Publikationsserver der Universitätsbibliothek Marburg

Titel:Wirkmechanismen des MAP-Kinase Inhibitors CNI-1493 auf mikrogliale BV-2 Zellen und primäre Mikroglia
Autor:Mengel, David
Weitere Beteiligte: Dodel, Richard (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0329
DOI: https://doi.org/10.17192/z2013.0329
URN: urn:nbn:de:hebis:04-z2013-03293
DDC: Medizin
Titel (trans.):Mechanisms of action of the MAP-kinase inhibitor CNI-1493 with respect to BV-2 cells and primary microglia
Publikationsdatum:2013-06-26
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Alzheimer-Disease, Alzheimer-Krankheit, Mikroglia, Microglia

Zusammenfassung:
Ein zentrales Merkmal der Demenz vom Alzheimertyp (AD) ist die Akkumulation von β-Amyloid-Oligomeren sowie die Ausbildung einer β-Amyloid-induzierten Entzündungsreaktion im Gehirn. β-Amyloid entsteht aus einem Vorläuferprotein, dem APP, welches durch Sekretasen prozessiert wird. Die Bildung und der Abbau dieser Oligomere stellen einen zentralen Ansatz in der Entwicklung neuer Medikamente für AD dar. Insbesondere wird versucht, die Sekretasenaktivität zu beeinflussen, den Abbau von β-Amyloid zu fördern, die Aggregation von β-Amyloid zu hemmen sowie die durch die Oligomere bedingte Toxizität zu beeinflussen. Darüber hinaus steht die Modulation der β-Amyloid-induzierten Inflammation, bei der es zu einer starken Aktivierung mikroglialer Zellen kommt, im Focus des Interesses. In diesem Zusammenhang konnte gezeigt werden, dass der entzündungshemmende p38 MAPK Hemmstoff CNI-1493 in einem transgenen Mausmodel der Demenz vom Alzheimertyp zu einer deutlichen Reduktion der intrazerebralen β-Amyloid-Konzentration und gleichzeitig zu einer Verbesserung der Kognition dieser Tiere geführt hat. Allerdings sind die Wirk-mechanismen dieser Substanz nicht vollständig geklärt. Auch die besondere Wirkung auf die Mikroglia, einer zentralen Zelle bei der Erkrankung, ist noch unklar. Daher war das Ziel der vorliegenden Arbeit, zum einem die Interaktion zwischen CNI-1493 und β-Amyloid zu charakterisieren. Weiterhin wurde in vitro an primären Mikrogliazellen der Einfluss von CNI-1493 auf die Zytokinsekretion, die Aktivität der Sekretasen, die Toxizität von β-Amyloid und die Phagozytosefähigkeit untersucht. Primäre Mikroglia wurden aus Mesokortizes von Mausembryonen isoliert. Zusätzlich erfolgten die ersten Experimente an einer Zellkulturlinie. Zur Untersuchung der Zytotoxizität wurden MTT-Assays durchgeführt. Die Sekretion von Zytokinen und Amyloid-β wurde mit Hilfe von ELISAs untersucht. Die Fähigkeit der Zellen zur Phagozytose wurde durch FACS-Analysen überprüft. Die Interaktion zwischen CNI-1493 und β-Amyloid-Oligomeren wurde anhand von Westernblot bzw. Dot-Blot-Verfahren getestet. Die Aktivität der Sekretasen wurde indirekt durch RT-PCR dargestellt, während deren Funktion mit Hilfe von fluoro-metrischen Assays bestimmt wurde. Wir konnten zeigen, dass CNI-1493 in der Lage ist, die Bildung von toxischen Aggregations-formen des β-Amyloids zu hemmen. Dadurch ließ sich die β-Amyloid-induzierte Schädigung mikroglialer Zellen reduzieren. Auch die Sekretion von proinflammatorischen Zytokinen konnte durch CNI-1493 vermindert werden. Darüber hinaus ließ sich durch die Inkubation mit CNI-1493 die Phagozytose von β-Amyloid verbessern. Wir konnten auch zeigen, dass CNI-1493 die Funktion der α-Sekretase moduliert und dadurch die Induktion des nicht-amyloidogenen Weges der APP-Prozessierung induziert. In der vorliegenden Studie konnten wir relevante Wirkmechanismen von CNI-1493 in der mikroglialen Zellkultur aufklären. Unsere Daten zeigen, dass es nicht nur zu einem direkten Effekt von CNI-1493 auf Bildung toxischer β-Amyloid-Oligomere kommt, sondern über eine Inhibition des p38 MAPK Signalweges auch zur Modulation immunologischer Funktionen von mikroglialen Zellen. Über eine Aktivierung der α-Sekretase durch CNI-1493 ließ sich zudem eine Reduktion der β-Amyloid-Sekretion mikroglialer Zellen induzieren. In der Zusammen-schau dieser Ergebnisse scheint diese Substanz gerade aufgrund der unterschiedlichen Wirk-mechanismen für eine Therapie der AD geeignet. Berücksichtigt man die Tatsache, dass CNI-1493 bereits erfolgreich in einer klinischen Studie bei M. Crohn getestet wurde, wäre der Einsatz in einer klinischen Studie bei Patienten mit AD möglich.

Bibliographie / References

  1. Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  2. Alzheimer A. (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiat. Psych.- Gerichtl. Med. 64: 146-148.
  3. Stevens B., Allen N.J., Vazquez L.E., Howell G.R., Christopherson K.S., Nouri N., Micheva K.D., Mehalow A.K., Huberman A.D., Stafford B., Sher A., Litke A.M., Lambris J.D., Smith S.J., John S.W., Barres B.A. (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131: 1164-1178.
  4. Taylor D.L., Diemel L.T., Pocock J.M. (2003) Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J Neurosci 23: 2150-2160.
  5. Tremblay M.E., Lowery R.L., Majewska A.K. (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8: e1000527.
  6. Fourgeaud L., Boulanger L.M. (2007) Synapse remodeling, compliments of the complement system. Cell 131: 1034-1036.
  7. Rice D.P., Fillit H.M., Max W., Knopman D.S., Lloyd J.R., Duttagupta S. (2001) Prevalence, costs, and treatment of Alzheimer's disease and related dementia: a managed care perspective. Am J Manag Care 7: 809-818.
  8. Oke S.L., Tracey K.J. (2008) From CNI-1493 to the immunological homunculus: physiology of the inflammatory reflex. J Leukoc Biol 83: 512-517.
  9. Lee V.M., Balin B.J., Otvos L., Jr., Trojanowski J.Q. (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251: 675-678.
  10. Cuenda A., Rousseau S. (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773: 1358-1375.
  11. Goate A., Chartier-Harlin M.C., Mullan M., Brown J., Crawford F., Fidani L., Giuffra L., Haynes A., Irving N., James L. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349: 704-706.
  12. Davenport C.M., Sevastou I.G., Hooper C., Pocock J.M. (2010) Inhibiting p53 pathways in microglia attenuates microglial-evoked neurotoxicity following exposure to Alzheimer peptides. J Neurochem 112: 552-563.
  13. Dubois B., Feldman H.H., Jacova C., Dekosky S.T., Barberger-Gateau P., Cummings J., Delacourte A., Galasko D., Gauthier S., Jicha G., Meguro K., O'Brien J., Pasquier F., Robert P., Rossor M., Salloway S., Stern Y., Visser P.J., Scheltens P. (2007) Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6: 734-746.
  14. Raivich G. (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28: 571-573.
  15. Rogers J., Strohmeyer R., Kovelowski C.J., Li R. (2002) Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 40: 260-269.
  16. Streit W.J. (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40: 133-139.
  17. Bessis A., Bechade C., Bernard D., Roumier A. (2007) Microglial control of neuronal death and synaptic properties. Glia 55: 233-238.
  18. Simmons D.A., Casale M., Alcon B., Pham N., Narayan N., Lynch G. (2007) Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease. Glia 55: 1074-1084.
  19. de Haas A.H., Boddeke H.W., Biber K. (2008) Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia 56: 888-894.
  20. Lopes K.O., Sparks D.L., Streit W.J. (2008) Microglial dystrophy in the aged and Alzheimer's disease brain is associated with ferritin immunoreactivity. Glia 56: 1048-1060.
  21. Prinz M., Mildner A. (2011) Microglia in the CNS: immigrants from another world. Glia 59: 177-187.
  22. Cunningham C. (2012) Microglia and neurodegeneration: The role of systemic inflammation. Glia 61: 71-90.
  23. Chae H.J., Kang J.S., Byun J.O., Han K.S., Kim D.U., Oh S.M., Kim H.M., Chae S.W., Kim H.R. (2000) Molecular mechanism of staurosporine-induced apoptosis in osteoblasts. Pharmacol Res 42: 373-381.
  24. Sastre M., Steiner H., Fuchs K., Capell A., Multhaup G., Condron M.M., Teplow D.B., Haass C. (2001) Presenilin-dependent gamma-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep 2: 835-841.
  25. Wisniewski H.M., Vorbrodt A.W., Moretz R.C., Lossinsky A.S., Grundke-Iqbal I. (1982) Pathogenesis of neuritic (senile) and amyloid plaque formation. Exp Brain Res Suppl 5: 3-9.
  26. Duyckaerts C., Potier M.C., Delatour B. (2008) Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 115: 5-38.
  27. Combs C.K. (2009) Inflammation and microglia actions in Alzheimer's disease. J Neuroimmune Pharmacol 4: 380-388.
  28. Korotzer A.R., Pike C.J., Cotman C.W. (1993) beta-Amyloid peptides induce degeneration of cultured rat microglia. Brain Res 624: 121-125.
  29. Lawson L.J., Perry V.H., Dri P., Gordon S. (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39: 151-170.
  30. Streit W.J. (2005) Microglia and neuroprotection: implications for Alzheimer's disease. Brain Res Brain Res Rev 48: 234-239.
  31. Vehmas A., Lieu J., Pardo C.A., McArthur J.C., Gartner S. (2004) Amyloid precursor protein expression in circulating monocytes and brain macrophages from patients with HIV- associated cognitive impairment. J Neuroimmunol 157: 99-110.
  32. Michelucci A., Heurtaux T., Grandbarbe L., Morga E., Heuschling P. (2009) Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol 210: 3- 12.
  33. Jang M.H., Jung S.B., Lee M.H., Kim C.J., Oh Y.T., Kang I., Kim J., Kim E.H. (2005) Melatonin attenuates amyloid beta25-35-induced apoptosis in mouse microglial BV2 cells. Neurosci Lett 380: 26-31.
  34. Njie E.G., Boelen E., Stassen F.R., Steinbusch H.W., Borchelt D.R., Streit W.J. (2012) Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 33: 195 e191-112.
  35. Wu X., Lu Y., Dong Y., Zhang G., Zhang Y., Xu Z., Culley D.J., Crosby G., Marcantonio E.R., Tanzi R.E., Xie Z. (2010) The inhalation anesthetic isoflurane increases levels of proinflammatory TNF-alpha, IL-6, and IL-1beta. Neurobiol Aging 33: 1364-1378.
  36. Griffiths M., Neal J.W., Gasque P. (2007) Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. Int Rev Neurobiol 82: 29-55.
  37. Stoll G., Jander S. (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58: 233-247.
  38. Chang Z., Luo Y., Zhang Y., Wei G. (2011) Interactions of Abeta25-35 beta-barrel-like oligomers with anionic lipid bilayer and resulting membrane leakage: an all-atom molecular dynamics study. J Phys Chem B 115: 1165-1174.
  39. Davalos D., Grutzendler J., Yang G., Kim J.V., Zuo Y., Jung S., Littman D.R., Dustin M.L., Gan W.B. (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8: 752-758.
  40. Schwartz M., Shechter R. (2010) Systemic inflammatory cells fight off neurodegenerative disease. Nat Rev Neurol 6: 405-410.
  41. Block M.L., Hong J.S. (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35: 1127-1132.
  42. Tancredi V., D'Antuono M., Cafe C., Giovedi S., Bue M.C., D'Arcangelo G., Onofri F., Benfenati F. (2000) The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK. J Neurochem 75: 634-643. Literaturverzeichnis 110
  43. Stokes D.G., Kremer J.M. (2003) Potential of tumor necrosis factor neutralization strategies in rheumatologic disorders other than rheumatoid arthritis. Semin Arthritis Rheum 33: 1-18.
  44. Bacher M., Dodel R., Aljabari B., Keyvani K., Marambaud P., Kayed R., Glabe C., Goertz N., Hoppmann A., Sachser N., Klotsche J., Schnell S., Lewejohann L., Al-Abed Y. (2008) CNI-1493 inhibits Abeta production, plaque formation, and cognitive deterioration in an animal model of Alzheimer's disease. J Exp Med 205: 1593-1599.
  45. Eisele Y.S., Baumann M., Klebl B., Nordhammer C., Jucker M., Kilger E. (2007) Gleevec increases levels of the amyloid precursor protein intracellular domain and of the amyloid-beta degrading enzyme neprilysin. Mol Biol Cell 18: 3591-3600.
  46. van Eitzen U., Egensperger R., Kosel S., Grasbon-Frodl E.M., Imai Y., Bise K., Kohsaka S., Mehraein P., Graeber M.B. (1998) Microglia and the development of spongiform change in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 57: 246-256.
  47. Hommes D.W., Erkelens W., Ponsioen C., Stokkers P., Rauws E., van der Spek M., ten Kate F., van Deventer S.J. (2008) A double-blind, placebo-controlled, randomized study of infliximab in primary sclerosing cholangitis. J Clin Gastroenterol 42: 522-526.
  48. Kim S.H., Terry M.E., Hoops P., Dauwalder M., Roux S.J. (1988) Production and characterization of monoclonal antibodies to wall-localized peroxidases from corn seedings. Plant Physiol 88: 1446-1453.
  49. Hailer N.P., Vogt C., Korf H.W., Dehghani F. (2005) Interleukin-1beta exacerbates and interleukin-1 receptor antagonist attenuates neuronal injury and microglial activation after excitotoxic damage in organotypic hippocampal slice cultures. Eur J Neurosci 21: 2347-2360.
  50. Dotan I., Rachmilewitz D., Schreiber S., Eliakim R., van der Woude C.J., Kornbluth A., Buchman A.L., Bar-Meir S., Bokemeyer B., Goldin E., Maaser C., Mahadevan U., Seidler U., Hoffman J.C., Homoky D., Plasse T., Powers B., Rutgeerts P., Hommes D. (2010) A randomised placebo-controlled multicentre trial of intravenous semapimod HCl for moderate to severe Crohn's disease. Gut 59: 760-766.
  51. Nord L.C., Sundqvist J., Andersson E., Fried G. (2010) Analysis of oestrogen regulation of alpha-, beta-and gamma-secretase gene and protein expression in cultured human neuronal and glial cells. Neurodegener Dis 7: 349-364.
  52. Hayashi S., Sato N., Yamamoto A., Ikegame Y., Nakashima S., Ogihara T., Morishita R. (2009) Alzheimer disease-associated peptide, amyloid beta40, inhibits vascular regeneration with induction of endothelial autophagy. Arterioscler Thromb Vasc Biol 29: 1909- 1915.
  53. Birks J. (2006) Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev: CD005593.
  54. Caesar I., Jonson M., Nilsson K.P., Thor S., Hammarstrom P. (2012) Curcumin promotes A- beta fibrillation and reduces neurotoxicity in transgenic Drosophila. PLoS One 7: e31424.
  55. Giuffrida M.L., Caraci F., De Bona P., Pappalardo G., Nicoletti F., Rizzarelli E., Copani A. (2010) The monomer state of beta-amyloid: where the Alzheimer's disease protein meets physiology. Rev Neurosci 21: 83-93.
  56. Herrmann N., Li A., Lanctot K. (2011) Memantine in dementia: a review of the current evidence. Expert Opin Pharmacother 12: 787-800.
  57. Jimenez S., Baglietto-Vargas D., Caballero C., Moreno-Gonzalez I., Torres M., Sanchez-Varo R., Ruano D., Vizuete M., Gutierrez A., Vitorica J. (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer's disease: age- dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28: 11650-11661.
  58. Fahrenholz F. (2007) Alpha-secretase as a therapeutic target. Curr Alzheimer Res 4: 412-417.
  59. Deuss M., Reiss K., Hartmann D. (2008) Part-time alpha-secretases: the functional biology of ADAM 9, 10 and 17. Curr Alzheimer Res 5: 187-201.
  60. Mesterton J., Wimo A., By A., Langworth S., Winblad B., Jonsson L. (2010) Cross sectional observational study on the societal costs of Alzheimer's disease. Curr Alzheimer Res 7: 358-367.
  61. Ji C., Song C., Zuo P. (2011) The Mechanism of Memory Impairment Induced by Abeta Chronic Administration Involves Imbalance Between Cytokines and Neurotrophins in the Rat Hippocampus. Curr Alzheimer Res 8: 410-420.
  62. Eikelenboom P., Veerhuis R., Exel E.V., Hoozemans J.J., Rozemuller A.J., van Gool W.A. (2011) The Early Involvement of the Innate Immunity in the Pathogenesis of Alzheimer's Disease: Neuropathological, Epidemiological and Genetic Evidence. Curr Alzheimer Res 8: 142-150.
  63. Jana M., Palencia C.A., Pahan K. (2008) Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer's disease. J Immunol 181: 7254-7262.
  64. Boucsein C., Zacharias R., Farber K., Pavlovic S., Hanisch U.K., Kettenmann H. (2003) Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17: 2267-2276.
  65. Hanisch U.K., Kettenmann H. (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10: 1387-1394.
  66. Papassotiropoulos A., Bagli M., Jessen F., Bayer T.A., Maier W., Rao M.L., Heun R. (1999) A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer's disease. Ann Neurol 45: 666-668.
  67. Ransohoff R.M., Perry V.H. (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27: 119-145.
  68. Cory A.H., Owen T.C., Barltrop J.A., Cory J.G. (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3: 207- 212.
  69. Dubois B., Feldman H.H., Jacova C., Cummings J.L., Dekosky S.T., Barberger-Gateau P., Delacourte A., Frisoni G., Fox N.C., Galasko D., Gauthier S., Hampel H., Jicha G.A., Meguro K., O'Brien J., Pasquier F., Robert P., Rossor M., Salloway S., Sarazin M., de Souza L.C., Stern Y., Visser P.J., Scheltens P. (2010) Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol 9: 1118-1127.
  70. Kim E.K., Choi E.J. (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802: 396-405.
  71. Martinez F.O., Sica A., Mantovani A., Locati M. (2008) Macrophage activation and polarization. Front Biosci 13: 453-461.
  72. Schindler J.F., Monahan J.B., Smith W.G. (2007) p38 pathway kinases as anti-inflammatory drug targets. J Dent Res 86: 800-811.
  73. Luheshi L.M., Hoyer W., de Barros T.P., van Dijk Hard I., Brorsson A.C., Macao B., Persson C., Crowther D.C., Lomas D.A., Stahl S., Dobson C.M., Hard T. (2010) Sequestration of the Abeta peptide prevents toxicity and promotes degradation in vivo. PLoS Biol 8: e1000334.
  74. Heneka M.T., O'Banion M.K., Terwel D., Kummer M.P. (2010) Neuroinflammatory processes in Alzheimer's disease. J Neural Transm 117: 919-947.
  75. Roth L. (2010) Alternative Mezhoden für Nukleinsäure basierten Nachweis genetisch veränderter Lebens-und Futtermittel. S. 19ff.
  76. Cipriani G., Dolciotti C., Picchi L., Bonuccelli U. (2010) Alzheimer and his disease: a brief history. Neurol Sci 32: 275-279.
  77. Walsh D.M., Klyubin I., Fadeeva J.V., Rowan M.J., Selkoe D.J. (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30: 552-557.
  78. Johnson-Wood K., Lee M., Motter R., Hu K., Gordon G., Barbour R., Khan K., Gordon M., Tan H., Games D., Lieberburg I., Schenk D., Seubert P., McConlogue L. (1997) Amyloid precursor protein processing and A beta42 deposition in a transgenic mouse model of Alzheimer disease. Proc Natl Acad Sci U S A 94: 1550-1555.
  79. Munoz L., Ralay Ranaivo H., Roy S.M., Hu W., Craft J.M., McNamara L.K., Chico L.W., Van Eldik L.J., Watterson D.M. (2007) A novel p38 alpha MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model. J Neuroinflammation 4: 21.
  80. Mullan M., Crawford F., Axelman K., Houlden H., Lilius L., Winblad B., Lannfelt L. (1992) A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N- terminus of beta-amyloid. Nat Genet 1: 345-347.
  81. Jung S.S., Gauthier S., Cashman N.R. (1999) Beta-amyloid precursor protein is detectable on monocytes and is increased in Alzheimer's disease. Neurobiol Aging 20: 249-257.
  82. Combs C.K., Karlo J.C., Kao S.C., Landreth G.E. (2001) beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21: 1179-1188.
  83. Persidsky Y., Ramirez S.H., Haorah J., Kanmogne G.D. (2006) Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 1: 223-236.
  84. Haass C., Selkoe D.J. (1993) Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 75: 1039-1042.
  85. Kayed R., Head E., Thompson J.L., McIntire T.M., Milton S.C., Cotman C.W., Glabe C.G. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300: 486-489.
  86. Sastre M., Klockgether T., Heneka M.T. (2006) Contribution of inflammatory processes to Alzheimer's disease: molecular mechanisms. Int J Dev Neurosci 24: 167-176.
  87. Streit W.J., Braak H., Xue Q.S., Bechmann I. (2009) Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease. Acta Neuropathol 118: 475-485.
  88. Li Q., Wu D., Zhang L., Zhang Y. (2010) Effects of galantamine on beta-amyloid release and beta-site cleaving enzyme 1 expression in differentiated human neuroblastoma SH- SY5Y cells. Exp Gerontol 45: 842-847.
  89. Müllner M. (2005) Erfolgreich wissenschaftlich arbeiten in der Klinik -evidence based medicine. Springer Wien New York: S. 173ff.
  90. Nimmerjahn F., Bruhns P., Horiuchi K., Ravetch J.V. (2005) FcgammaRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23: 41-51.
  91. Saura J., Tusell J.M., Serratosa J. (2003) High-yield isolation of murine microglia by mild trypsinization. Glia 44: 183-189.
  92. Blasi E., Barluzzi R., Bocchini V., Mazzolla R., Bistoni F. (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27: 229-237.
  93. Heneka M.T., O'Banion M.K. (2007) Inflammatory processes in Alzheimer's disease. J Neuroimmunol 184: 69-91.
  94. Cunningham A.J., Murray C.A., O'Neill L.A., Lynch M.A., O'Connor J.J. (1996) Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett 203: 17-20.
  95. Doi Y., Mizuno T., Maki Y., Jin S., Mizoguchi H., Ikeyama M., Doi M., Michikawa M., Takeuchi H., Suzumura A. (2009) Microglia activated with the toll-like receptor 9 ligand CpG attenuate oligomeric amyloid {beta} neurotoxicity in in vitro and in vivo models of Alzheimer's disease. Am J Pathol 175: 2121-2132.
  96. Koenigsknecht J., Landreth G. (2004) Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci 24: 9838-9846.
  97. Mandrekar S., Jiang Q., Lee C.Y., Koenigsknecht-Talboo J., Holtzman D.M., Landreth G.E. (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29: 4252-4262.
  98. Bhat N.R., Feinstein D.L., Shen Q., Bhat A.N. (2002) p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer- binding protein-beta, and activating transcription factor-2. J Biol Chem 277: 29584- 29592.
  99. Cotman C.W., Whittemore E.R., Watt J.A., Anderson A.J., Loo D.T. (1994) Possible role of apoptosis in Alzheimer's disease. Ann N Y Acad Sci 747: 36-49.
  100. Haass C., Hung A.Y., Selkoe D.J. (1991) Processing of beta-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J Neurosci 11: 3783-3793.
  101. Mosmann T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63.
  102. Origlia N., Righi M., Capsoni S., Cattaneo A., Fang F., Stern D.M., Chen J.X., Schmidt A.M., Arancio O., Yan S.D., Domenici L. (2008) Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction. J Neurosci 28: 3521-3530.
  103. Hattori M., Osterfield M., Flanagan J.G. (2000) Regulated cleavage of a contact-mediated axon repellent. Science 289: 1360-1365.
  104. Hunt A.E., Lali F.V., Lord J.D., Nelson B.H., Miyazaki T., Tracey K.J., Foxwell B.M. (1999) Role of interleukin (IL)-2 receptor beta-chain subdomains and Shc in p38 mitogen- activated protein (MAP) kinase and p54 MAP kinase (stress-activated protein Kinase/c-Jun N-terminal kinase) activation. IL-2-driven proliferation is independent of p38 and p54 MAP kinase activation. J Biol Chem 274: 7591-7597.
  105. Bandyopadhyay S., Goldstein L.E., Lahiri D.K., Rogers J.T. (2007) Role of the APP non- amyloidogenic signaling pathway and targeting alpha-secretase as an alternative drug target for treatment of Alzheimer's disease. Curr Med Chem 14: 2848-2864.
  106. Lin H.C., Hsieh H.M., Chen Y.H., Hu M.L. (2009) S-Adenosylhomocysteine increases beta- amyloid formation in BV-2 microglial cells by increased expressions of beta-amyloid precursor protein and presenilin 1 and by hypomethylation of these gene promoters. Neurotoxicology 30: 622-627.
  107. Ard M.D., Cole G.M., Wei J., Mehrle A.P., Fratkin J.D. (1996) Scavenging of Alzheimer's amyloid beta-protein by microglia in culture. J Neurosci Res 43: 190-202.
  108. Selkoe D.J. (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192: 106-113.
  109. Kawamata J., Shimohama S. (2011) Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer's and Parkinson's diseases. J Alzheimers Dis 24: 95-109.
  110. Munoz L., Ammit A.J. (2010) Targeting p38 MAPK pathway for the treatment of Alzheimer's disease. Neuropharmacology 58: 561-568.
  111. Churcher I. (2006) Tau therapeutic strategies for the treatment of Alzheimer's disease. Curr Top Med Chem 6: 579-595.
  112. Hardy J., Selkoe D.J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297: 353-356. Literaturverzeichnis 103
  113. Schieven G.L. (2005) The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem 5: 921-928.
  114. Adams R.A., Bauer J., Flick M.J., Sikorski S.L., Nuriel T., Lassmann H., Degen J.L., Akassoglou K. (2007) The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med 204: 571-582.
  115. Kojro E., Fahrenholz F. (2005) The non-amyloidogenic pathway: structure and function of alpha-secretases. Subcell Biochem 38: 105-127.
  116. Kang J., Lemaire H.G., Unterbeck A., Salbaum J.M., Masters C.L., Grzeschik K.H., Multhaup G., Beyreuther K., Muller-Hill B. (1987) The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733-736.
  117. Westerman M.A., Cooper-Blacketer D., Mariash A., Kotilinek L., Kawarabayashi T., Younkin L.H., Carlson G.A., Younkin S.G., Ashe K.H. (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer's disease. J Neurosci 22: 1858- 1867.
  118. Tremblay M.E., Stevens B., Sierra A., Wake H., Bessis A., Nimmerjahn A. (2011) The role of microglia in the healthy brain. J Neurosci 31: 16064-16069.
  119. Masliah E., Terry R. (1993) The role of synaptic proteins in the pathogenesis of disorders of the central nervous system. Brain Pathol 3: 77-85.
  120. Ring S., Weyer S.W., Kilian S.B., Waldron E., Pietrzik C.U., Filippov M.A., Herms J., Buchholz C., Eckman C.B., Korte M., Wolfer D.P., Muller U.C. (2007) The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci 27: 7817-7826.
  121. Ulloa L. (2005) The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov 4: 673-684.
  122. Wimo A., Prince M. (2010) The World Alzheimer Report 2010: the global economic impact of dementia. . Alzheimer's Disease International (ADI ).
  123. Saha R.N., Ghosh A., Palencia C.A., Fung Y.K., Dudek S.M., Pahan K. (2009) TNF-alpha preconditioning protects neurons via neuron-specific up-regulation of CREB-binding protein. J Immunol 183: 2068-2078.
  124. Flanary B.E., Sammons N.W., Nguyen C., Walker D., Streit W.J. (2007) Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res 10: 61-74.
  125. van Goor H., Melenhorst W.B., Turner A.J., Holgate S.T. (2009) Adamalysins in biology and disease. J Pathol 219: 277-286.
  126. Bauer J., Konig G., Strauss S., Jonas U., Ganter U., Weidemann A., Monning U., Masters C.L., Volk B., Berger M. (1991) In-vitro matured human macrophages express Alzheimer's beta A4-amyloid precursor protein indicating synthesis in microglial cells. FEBS Lett 282: 335-340.
  127. Giuliani F., Vernay A., Leuba G., Schenk F. (2009) Decreased behavioral impairments in an Alzheimer mice model by interfering with TNF-alpha metabolism. Brain Res Bull 80: 302-308.
  128. Brookmeyer R., Johnson E., Ziegler-Graham K., Arrighi H.M. (2007) Forecasting the global burden of Alzheimer's disease. Alzheimers Dement 3: 186-191.
  129. Prinzen C., Trumbach D., Wurst W., Endres K., Postina R., Fahrenholz F. (2009) Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice. BMC Genomics 10: 66.
  130. Sondag C.M., Combs C.K. (2010) Adhesion of monocytes to type I collagen stimulates an APP-dependent proinflammatory signaling response and release of Abeta1-40. J Neuroinflammation 7: 22.
  131. Rojo L.E., Fernandez J.A., Maccioni A.A., Jimenez J.M., Maccioni R.B. (2008) Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer's disease. Arch Med Res 39: 1-16.
  132. Imbimbo B.P., Giardina G.A. (2011) gamma-Secretase Inhibitors and Modulators for the Treatment of Alzheimer's Disease: Disappointments and Hopes. Curr Top Med Chem.
  133. Hung A.Y., Haass C., Nitsch R.M., Qiu W.Q., Citron M., Wurtman R.J., Growdon J.H., Selkoe D.J. (1993) Activation of protein kinase C inhibits cellular production of the amyloid beta-protein. J Biol Chem 268: 22959-22962.
  134. Monning U., Sandbrink R., Weidemann A., Banati R.B., Masters C.L., Beyreuther K. (1995) Extracellular matrix influences the biogenesis of amyloid precursor protein in microglial cells. J Biol Chem 270: 7104-7110.
  135. Fendrick S.E., Xue Q.S., Streit W.J. (2007) Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene. J Neuroinflammation 4: 9. Literaturverzeichnis 102
  136. Sondag C.M., Dhawan G., Combs C.K. (2009) Beta amyloid oligomers and fibrils stimulate differential activation of primary microglia. J Neuroinflammation 6: 1.
  137. Pike C.J., Burdick D., Walencewicz A.J., Glabe C.G., Cotman C.W. (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13: 1676-1687.
  138. Kaushal V., Schlichter L.C. (2008) Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 28: 2221-2230.
  139. Wolfe M.S., Xia W., Ostaszewski B.L., Diehl T.S., Kimberly W.T., Selkoe D.J. (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398: 513-517.
  140. Haass C., Selkoe D.J. (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8: 101-112.
  141. Bianchi M., Bloom O., Raabe T., Cohen P.S., Chesney J., Sherry B., Schmidtmayerova H., Calandra T., Zhang X., Bukrinsky M., Ulrich P., Cerami A., Tracey K.J. (1996) Suppression of proinflammatory cytokines in monocytes by a tetravalent guanylhydrazone. J Exp Med 183: 927-936.
  142. Bianchi M., Ulrich P., Bloom O., Meistrell M., 3rd, Zimmerman G.A., Schmidtmayerova H., Bukrinsky M., Donnelley T., Bucala R., Sherry B. (1995) An inhibitor of macrophage arginine transport and nitric oxide production (CNI-1493) prevents acute inflammation and endotoxin lethality. Mol Med 1: 254-266.
  143. Glabe C.G. (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283: 29639-29643.
  144. Jucker M., Heppner F.L. (2008) Cerebral and peripheral amyloid phagocytes--an old liaison with a new twist. Neuron 59: 8-10.
  145. Mosser D.M., Edwards J.P. (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8: 958-969.
  146. Perl D.P. (2010) Neuropathology of Alzheimer's disease. Mt Sinai J Med 77: 32-42.
  147. Stoscheck (1990) Quantitation of Protein. In: Methods in Enzymology, Vol. 182, pp. 50-69.
  148. Gomes-Leal W. (2012) Microglial physiopathology: how to explain the dual role of microglia after acute neural disorders? Brain Behav 2: 345-356.
  149. Bolmont T., Haiss F., Eicke D., Radde R., Mathis C.A., Klunk W.E., Kohsaka S., Jucker M., Calhoun M.E. (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28: 4283-4292.
  150. Cohen P.S., Nakshatri H., Dennis J., Caragine T., Bianchi M., Cerami A., Tracey K.J. (1996) CNI- 1493 inhibits monocyte/macrophage tumor necrosis factor by suppression of translation efficiency. Proc Natl Acad Sci U S A 93: 3967-3971.
  151. Masters C.L., Simms G., Weinman N.A., Multhaup G., McDonald B.L., Beyreuther K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82: 4245-4249. Literaturverzeichnis 106
  152. Postina R., Schroeder A., Dewachter I., Bohl J., Schmitt U., Kojro E., Prinzen C., Endres K., Hiemke C., Blessing M., Flamez P., Dequenne A., Godaux E., van Leuven F., Fahrenholz F. (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113: 1456-1464.
  153. McKercher S.R., Torbett B.E., Anderson K.L., Henkel G.W., Vestal D.J., Baribault H., Klemsz M., Feeney A.J., Wu G.E., Paige C.J., Maki R.A. (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. Embo J 15: 5647-5658.
  154. Loo D.T., Copani A., Pike C.J., Whittemore E.R., Walencewicz A.J., Cotman C.W. (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A 90: 7951-7955.
  155. Knauer M.F., Soreghan B., Burdick D., Kosmoski J., Glabe C.G. (1992) Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein. Proc Natl Acad Sci U S A 89: 7437-7441.
  156. Burnette W.N. (1981) "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112: 195-203. Literaturverzeichnis 100
  157. Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76-85.
  158. Braak H., Braak E. (1995) Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 16: 271-278; discussion 278-284.
  159. Lue L.F., Kuo Y.M., Roher A.E., Brachova L., Shen Y., Sue L., Beach T., Kurth J.H., Rydel R.E., Rogers J. (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol 155: 853-862.
  160. Quintanilla R.A., Orellana D.I., Gonzalez-Billault C., Maccioni R.B. (2004) Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res 295: 245-257.
  161. Abbas N., Bednar I., Mix E., Marie S., Paterson D., Ljungberg A., Morris C., Winblad B., Nordberg A., Zhu J. (2002) Up-regulation of the inflammatory cytokines IFN-gamma and IL-12 and down-regulation of IL-4 in cerebral cortex regions of APP(SWE) transgenic mice. J Neuroimmunol 126: 50-57.
  162. Benzing W.C., Wujek J.R., Ward E.K., Shaffer D., Ashe K.H., Younkin S.G., Brunden K.R. (1999) Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging 20: 581-589.
  163. Sly L.M., Krzesicki R.F., Brashler J.R., Buhl A.E., McKinley D.D., Carter D.B., Chin J.E. (2001) Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer's disease. Brain Res Bull 56: 581-588.
  164. LeVine H., 3rd (2007) Small molecule inhibitors of Abeta assembly. Amyloid 14: 185-197.
  165. Maurer K., Volk S., Gerbaldo H. (1997) Auguste D and Alzheimer's disease. Lancet 349: 1546- 1549.
  166. Aguzzi A., O'Connor T. (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9: 237-248.
  167. Malchiodi-Albedi F., Paradisi S., Matteucci A., Frank C., Diociaiuti M. (2011) Amyloid oligomer neurotoxicity, calcium dysregulation, and lipid rafts. Int J Alzheimers Dis 1802: 406- 415.
  168. Hardy J.A., Higgins G.A. (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256: 184-185.
  169. Choy E.H., Panayi G.S. (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344: 907-916.
  170. Balschun D., Wetzel W., Del Rey A., Pitossi F., Schneider H., Zuschratter W., Besedovsky H.O. (2004) Interleukin-6: a cytokine to forget. Faseb J 18: 1788-1790.
  171. Necula M., Kayed R., Milton S., Glabe C.G. (2007) Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 282: 10311-10324.
  172. McDonald D.R., Bamberger M.E., Combs C.K., Landreth G.E. (1998) beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J Neurosci 18: 4451-4460.
  173. Bhat N.R., Zhang P., Lee J.C., Hogan E.L. (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18: 1633-1641.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten