J Biol Chem 287(33): 27851‐62.
  188. Schirm, M., S.K. Arora, A. Verma, E. Vinogradov, P. Thibault, R. Ramphal, and S.M. Logan (2004). "Structural and genetic characterization of glycosylation of type a flagellin in Pseudomonas aeruginosa." J Bacteriol 186(9): 2523‐31. 309.
  189. Khan, I.H., T.S. Reese, and S. Khan (1992). "The cytoplasmic component of the bacterial flagellar motor." Proc Natl Acad Sci U S A 89(13): 5956‐60.
  190. Kim, Y.K. and L.L. McCarter (2004). "Cross‐regulation in Vibrio parahaemolyticus: compensatory activation of polar flagellar genes by the lateral flagellar regulator LafK." J Bacteriol 186(12): 4014‐8. 157.
  191. Myers, C.R. and K.H. Nealson (1990). "Respiration‐linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR‐1." J Bacteriol 172(11): 6232‐8. 249.
  192. Toutain, C.M., M.E. Zegans, and G.A. O'Toole (2005). "Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa." J Bacteriol 187(2): 771‐7.
  193. Thormann, K.M., R.M. Saville, S. Shukla, and A.M. Spormann (2005). "Induction of rapid detachment in Shewanella oneidensis MR‐1 biofilms." J Bacteriol 187(3): 1014‐21.
  194. Murray, A.E., D. Lies, G. Li, K. Nealson, J. Zhou, and J.M. Tiedje (2001). "DNA/DNA hybridization to microarrays reveals gene‐specific differences between closely related microbial genomes." Proc Natl Acad Sci U S A 98(17): 9853‐8. 247.
  195. Kojima, S., K. Yamamoto, I. Kawagishi, and M. Homma (1999). "The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force." J Bacteriol 181(6): 1927‐30.
  196. Kim, Y.K. and L.L. McCarter (2000). "Analysis of the polar flagellar gene system of Vibrio parahaemolyticus." J Bacteriol 182(13): 3693‐704.
  197. Rabaan, A.A., I. Gryllos, J.M. Tomas, and J.G. Shaw (2001). "Motility and the polar flagellum are required for Aeromonas caviae adherence to HEp‐2 cells." Infect Immun 69(7): 4257‐67.
  198. Sourjik, V. and H.C. Berg (2002). "Receptor sensitivity in bacterial chemotaxis." Proc Natl Acad Sci U S A 99(1): 123‐7. 336.
  199. Nathan, P., S.L. Gomes, K. Hahnenberger, A. Newton, and L. Shapiro (1986). "Differential localization of membrane receptor chemotaxis proteins in the Caulobacter predivisional cell." J Mol Biol 191(3): 433‐40. 250. Neal‐McKinney, J.M., J.E. Christensen, and M.E. Konkel (2010). "Amino‐terminal residues dictate the export efficiency of the Campylobacter jejuni filament proteins via the flagellum." Mol Microbiol 76(4): 918‐31. 251.
  200. Terashima, H., S. Kojima, and M. Homma (2010). "Functional transfer of an essential aspartate for the ion‐binding site in the stator proteins of the bacterial flagellar motor." J Mol Biol 397(3): 689‐96. 354. Thanbichler, M., A.A. Iniesta, and L. Shapiro (2007). "A comprehensive set of plasmids for vanillate‐ and xylose‐ inducible gene expression in Caulobacter crescentus." Nucleic Acids Res 35(20): e137.
  201. Zhou, J. and D.F. Blair (1997). "Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor." J Mol Biol 273(2): 428‐39. 415.
  202. Toker, A.S. and R.M. Macnab (1997). "Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY." J Mol Biol 273(3): 623‐34. 365.
  203. Nealson, K.H., C.R. Myers, and B.B. Wimpee (1991). "Isolation and Identification of Manganese‐Reducing Bacteria and Estimates of Microbial Mn(Iv)‐Reducing Potential in the Black‐Sea." Deep Sea Res A 38: S907‐S920. 252.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten