Publikationsserver der Universitätsbibliothek Marburg

Titel:Strukturbasierte Charakterisierung von Klasse II CPD Photolyasen
Autor:Kiontke, Stephan
Weitere Beteiligte: Essen, Lars-Oliver (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0246
URN: urn:nbn:de:hebis:04-z2013-02463
DOI: https://doi.org/10.17192/z2013.0246
DDC:540 Chemie
Titel (trans.):Structure-based characterization of class II CPD photolyases
Publikationsdatum:2013-05-28
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Flavine, Antenna chromophore, UV-induzierte DNA-Schäden, Antennenchromophor, Rekombinantes Protein, Class II CPD photolyases, Deoxyribodipyrimidin-Photolyase, Protein crystallography, Methanosarcina mazei, Proteinkristallographie, Deazaflavine, Klasse II CPD Photolyasen, Structural biology, Strukturbiologie, Kristallstrukturanalyse, UV-induced DNA lesions, DNS-Reparatur, Or

Zusammenfassung:
CPD-Photolyasen sind substratspezifische, lichtgetriebene DNA-Reparaturenzyme, die mit der Energie des Sonnenlichts (300 nm – 500 nm) den UV-induzierten Hauptschaden im Erbgut, das Cyclobutanpyrimidindimer (CPD), entfernen und somit die genomische Integrität sicherstellen. Diese monomeren Enzyme besitzen neben dem katalytisch essentiellen Kofaktor FAD in der Regel einen zusätzlichen Antennenchromophor zur Erweiterung ihres Aktionsspektrums. Die Klassifizierung der CPD-Photolyasen erfolgt anhand von Sequenzhomologien und spiegelt sich bemerkenswerterweise auch im differenzierten Auftreten innerhalb der Lebewesen wider. Während der umfangreich charakterisierte Klasse I Subtyp auf mikrobielle Organismen beschränkt ist, existiert der weitgehend unerforschte Klasse II Subtyp ubiquitär in Pflanzen, Tieren, Bakterien, Archaeen sowie in einigen Viren. In dieser Arbeit erfolgte die funktionelle als auch strukturelle Charakterisierung des Klasse II Subtyps am Beispiel der Photolyasen aus der archaealen Gattung Methanosarcina. Diese Enzyme stellen aufgrund der hohen Sequenzhomologien zu den pflanzlichen und tierischen Orthologen geeignete Modelle für die Untersuchung eukaryotischer, Klasse II-spezifischer Aspekte dar. Die in dieser Arbeit gelösten Kristallstrukturen der Methanosarcina mazei Photolyase (MmCPDII) allein und im Komplex mit doppelsträngiger, CPD-geschädigter DNA lieferten die ersten dreidimensionalen Informationen für diese phylogenetisch distinkte Gruppe. Dabei wurde deutlich, dass der durch Gelshift-Experimente ermittelte geringe Diskriminierungsgrad zwischen ungeschädigter und geschädigter DNA des Klasse II Subtyps auf einen unterschiedlichen DNA Bindungsmodus zurückzuführen ist. Katalytische Merkmale ähneln zwar dem Klasse I Subtyp funktionell, unterscheiden sich aber auf struktureller Ebene und deuten so auf deren konvergente Evolution hin. So findet der Elektronentransport während der Photoreduktion des Kofaktors FAD ebenfalls entlang konservierter Tryptophane statt, nimmt aber eine neue Route und besteht nicht aus einer Triade, sondern aus einer Dyade mit mehreren terminalen Verzweigungspunkten. Vergleichbar mit dem Klasse I Subtyp erfolgt die Stabilisierung des neutralen semichionoiden Zustands während der Photoreduktion und der DNA Reparatur über ein Asparagin, das sich allerdings im Klasse II Subtyp konserviert auf einem anderen Strukturelement befindet. Mit Hilfe ortsgerichteter Mutagenese und UV/Vis-spektroskopischer Methoden war es möglich, die Funktion und Relevanz dieser Klasse II-spezifischen Merkmale zu verifizieren. Die Etablierung eines artifiziellen Synthesewegs zur Bereitstellung des Deazaflavins 8-HDF im Expressionswirt Escherichia coli identifizierte in letzter Konsequenz den anfänglich unbekannten Antennenchromophor der MmCPDII. Die Kristallstruktur des MmCPDII/8-HDF Komplexes wiederum lieferte detaillierte Einblicke in die Antennenbindungstasche und ermöglichte Schlussfolgerungen bezüglich potentieller Antennen für den gesamten Klasse II Subtyp, insbesondere für die pflanzlichen Photolyasen. Diese Informationen können einen wichtigen Beitrag zur Entdeckung des bisher kryptischen Antennenchromophors in pflanzlichen Photolyasen leisten.

Bibliographie / References

  1. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-5.
  2. Hill, A. V. (1910). The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Journal of Physiology 40, i-vii.
  3. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98, 10037-41.
  4. Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62, 293-300.
  5. Park, H. W., Kim, S. T., Sancar, A. & Deisenhofer, J. (1995). Crystal structure of DNA photolyase from Escherichia coli. Science 268, 1866-72.
  6. Lin, C. & Shalitin, D. (2003). Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54, 469-96.
  7. Burney, S., Wenzel, R., Kottke, T., Roussel, T., Hoang, N., Bouly, J. P., Bittl, R., Heberle, J. & Ahmad, M. (2012). Single Amino Acid Substitution Reveals Latent Photolyase Activity in Arabidopsis cry1. Angew Chem Int Ed Engl 51, 9356-60.
  8. Klar, T., Kaiser, G., Hennecke, U., Carell, T., Batschauer, A. & Essen, L. O. (2006). Natural and non-natural antenna chromophores in the DNA photolyase from Thermus thermophilus. Chembiochem 7, 1798-806.
  9. Espagne, A., Byrdin, M., Eker, A. P. & Brettel, K. (2009). Very fast product release and catalytic turnover of DNA photolyase. Chembiochem 10, 1777-80.
  10. Sancar, A. (2003). Structure and function of DNA photolyase and cryptochrome blue- light photoreceptors. Chem Rev (Washington, DC, U S) 103, 2203-37.
  11. O'Brien, P. J. (2006). Catalytic promiscuity and the divergent evolution of DNA repair enzymes. Chem Rev 106, 720-52.
  12. Atherton, N. M. (1993). Principles of Electron Spin Resonance. Ellis Horwood LTD., Chichester.
  13. Graham, D. E., Xu, H. & White, R. H. (2003). Identification of the 7,8-didemethyl-8- hydroxy-5-deazariboflavin synthase required for coenzyme F(420) biosynthesis. Arch Microbiol 180, 455-64.
  14. Kao, Y. T., Saxena, C., Wang, L., Sancar, A. & Zhong, D. (2007). Femtochemistry in enzyme catalysis: DNA photolyase. Cell Biochem Biophys 48, 32-44.
  15. Bennett, J. & Scott, K. J. (1971). Quantitative staining of fraction I protein in polyacrylamide gels using Coomassie brillant blue. Anal Biochem 43, 173-82.
  16. Jans, J., Schul, W., Sert, Y. G., Rijksen, Y., Rebel, H., Eker, A. P., Nakajima, S., van Steeg, H., de Gruijl, F. R., Yasui, A., Hoeijmakers, J. H. & van der Horst, G. T. (2005). Powerful skin cancer protection by a CPD-photolyase transgene. Curr Biol 15, 105-15.
  17. Thoma, F. (2005). Repair of UV lesions in nucleosomes -intrinsic properties and remodeling. DNA Repair 4, 855-869.
  18. Light-induced activation of class II cyclobutane pyrimidine dimer photolyases. DNA Repair 9, 495-505.
  19. Mathes, T., Vogl, C., Stolz, J. & Hegemann, P. (2009). In vivo generation of flavoproteins with modified cofactors. J Mol Biol 385, 1511-8.
  20. Lin, L. J., Yoshinaga, A., Lin, Y., Guzman, C., Chen, Y. H., Mei, S., Lagunas, A. M., Koike, S., Iwai, S., Spies, M. A., Nair, S. K., Mackie, R. I., Ishino, Y. & Cann, I. K. (2010). Molecular analyses of an unusual translesion DNA polymerase from Methanosarcina acetivorans C2A. J Mol Biol 397, 13-30.
  21. Brettel, K. & Byrdin, M. (2010). Reaction mechanisms of DNA photolyase. Curr Opin Struct Biol 20, 693-701.
  22. Sancar, G. B. (2000). Enzymatic photoreactivation: 50 years and counting. Mutat Res 451, 25-37.
  23. Brunger, A. T. (1997). Free R value: cross-validation in crystallography. Methods Enzymol 277, 366-96.
  24. Kim, S. T., Heelis, P. F., Okamura, T., Hirata, Y., Mataga, N. & Sancar, A. (1991). Determination of rates and yields of interchromophore (folate----flavin) energy transfer and intermolecular (flavin----DNA) electron transfer in Escherichia coli photolyase by time-resolved fluorescence and absorption spectroscopy. Biochemistry 30, 11262-70.
  25. Thiagarajan, V., Villette, S., Espagne, A., Eker, A. P., Brettel, K. & Byrdin, M. (2010). DNA repair by photolyase: a novel substrate with low background absorption around 265 nm for transient absorption studies in the UV. Biochemistry 49, 297-303. 91.
  26. Ludwig, M. L., Pattridge, K. A., Metzger, A. L., Dixon, M. M., Eren, M., Feng, Y. & Swenson, R. P. (1997). Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. Biochemistry 36, 1259-80.
  27. Solar, S., Getoff, N., Surdhar, P. S., Armstrong, D. A. & Singh, A. (1991). Oxidation of tryptophan and N-methylindole by N3.cntdot., Br2.-, and (SCN)2.-radicals in light- and heavy-water solutions: a pulse radiolysis study. The Journal of Physical Chemistry 95, 3639-3643.
  28. Electron tunneling pathways and role of adenine in repair of cyclobutane pyrimidine dimer by DNA photolyase. J Am Chem Soc 134, 8104-14.
  29. Lukacs, A., Eker, A. P., Byrdin, M., Brettel, K. & Vos, M. H. (2008). Electron hopping through the 15 A triple tryptophan molecular wire in DNA photolyase occurs within 30 ps. J Am Chem Soc 130, 14394-5.
  30. Weber, S., Biskup, T., Okafuji, A., Marino, A. R., Berthold, T., Link, G., Hitomi, K., Getzoff, E. D., Schleicher, E. & Norris, J. R., Jr. (2010). Origin of light-induced spin- correlated radical pairs in cryptochrome. J Phys Chem B 114, 14745-54.
  31. Byrdin, M., Lukacs, A., Thiagarajan, V., Eker, A. P., Brettel, K. & Vos, M. H. (2009). Quantum yield measurements of short-lived photoactivation intermediates in DNA photolyase: toward a detailed understanding of the triple tryptophan electron transfer chain. J Phys Chem A 114, 3207-14.
  32. Kiontke, S., Geisselbrecht, Y., Pokorny, R., Carell, T., Batschauer, A. & Essen, L. O. (2011). Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA. EMBO J 30, 4437-49.
  33. Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. (2008). Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3, 1171-9.
  34. Wurtman, R. J. (1975). The effects of light on the human body. Sci Am 233, 69-77.
  35. Kleiner, O., Butenandt, J., Carell, T. & Batschauer, A. (1999). Class II DNA photolyase from Arabidopsis thaliana contains FAD as a cofactor. Eur J Biochem 264, 161-167.
  36. Byrdin, M., Thiagarajan, V., Villette, S., Espagne, A. & Brettel, K. (2009). Use of ruthenium dyes for subnanosecond detector fidelity testing in real time transient absorption. Rev Sci Instrum 80.
  37. Photoactivation of the flavin cofactor in Xenopus laevis (6-4) photolyase: observation of a transient tyrosyl radical by time-resolved electron paramagnetic resonance. Proc Natl Acad Sci U S A 99, 1319-22.
  38. Huang, Y. H., Baxter, R., Smith, B. S., Partch, C. L., Colbert, C. L. & Deisenhofer, J. (2006). Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity. Proc Natl Acad Sci U S A 103, 17701-17706.
  39. Glas, A. F., Maul, M. J., Cryle, M., Barends, T. R., Schneider, S., Kaya, E., Schlichting, I. & Carell, T. (2009). The archaeal cofactor F0 is a light-harvesting antenna chromophore in eukaryotes. Proc Natl Acad Sci U S A 106, 11540-5.
  40. Liu, Z., Tan, C., Guo, X., Kao, Y. T., Li, J., Wang, L., Sancar, A. & Zhong, D. (2011). Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. Proc Natl Acad Sci U S A 108, 14831-6.
  41. Komori, H., Masui, R., Kuramitsu, S., Yokoyama, S., Shibata, T., Inoue, Y. & Miki, K. (2001). Crystal structure of thermostable DNA photolyase: pyrimidine-dimer recognition mechanism. Proc Natl Acad Sci U S A 98, 13560-5.
  42. Park, H., Zhang, K., Ren, Y., Nadji, S., Sinha, N., Taylor, J. S. & Kang, C. (2002). Crystal structure of a DNA decamer containing a cis-syn thymine dimer. Proc Natl Acad Sci U S A 99, 15965-70.
  43. Kelner, A. (1949). Effect of Visible Light on the Recovery of Streptomyces griseus Conidia from Ultra-violet Irradiation Injury. Proc Natl Acad Sci U S A 35, 73-9.
  44. Husain, I., Griffith, J. & Sancar, A. (1988). Thymine dimers bend DNA. Proc Natl Acad Sci U S A 85, 2558-62.
  45. Kim, S. T., Sancar, A., Essenmacher, C. & Babcock, G. T. (1993). Time-resolved EPR studies with DNA photolyase: excited-state FADH0 abstracts an electron from Trp306 to generate FADH -, the catalytically active form of the cofactor. Proc Natl Acad Sci U S A 90, 8023-7.
  46. Petersen, J. L. & Ronan, P. J. (2010). Critical role of 7,8-didemethyl-8-hydroxy-5- deazariboflavin for photoreactivation in Chlamydomonas reinhardtii. J Biol Chem 285, 32467-75.
  47. Hitomi, K., Arvai, A. S., Yamamoto, J., Hitomi, C., Teranishi, M., Hirouchi, T., Yamamoto, K., Iwai, S., Tainer, J. A., Hidema, J. & Getzoff, E. D. (2012). Eukaryotic class II cyclobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants. J Biol Chem 287, 12060-9.
  48. Berndt, A., Kottke, T., Breitkreuz, H., Dvorsky, R., Hennig, S., Alexander, M. & Wolf, E. (2007). A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J Biol Chem 282, 13011-21.
  49. Rupert, C. S. (1960). Photoreactivation of transforming DNA by an enzyme from bakers' yeast. J Gen Physiol 43, 573-95.
  50. Waterworth, W. M., Jiang, Q., West, C. E., Nikaido, M. & Bray, C. M. (2002). Characterization of Arabidopsis photolyase enzymes and analysis of their role in protection from ultraviolet-B radiation. J Exp Bot 53, 1005-1015.
  51. Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596-9.
  52. Petersen, J. L. & Small, G. D. (2001). A gene required for the novel activation of a class II DNA photolyase in Chlamydomonas. Nucleic Acids Res 29, 4472-81.
  53. Heinig, M. & Frishman, D. (2004). STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32, W500- 2.
  54. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40, D109-D114.
  55. Hada, M., Iida, Y. & Takeuchi, Y. (2000). Action spectra of DNA photolyases for photorepair of cyclobutane pyrimidine dimers in sorghum and cucumber. Plant Cell Physiol 41, 644-8.
  56. Kort, R., Komori, H., Adachi, S., Miki, K. & Eker, A. (2004). DNA apophotolyase from Anacystis nidulans: 1.8 A structure, 8-HDF reconstitution and X-ray-induced FAD reduction. Acta Crystallogr, Sect D: Biol Crystallogr 60, 1205-13.
  57. Mailliet, J., Psakis, G., Schroeder, C., Kaltofen, S., Durrwang, U., Hughes, J. & Essen, L. O. (2009). Dwelling in the dark: procedures for the crystallography of phytochromes and other photochromic proteins. Acta Crystallogr, Sect D: Biol Crystallogr 65, 1232-1235.
  58. Kleywegt, G. J. & Jones, T. A. (1996). xdlMAPMAN and xdlDATAMAN -programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr D Biol Crystallogr 52, 826-8.
  59. Incardona, M. F., Bourenkov, G. P., Levik, K., Pieritz, R. A., Popov, A. N. & Svensson, O. (2009). EDNA: a framework for plugin-based applications applied to X- ray experiment online data analysis. J Synchrotron Radiat 16, 872-9.
  60. Kantardjieff, K. A. & Rupp, B. (2003). Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci 12, 1865-71.
  61. Mees, A., Klar, T., Gnau, P., Hennecke, U., Eker, A. P., Carell, T. & Essen, L. O. (2004). Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306, 1789-93.
  62. Pearlman, D. A., Holbrook, S. R., Pirkle, D. H. & Kim, S. H. (1985). Molecular models for DNA damaged by photoreaction. Science 227, 1304-8.
  63. Partch, C. L. & Sancar, A. (2005). Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem Photobiol 81, 1291- 304.
  64. Fujihashi, M., Numoto, N., Kobayashi, Y., Mizushima, A., Tsujimura, M., Nakamura, A., Kawarabayasi, Y. & Miki, K. (2007). Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light- harvesting cofactor. J Mol Biol 365, 903-10.
  65. Brunger, A. T. (1992). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472-5.
  66. Henderson, R. (2004). Realizing the potential of electron cryo-microscopy. Q Rev Biophys 37, 3-13.
  67. Carrington, A. & McLachlan, A. D. (1969). Introduction to Magnetic Resonance. Harper International Edition, New York.
  68. Kushner, S. (1978). An improved method for transformation of Escherichia coli with ColE1 derived plasmids. Genetic Engineering, 17-23.
  69. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-54.
  70. Keegan, R. M. & Winn, M. D. (2007). Automated search-model discovery and preparation for structure solution by molecular replacement. Acta Crystallogr D Biol Crystallogr 63, 447-57.
  71. Cowtan, K. (1994). Book of Fourier. www.ysbl.york.ac.uk./~cowtan/.
  72. Stein, N. (2008). CHAINSAW: a program for mutating pdb files used as templates in molecular replacement. J Appl Crystallogr 41, 641-643.
  73. Zhang, Y. (2006). Charakterisierung archaealer Klasse II CPD-DNA-Photolyasen aus Methanosarcinales. Diplomarbeit, Philipps-Universität Marburg.
  74. Kiontke, S. (2007). Charakterisierung und Kristallisation der Klasse 2 CPD-DNA Photolyase aus Methanosarcina barkeri. Diplomarbeit, Philipps-Universität Marburg.
  75. Rhodes, G. (2006). Crystallography Made Crystal Clear: A Guide For Users Of Macromolecular Models (3rd Edition). Academic Press.
  76. Maul, M. J., Barends, T. R., Glas, A. F., Cryle, M. J., Domratcheva, T., Schneider, S., Schlichting, I. & Carell, T. (2008). Crystal structure and mechanism of a DNA (6-4) photolyase. Angew Chem, Int Ed Engl 47, 10076-80.
  77. Mülhardt, C. (2006). Der Experimentator: Molekularbiologie/Genomics 5. Edition. Elsevier GmbH, München.
  78. An der Stelle sei auch allen gedankt, die in Form von " Sachmitteln " zum Gelingen dieser Arbeit beigetragen haben: Prof. Dr. Annegret Wilde, Prof. Dr. Thomas Carell, Prof. Dr. Volker Müller, Dr. Verena Helmetag, Dr. Emine Kaya, Dr. Andreas Glas, Dr. Seigo Shima und Elvira Happel.
  79. Cook, J. S. (1967). Direct demonstration of the monomerization of thymine-containing dimers in U.V.-irradiated DNA by yeast photoreactivating enzyme and light. Photochem Photobiol 6, 97-101.
  80. Medvedev, D. & Stuchebrukhov, A. A. (2001). DNA repair mechanism by photolyase: electron transfer path from the photolyase catalytic cofactor FADH(-) to DNA thymine dimer. J Theor Biol 210, 237-48.
  81. Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain- terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463-7.
  82. Setlow, J. K. (1964). Effects of UV on DNA: correlations among biological changes, physical changes and repair mechanisms. Photochem Photobiol 3, 405-413.
  83. Ein großer Dank geht an alle administrativen und technischen Einrichtungen des Fachbereichs.
  84. Ein riesiger Dank geht an dieser Stelle an alle aktuellen und ehemaligen Arbeitsgruppenmitglieder für die interessanten, hilfreichen, wunderbaren, spannenden, abwechslungsreichen, unterhaltsamen, fröhlichen und unvergesslichen Stunden sowohl im Labor als auch außerhalb der Arbeitszeit.
  85. Kim, S. T., Heelis, P. F. & Sancar, A. (1992). Energy transfer (deazaflavin-->FADH2) and electron transfer (FADH2-->T <> T) kinetics in Anacystis nidulans photolyase. Biochemistry 31, 11244-8.
  86. Vande Berg, B. J. & Sancar, G. B. (1998). Evidence for dinucleotide flipping by DNA photolyase. J Biol Chem 273, 20276-84. Literatur 135
  87. Minato, S. & Werbin, H. (1972). Excitation and fluorescence spectra of the chromophore associated with the DNA-photoreactivating enzyme from the blue-green alga Anacystis nidulans. Photochem Photobiol 15, 97-100.
  88. Bensasson, R. V., Land, E. J. & Truscott, T. G. (1983). Flash photolysis and pulse radiolysis: Contributions to the chemistry of biology and medicine. 1st edit, Pergamon, Oxford.
  89. Ghisla, S., Massey, V., Lhoste, J. M. & Mayhew, S. G. (1974). Fluorescence and optical characteristics of reduced flavines and flavoproteins. Biochemistry 13, 589-97.
  90. Porath, J. & Flodin, P. (1959). Gel filtration: a method for desalting and group separation. Nature 183, 1657-9.
  91. Dower, W. J., Miller, J. F. & Ragsdale, C. W. (1988). High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16, 6127-45.
  92. Ueda, T., Kato, A., Kuramitsu, S., Terasawa, H. & Shimada, I. (2005). Identification and characterization of a second chromophore of DNA photolyase from Thermus thermophilus HB27. J Biol Chem 280, 36237-43.
  93. Brudler, R., Hitomi, K., Daiyasu, H., Toh, H., Kucho, K., Ishiura, M., Kanehisa, M., Roberts, V. A., Todo, T., Tainer, J. A. & Getzoff, E. D. (2003). Identification of a new cryptochrome class. Structure, function, and evolution. Mol Cell 11, 59-67.
  94. Jorns, M. S., Sancar, G. B. & Sancar, A. (1985). Identification of oligothymidylates as new simple substrates for Escherichia coli DNA photolyase and their use in a rapid spectrophotometric enzyme assay. Biochemistry 24, 1856-61.
  95. Tartof, K. D. & Hobbs, C. A. (1987). Improved media for growing plasmid and cosmid clones. Bethesda Research Labs Focus 9. 99. Sambrook, J., Maniatis, T. & Fritsch, E. F. (1989). Molecular Cloning: A Laboratory Manual (2nd Edition). Cold Spring Harbor Laboratory Press.
  96. DiMaio, F., Terwilliger, T. C., Read, R. J., Wlodawer, A., Oberdorfer, G., Wagner, U., Valkov, E., Alon, A., Fass, D., Axelrod, H. L., Das, D., Vorobiev, S. M., Iwai, H., Pokkuluri, P. R. & Baker, D. Improved molecular replacement by density-and energy-guided protein structure optimization. Nature 473, 540-3.
  97. Krissinel, E. & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774-97.
  98. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40, D306-12.
  99. Kanehisa, M. & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27-30.
  100. Isabelle, D., Simpson, D. R. & Daniels, L. (2002). Large-scale production of coenzyme F420-5,6 by using Mycobacterium smegmatis. Appl Environ Microbiol 68, 5750-5.
  101. Essen, L. O., Siegert, R., Lehmann, W. D. & Oesterhelt, D. (1998). Lipid patches in membrane protein oligomers: Crystal structure of the bacteriorhodopsin-lipid complex. Proc Natl Acad Sci U S A 95, 11673-11678.
  102. Bertani, G. (2004). Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186, 595-600.
  103. Husain, I., Sancar, G. B., Holbrook, S. R. & Sancar, A. (1987). Mechanism of damage recognition by Escherichia coli DNA photolyase. J Biol Chem 262, 13188-97.
  104. Porath, J., Carlsson, J., Olsson, I. & Belfrage, G. (1975). Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598-9.
  105. Holtzhauer, M. (1996). Methoden der Proteinanalytik. Springer-Verlag, Berlin.
  106. Walsh, C. (1986). Naturally occurring 5-deazaflavin coenzymes: biological redox roles. Acc Chem Res 19, 216-221.
  107. Shuman, S. (1994). Novel approach to molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase. J Biol Chem 269, 32678-84.
  108. Kelner, A. (1949). Photoreactivation of Ultraviolet-Irradiated Escherichia coli, with Special Reference to the Dose-Reduction Principle and to Ultraviolet-Induced Mutation. J Bacteriol 58, 511-22.
  109. Leslie, A. G. W. & Powell, H. R. (2007). Processing Diffraction Data with Mosflm Evolving Methods for Macromolecular Crystallography 245, 41-51.
  110. Studier, F. W. (2005). Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41, 207-34.
  111. Ozturk, N., Kao, Y. T., Selby, C. P., Kavakli, I. H., Partch, C. L., Zhong, D. & Sancar, A. (2008). Purification and characterization of a type III photolyase from Caulobacter crescentus. Biochemistry 47, 10255-61.
  112. Kiener, A., Husain, I., Sancar, A. & Walsh, C. (1989). Purification and properties of Methanobacterium thermoautotrophicum DNA photolyase. J Biol Chem 264, 13880-7.
  113. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr, Sect D: Biol Crystallogr 53, 240-55.
  114. Malhotra, K., Kim, S. T., Walsh, C. & Sancar, A. (1992). Roles of FAD and 8- hydroxy-5-deazaflavin chromophores in photoreactivation by Anacystis nidulans DNA photolyase. J Biol Chem 267, 15406-11.
  115. Evans, P. (2006). Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62, 72-82.
  116. Ehrenberg, W. & Franks, A. (1952). Small-angle x-ray scattering. Nature 170, 1076-7.
  117. Matthews, B. W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491-7.
  118. Jancarik, J. & Kim, S. H. (1991). Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Cryst. 24, 409-411.
  119. Mullis, K. B. & Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155, 335-50.
  120. Biertümpfel, C., Zhao, Y., Kondo, Y., Ramón-Maiques, S., Gregory, M., Lee, J. Y., Masutani, C., Lehmann, A. R., Hanaoka, F. & Yang, W. (2010). Structure and mechanism of human DNA polymerase η. Nature 465, 1044-1048.
  121. Smith, W. W., Burnett, R. M., Darling, G. D. & Ludwig, M. L. (1977). Structure of the semiquinone form of flavodoxin from Clostridum MP. Extension of 1.8 A resolution and some comparisons with the oxidized state. J Mol Biol 117, 195-225.
  122. Schöppach, A. (2011). Synthese und Reparatur von lichtinduzierten DNA-Schäden. Diplomarbeit, Albert-Ludwigs-Universität Freiburg.
  123. Butenandt, J., Eker, A. P. M. & Carell, T. (1998). Synthesis, Crystal Structure, and Enzymatic Evaluation of a DNA-Photolesion Isostere. Chemistry – A European Journal 4, 642-654.
  124. CCP4. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr, Sect D: Biol Crystallogr 50, 760-3.
  125. Lin, C. & Todo, T. (2005). The cryptochromes. Genome Biology 6, Article 220. 19.
  126. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Res 28, 235-42.
  127. Selby, C. P. & Sancar, A. (2011). The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors. Biochemistry 51, 167-71. 75. van Oers, M. M., Lampen, M. H., Bajek, M. I., Vlak, J. M. & Eker, A. P. M. (2008).
  128. UniProtConsortium. (2009). The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 38, D142-8.
  129. Vielen Dank an die Kooperationspartner Prof. Dr. Thomas Carell in München, Dr. Klaus Brettel und Dr. Pavel Müller in Frankreich bzw. Prof. Dr. Stefan Weber, Dr. Erik Schleicher und Andreas Schöppach in Freiburg.
  130. Matsumura, Y. & Ananthaswamy, H. N. (2004). Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 195, 298-308.
  131. Morrison, D. A. (1977). Transformation in Escherichia coli: cryogenic preservation of competent cells. J Bacteriol 132, 349-51.
  132. Vertrauen, um mir eine gewisse Freiheit in der Forschung zu ermöglichen. Vielen Dank für die an mich vermittelte Faszination für die Strukturbiologie und die Phr/Cry-Familie.
  133. Tornaletti, S. & Pfeifer, G. P. (1996). UV damage and repair mechanisms in mammalian cells. BioEssays 18, 221-8.
  134. Ein spezieller Dank richtet sich an Yann. Vielen Dank nicht nur für das Korrekturlesen, sondern vor allem auch für all die Diskussionen und deinen Einsatz.
  135. Kabsch, W. (2010). XDS. Acta Crystallogr D Biol Crystallogr 66, 125-32.
  136. Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-25.
  137. Biskup, T., Schleicher, E., Okafuji, A., Link, G., Hitomi, K., Getzoff, E. D. & Weber, S. (2009). Direct observation of a photoinduced radical pair in a cryptochrome blue- light photoreceptor. Angew Chem Int Ed Engl 48, 404-7.
  138. Li, Y. F., Heelis, P. F. & Sancar, A. (1991). Active site of DNA photolyase: tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro. Biochemistry 30, 6322-9.
  139. Kavakli, I. H. & Sancar, A. (2004). Analysis of the role of intraprotein electron transfer in photoreactivation by DNA photolyase in vivo. Biochemistry 43, 15103-10.
  140. Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. (2011). iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 67, 271-81.
  141. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674.
  142. Rossmann, M. G. (1990). The molecular replacement method. Acta Crystallogr A 46 (Pt 2), 73-82.
  143. Padilla, J. E. & Yeates, T. O. (2003). A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr D Biol Crystallogr 59, 1124-30.
  144. Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., Essen, L. O., van der Horst, G. T., Batschauer, A. & Ahmad, M. (2011). The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62, 335-64.
  145. Lassmann, T. & Sonnhammer, E. L. L. (2005). Kalign -an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6.
  146. Eker, A. P., Kooiman, P., Hessels, J. K. & Yasui, A. (1990). DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J Biol Chem 265, 8009-15.
  147. Wuthrich, K. (1990). Protein structure determination in solution by NMR spectroscopy. J Biol Chem 265, 22059-62.
  148. Crystallization of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 63, 72-9.
  149. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr, Sect D: Biol Crystallogr 66, 486-501.
  150. Vogelstein, B. & Gillespie, D. (1979). Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A 76, 615-9.
  151. Garczarek, F., Brown, L. S., Lanyi, J. K. & Gerwert, K. (2005). Proton binding within a membrane protein by a protonated water cluster. Proc Natl Acad Sci U S A 102, 3633-3638.
  152. Johnson, J. L., Hamm-Alvarez, S., Payne, G., Sancar, G. B., Rajagopalan, K. V. & Sancar, A. (1988). Identification of the second chromophore of Escherichia coli and yeast DNA photolyases as 5,10-methenyltetrahydrofolate. Proc Natl Acad Sci U S A 85, 2046-50.
  153. Aubert, C., Mathis, P., Eker, A. P. & Brettel, K. (1999). Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans. Proc Natl Acad Sci U S A 96, 5423-7.
  154. DeLano, W. L. (2002). The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA. http://www.pymol.org.
  155. Feliciello, I. & Chinali, G. (1993). A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli. Anal Biochem 212, 394-401.
  156. Setlow, R. B. & Carrier, W. L. (1966). Pyrimidine dimers in ultraviolet-irradiated DNA's. J Mol Biol 17, 237-54.
  157. Ravanat, J. L., Douki, T. & Cadet, J. (2001). Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63, 88-102.
  158. Song, S. H., Dick, B., Penzkofer, A., Pokorny, R., Batschauer, A. & Essen, L. O. (2006). Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana. J Photochem Photobiol, B 85, 1-16.
  159. McPherson, A. (2004). Introduction to protein crystallization. Methods 34, 254-65.
  160. Active DNA photolyase encoded by a baculovirus from the insect Chrysodeixis chalcites. DNA Repair 7, 1309-1318.
  161. Kao, Y. T., Saxena, C., Wang, L., Sancar, A. & Zhong, D. (2005). Direct observation of thymine dimer repair in DNA by photolyase. Proc Natl Acad Sci U S A 102, 16128- 32.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten