Publikationsserver der Universitätsbibliothek Marburg

Titel:Chiralitätsanalyse mittels Femtosekunden Laserionisation Massenspektrometrie
Autor:Horsch, Philipp
Weitere Beteiligte: Weitzel, Karl-Michael (Dr. Prof.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0239
DOI: https://doi.org/10.17192/z2013.0239
URN: urn:nbn:de:hebis:04-z2013-02394
DDC: Chemie
Titel (trans.):Chirality analysis using femtosecond laser ionization mass spectrometry
Publikationsdatum:2013-05-23
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
femtosecond, Laserionisation, Femtosekunden, Femtosekunden, Massenspektrometrie, Chiralitätsanalyse, chirality analysis, Massenspektrometrie, mass spectrometry, Chiralitätsanalyse, laser ionization, Laserionisation

Zusammenfassung:
Für die vorliegende Doktorarbeit wurden enantiosensitive Untersuchungen mit ultrakurzen Laserpulsen im Bereich einiger Femtosekunden (fs) durchgeführt. Dazu wurde die Chiralitätsanalyse mit der Laserionisation-Massenspektrometrie (LIMS) kombiniert. Die unterschiedliche Drehrichtung von links- (LCP) und rechts-zirkular (RCP) polarisierten Laserpulsen erzeugt dabei verschiede Ionenausbeuten für chirale Moleküle. Diese Ionenausbeuten wurden in einem Flugzeitmassenspektrometer detektiert und der CD in Ionenausbeuten berechnet. Ein Vorteil dieser Methode, gegenüber anderen enationsensitiven Chiralitätsanalysen, liegt in der inhärenten Trennung von Stoffen unterschiedlicher Masse zu Ladungsverhältnisse (m/z) im Flugzeit-massenspektrometer, was zeitaufwendige chemische Separationsmethode obsolet macht. Außerdem ermöglicht diese Kombination neben der Chiralitätsanalyse eine chemische Identifikation des Analyten anhand des Masse zu Ladungsverhältnisses des Mutterions oder spezifischer Fragmentationsmuster. Die Verwendung von fs-Laserpulsen für diese Analyse-Methode ist aus wissenschaftlichen und analytischen Fragestellungen interessant, da für solche kurzen Pulse generell höhere Ionenausbeuten für die Mutterionen der Analyten erhalten werden, was die chemische Identifikation erleichtert. Im Rahmen dieser Arbeit wurde der Einfluss von Laserpulsparametern und verschiedener Anregungs- bzw. Ionisationsprozesse auf den CD-Effekt für unterschiedliche chirale Analyten untersucht. Für die Korrektur sowohl von zufälligen wie auch systematischen Abweichungen wurde als interner Standard eine achirale Referenzsubstanz verwendet. Der erste Teil der erhaltenen Ergebnisse betrachtet resonante Ein-Photonenanregungen und die daraus resultierenden CD-Effekte in der Ionisation von 3-Methylcyclopentanon. Der CD in Ionenausbeuten wurde in einer (1+2)-resonanzverstärkten Mehrphotonenionisation (REMPI) im Rahmen meiner Diplomarbeit wellenlängenabhängig charakterisiert. Aus den erhaltenen Unterschieden im Vergleich zu den Experimenten in der ns-LIMS resultierte die Frage inwiefern der CD in Ionenausbeuten in (1+2)-REMPI von der Pulsdauer beeinflusst wird. Zur Untersuchung dieses Sachverhaltes wurde ein Pulsformer für den ultravioletten Spektralbereich aufgebaut und die Pulsdauer zwischen 50 fs und etwa 950 fs anhand des linearen Chirps variiert. Bei einer Zentralwellenlänge von 311 nm zeigte sich ein deutlicher Anstieg des CD-Effektes des Mutterions mit ansteigender Pulsdauer, sowohl für (R)- als auch für (S)‑3‑MCP. Der Verlauf des CD in Ionenausbeuten ist sowohl für negative als auch positive lineare Chirpparameter sehr ähnlich. Im zweiten Teil dieser Dissertation wurden CD-Effekte in nicht-linearen optischen Prozessen untersucht. Anhand des CD in Ionenausbeuten von (R)-Propylenoxid ((R)-PO) bei Zentralwellenlängen von 810 nm und 878 nm wurde in der vorliegenden Arbeit gezeigt, dass CD-Effekte auch in Fünf- bzw. Sieben-Photonenprozessen beobachtet werden können. Weiterhin lässt sich anhand der Photonenenergie bei 878 nm und der Anzahl der im Ionisationsprozess beteiligten Photonen schließen, dass es sich um eine Mehrphotonenionisation ohne resonante Zwischenstufen handelt. Das ist bemerkenswert, da alle bis dahin bekannten Arbeiten auf dem Gebiet der Chiralitätsanalyse mittels LIMS Ein- oder Zwei-Photonenresonanzen nutzen. Weiterhin ist interessant, dass die CD in Ionenausbeuten von (R)-PO bei 810 nm und 878 nm eine Größenordnung größer sind als der CD-Effekt in Ein-Photonenabsorption. Für (1+n)‑REMPI wurden stets CD‑Effekte beobachtet, bei denen der CD in Ein‑Photonenabsorption und der CD in Ionenausbeuten in der Größenordnung. Der nicht-lineare Charakter der beobachteten CD‑Effekte des PO wird dadurch bestätigt. Bei genauerer Untersuchung des CD in Ionenausbeuten der Fragmentionen wurde sowohl bei 810 nm als auch bei 878 nm ein Unterschied in den Vorzeichen der CD-Effekte aller Fragmentionen und des CD-Effekts des Mutterions gefunden. Wiederum die erste Beobachtung eines solchen Effektes und im Gegensatz zu (1+n)‑REMPI, bei denen für das Mutterion und die Fragmentionen die gleichen Vorzeichen im CD in Ionenausbeuten beobachtet wurden.

Bibliographie / References

  1. Reist, M., Carrupt, P.-A., Francotte, E. & Testa, B. Chiral Inversion and Hydrolysis of Thalidomide: Mechanisms and Catalysis by Bases and Serum Albumin, and Chiral Stability of Teratogenic Metabolites. Chemical Research in Toxicology 11, 1521–1528 (1998).
  2. Longo, M. J. Detection of a dipole in the handedness of spiral galaxies with redshifts. Physics Letters B 699, 224–229 (2011).
  3. Shamir, L. Handedness asymmetry of spiral galaxies with shows cosmic parity violation and a dipole axis. Physics Letters B 715, 25–29 (2012).
  4. Alagna, L. et al. X-Ray Natural Circular Dichroism. Physical Review Letters 80, 4799– 4802 (1998).
  5. Pfeiffer, A. N. et al. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms. Nature Physics 8, 76–80 (2011).
  6. Ding, Y.-S. et al. Brain kinetics of methylphenidate (Ritalin) enantiomers after oral administration. Synapse 53, 168–175 (2004).
  7. Barron, L. D. From Cosmic Chirality to Protein Structure: Lord Kelvin's Legacy. Chirality 24, 879–893 (2012). doi:10.1002/chir.22017
  8. Barron, L. D. Cosmic Chirality both True and False. Chirality 24, 957–958 (2012). doi:10.1002/chir.22106
  9. Logé, C. & Boesl, U. Laser mass spectrometry with circularly polarized light: two- photon circular dichroism. Physical Chemistry Chemical Physics (2012). doi:10.1039/c2cp41405h 45. Krishnamurthy, M. & Mathur, D. Polarization-state dependence of the ionization dynamics of a chiral molecule in intense laser light. Physical Review A 61, (2000).
  10. Cintas, P. Ursprünge und Entwicklung der Begriffe Chiralität und Händigkeit in der chemischen Sprache. Angewandte Chemie 119, 4090–4099 (2007).
  11. Lux, C. et al. Zirkulardichroismus in den Photoelektronen-Winkelverteilungen von Campher und Fenchon aus der Multiphotonenionisation mit Femtosekunden- Laserpulsen. Angewandte Chemie 124, 5086–5090 (2012).
  12. Tanaka, K. The Origin of Macromolecule Ionization by Laser Irradiation (Nobel Lecture). Angewandte Chemie International Edition 42, 3860–3870 (2003).
  13. Eriksson, T., Bjöurkman, S., Roth, B., Fyge, Årsa & Höuglund, P. Stereospecific determination, chiral inversion in vitro and pharmacokinetics in humans of the enantiomers of thalidomide. Chirality 7, 44–52 (1995).
  14. Wang, J., Weinelt, M. & Fauster, T. Suppression of pre-and post-pulses in a multipass Ti:sapphire amplifier. Applied Physics B 82, 571–574 (2006).
  15. She, J., Shen, S. & Wang, Q. Optimal design of achromatic quarter-wave plate using twisted nematic liquid crystal cells. Optical and Quantum Electronics 37, 625–634 (2005).
  16. Brint, P., Meshulam, E. & Gedanken, A. Excited electronic states of limonene: A circular dichroism and photoelectron spectroscopy study of d-limonene. Chemical Physics Letters 109, 383–387 (1984).
  17. Carnell, M. et al. Experimental and quantum-theoretical investigation of the circular dichroism spectrum of (R)-methyloxirane. 180, 477–481 (1991).
  18. Wu, C. S. Experimental Test of Parity Conservation in Beta Decay. Physical Review 105, 1413–1415 (1957).
  19. Ma, Y. & Salam, A. On chiral selectivity of enantiomers using a circularly polarized pulsed laser under resonant and off-resonant conditions. Chemical Physics 324, 367– 375 (2006).
  20. Bornschlegl, A., Logé, C. & Boesl, U. Investigation of CD effects in the multi photon ionisation of (R)-(+)-3-methylcyclopentanone. Chemical Physics Letters 447, 187–191 (2007).
  21. Schulze, S., Paul, A. & Weitzel, K.-M. Formation of C 7 H 7 + ions from ethylbenzene and o-xylene ions: Fragmentation versus isomerization. International Journal of Mass Spectrometry 252, 189–196 (2006).
  22. Moretti, I. & Torre, G. Optical rotatory dispersion and circular dichroism of aryl oxiranes. Tetrahedron Letters 10, 2717–2720 (1969).
  23. Dongchan, K. & Bear, T. Gas-phase measurement of DH 0 between axial and equatorial conformations of 3-methylcyclopentanone. Chemical Physics 256, 251–258 (2000).
  24. Pulm, F., Schramm, J., Hormes, J., Grimme, S. & Peyerimhoff, S. Theoretical and experimental investigations of the electronic circular dichroism and absorption spectra of bicyclic ketones. Chemical Physics 224,143–155 (1997).
  25. Keiderling, T. A. Protein and peptide secondary structure and conformational determination with vibrational circular dichroism. Current Opinion in Chemical Biology 6, 682–688 (2002).
  26. Schellman, J. A. Circular dichroism and optical rotation. Chemical Reviews 75, 323– 331 (1975).
  27. Abbate, S. et al. Vibrational circular dichroism as a criterion for local-mode versus normal-mode behavior. Near-infrared circular dichroism spectra of some monoterpenes. Journal of the American Chemical Society 111, 836–840 (1989).
  28. Levis, R. J. & DeWitt, M. J. Photoexcitation, Ionization, and Dissociation of Molecules Using Intense Near-Infrared Radiation of Femtosecond Duration. The Journal of Physical Chemistry A 103, 6493–6507 (1999).
  29. Liu, F. et al. A Vacuum Ultraviolet Photoionization Mass Spectrometric Study of Propylene Oxide in the Photon Energy Region of 10−40 eV. The Journal of Physical Chemistry A 103, 8179–8186 (1999).
  30. Meyer-Ilse, J., Akimov, D. & Dietzek, B. Ultrafast Circular Dichroism Study of the Ring Opening of 7-Dehydrocholesterol. The Journal of Physical Chemistry Letters 3, 182– 185 (2012).
  31. Barron, L. D. Magnetic vibrational optical activity in the resonance Raman spectrum of ferrocytochrome c. Nature 257, 372–374 (1975).
  32. Rhee, H. et al. Femtosecond characterization of vibrational optical activity of chiral molecules. Nature 458, 310–313 (2009).
  33. Trebino, R. Measuring the seemingly immeasurable. Nature Photonics 5, 189–192 (2011).
  34. Colosimo, P. et al. Scaling strong-field interactions towards the classical limit. Nature Physics 4, 386–389 (2008).
  35. Horsch, P., Urbasch, G., Weitzel, K.-M. & Kröner, D. Circular dichroism in ion yields employing femtosecond laser ionization—the role of laser pulse duration. Physical Chemistry Chemical Physics 13, 2378 (2011).
  36. Ballard, R. E., Mason, S. F. & Vane, G. W. Circular dichroism of dissymmetric a,b- unsaturated ketones. Discussions of the Faraday Society 35, 43 (1963).
  37. O'Toole, L., Brint, P., Kosmidis, C., Boulakis, G. & Bolovinos, A. Vacuum ultraviolet absorption spectra of methyl-substituted cyclopentanones and cyclohexanones. Journal of the Chemical Society, Faraday Transactions 88, 1237 (1992).
  38. Itakura, R., Yamanouchi, K., Tanabe, T., Okamoto, T. & Kannari, F. Dissociative ionization of ethanol in chirped intense laser fields. The Journal of Chemical Physics 119, 4179 (2003).
  39. Garcia, G. A. et al. Circular dichroism in the photoelectron angular distribution from randomly oriented enantiomers of camphor. The Journal of Chemical Physics 119, 8781 (2003).
  40. Stranges, S. et al. Valence photoionization dynamics in circular dichroism of chiral free molecules: The methyl-oxirane. The Journal of Chemical Physics 122, 244303 (2005).
  41. Li, R., Sullivan, R., Al-Basheer, W., Pagni, R. M. & Compton, R. N. Linear and nonlinear circular dichroism of R-(+)-3-methylcyclopentanone. The Journal of Chemical Physics 125, 144304 (2006).
  42. Murakami, M., Tanaka, M., Yatsuhashi, T. & Nakashima, N. Enhancement of anthracene fragmentation by circularly polarized intense femtosecond laser pulse. The Journal of Chemical Physics 126, 104304 (2007).
  43. Rizzo, A. & Vahtras, O. Ab initio study of excited state electronic circular dichroism. Two prototype cases: Methyl oxirane and (R)-(+)-1,1ʹ-bi(2-naphthol). The Journal of Chemical Physics 134, 244109 (2011).
  44. Banares, L., Baumert, T., Bergt, M., Kiefer, B. & Gerber, G. The ultrafast photodissociation of Fe(CO) 5 in the gas phase. The Journal of Chemical Physics 108, 5799 (1998).
  45. DeWitt, M. J. & Levis, R. J. Concerning the ionization of large polyatomic molecules with intense ultrafast lasers. The Journal of Chemical Physics 110, 11368 (1999).
  46. Powis, I. Photoelectron circular dichroism of the randomly oriented chiral molecules glyceraldehyde and lactic acid. The Journal of Chemical Physics 112, 301 (2000).
  47. Moore, N. P. & Levis, R. J. The strong field photoelectron spectroscopy of acetylene: Evidence for short-lived 4p gerade states via electric field-induced resonance- enhanced multiphoton ionization. The Journal of Chemical Physics 112, 1316 (2000).
  48. Breest, A. et al. Experimental circular dichroism and VUV spectra of substituted oxiranes and thiiranes. Molecular Physics 82, 539–551 (1994).
  49. Meath, W. J. & Power, E. A. Differential multiphoton absorption by chiral molecules and the effect of permanent moments. Journal of Physics B: Atomic and Molecular Physics 20, 1945–1964 (1987).
  50. Faisal, F. H. M. Multiple absorption of laser photons by atoms. Journal of Physics B: Atomic and Molecular Physics 6, L89–L92 (1973).
  51. Garwin, R., Lederman, L. & Weinrich, M. Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: the Magnetic Moment of the Free Muon. Physical Review 105, 1415–1417 (1957).
  52. Ritchie, B. Theory of the angular distribution for ejection of photoelectrons from optically active molecules and molecular negative ions. II. Physical Review A 14, 359– 362 (1976).
  53. Turchini, S. et al. Circular dichroism in photoelectron spectroscopy of free chiral molecules: Experiment and theory on methyl-oxirane. Physical Review A 70, (2004).
  54. Barth, I. & Smirnova, O. Nonadiabatic tunneling in circularly polarized laser fields: Physical picture and calculations. Physical Review A 84, (2011).
  55. Shkurinov, A., Dubrovskii, A. & Koroteev, N. Second harmonic generation in an optically active liquid: Experimental observation of a fourth-order optical nonlinearity due to molecular chirality. Physical Review Letters 70, 1085–1088 (1993).
  56. Darquié, B. et al. Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 22, 870–884 (2010).
  57. Lezius, M. et al. Nonadiabatic Multielectron Dynamics in Strong Field Molecular Ionization. Physical Review Letters 86, 51–54 (2001).
  58. Znakovskaya, I. et al. Waveform control of orientation-dependent ionization of DCl in few-cycle laser fields. Physical Chemistry Chemical Physics 13, 8653 (2011).
  59. Kling, M. F. Control of Electron Localization in Molecular Dissociation. Science 312, 246–248 (2006).
  60. Windhorn, L. Molekulare Dissoziation im elektronischen Grundzustand induziert durch Femtosekundenpulse im mittleren Infrarot. (2003).
  61. Lischke, T. et al. Circular dichroism in valence photoelectron spectroscopy of free unoriented chiral molecules: Camphor and bromocamphor. Physical Review A 70, (2004).
  62. Böwering, N. et al. Asymmetry in Photoelectron Emission from Chiral Molecules Induced by Circularly Polarized Light. Physical Review Letters 86, 1187–1190 (2001).
  63. Sheppard, C. J. R. Approximate calculation of the reflection coefficient from a stratified medium. Pure and Applied Optics: Journal of the European Optical Society Part A 4, 665–669 (1995).
  64. Evans, A. M. Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal anti-inflammatory drugs. European Journal of Clinical Pharmacology 42, 237–256 (1992).
  65. Quack, M. & Stohner, J. Influence of Parity Violating Weak Nuclear Potentials on Vibrational and Rotational Frequencies in Chiral Molecules. Physical Review Letters 84, 3807–3810 (2000).
  66. Condon, E. U. Theories of Optical Rotatory Power. Reviews of Modern Physics 9, 432–457 (1937).
  67. Watson, J. T. Introduction to mass spectrometry. (Raven Press, 1985).
  68. Dale, J. A., Dull, D. L. & Mosher, H. S. .alpha-Methoxy-alpha- trifluoromethylphenylacetic acid, a versatile reagent for the determination of enantiomeric composition of alcohols and amines. The Journal of Organic Chemistry 34, 2543–2549 (1969).
  69. Verschuur, J., Noordam, L. & Van Linden van den Heuvell, H. Anomalies in above- threshold ionization observed in H 2 and its excited fragments. Physical Review A 40, 4383–4391 (1989).
  70. Eußner, J. Aufbau einer Hohlfaserkammer zur Erzeugung neuer Frequenzkomponenten. (2011).
  71. Kröner, D. Chiral Distinction by Ultrashort Laser Pulses: Electron Wavepacket Dynamics Incorporating Magnetic Interactions. The Journal of Physical Chemistry A 115, 14510–14518 (2011).
  72. Reusch, N. Chiralitätsanalyse von Molekülen mit zwei Stereozentren mithilfe von Femtosekunden-Laserionisations-Massenspektrometrie. (2012).
  73. Prelog, V. Chirality in chemistry. Science 193, 17–24 (1976).
  74. Miyahara, T., Hasegawa, J. & Nakatsuji, H. Circular Dichroism and Absorption Spectroscopy for Three-Membered Ring Compounds Using Symmetry-Adapted Literatur Cluster-Configuration Interaction (SAC-CI) Method. Bulletin of the Chemical Society of Japan 82, 1215–1226 (2009).
  75. Horsch, P., Urbasch, G. & Weitzel, K.-M. Circular Dichroism in Ion Yields in Multiphoton Ionization of (R)-Propylene Oxide Employing Femtosecond Laser Pulses. Zeitschrift für Physikalische Chemie 225, 587–594 (2011).
  76. Berova, N. Circular dichroism : principles and applications. (Wiley-VCH, 2000).
  77. Lozovoy, V. V. et al. Control of Molecular Fragmentation Using Shaped Femtosecond Pulses. The Journal of Physical Chemistry A 112, 3789–3812 (2008).
  78. Lide, D. R. CRC handbook of chemistry and physics, 2003-2004 : a ready-reference book of chemical and physical data. (CRC Press, 2003).
  79. He, J., Petrovic, A. G. & Polavarapu, P. L. Determining the Conformer Populations of (R)-(+)-3-Methylcyclopentanone Using Vibrational Absorption, Vibrational Circular Dichroism, and Specific Rotation. The Journal of Physical Chemistry B 108, 20451– 20457 (2004).
  80. Klar, U. et al. Efficient Chiral Pool Synthesis of the C 1 -C 6 Fragment of Epothilones. Literatur Synthesis 2005, 301–305 (2005).
  81. Dantus, M. & Lozovoy, V. V. Experimental Coherent Laser Control of Physicochemical Processes. Chemical Reviews 104, 1813–1860 (2004).
  82. Quantronix. FALCON 527 DQE Customer Service Manual. (2003).
  83. Rulliere, C. Femtosecond laser pulses principles and experiments with numerous experiments. (Springer, 2005).
  84. Trebino, R. Frequency-resolved optical gating : the measurement of ultrashort laser pulses. (Kluwer Academic, 2000).
  85. Ell, R. et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Optics Letters 26, 373 (2001).
  86. Trebino, R. GRENOUILLE Model 8-50 User's Guide.
  87. Ledingham, K. W. D. & Singhal, R. P. High intensity laser mass spectrometry — a review. International Journal of Mass Spectrometry and Ion Processes 163, 149–168 (1997).
  88. Pierre Türschmann. Implementierung und Charakterisierung eines Lasersystems für Träager-Einhüllenden-Phasen-sensitive Ionisationsexperimente. (2010).
  89. Schirmel, N. Interferometrische Studien zur dissoziativen Femtosekunden- Laserionisation von Molekülen mit Methylgruppen. (2009).
  90. Keldysh, L. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).
  91. Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Review of Scientific Instruments 68, 3277 (1997).
  92. Pasteur, L. Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire. 26, 535–538 (1848).
  93. Ashfold, M. N. R. & Howe, J. D. Multiphoton Spectroscopy of Molecular Species. Annual Review of Physical Chemistry 45, 57–82 (1994).
  94. Nambu, Y. Nobel Lecture: Spontaneous symmetry breaking in particle physics: A case of cross fertilization. Reviews of Modern Physics 81, 1015–1018 (2009).
  95. Friedman, J. & Telegdi, V. Nuclear Emulsion Evidence for Parity Nonconservation in the Decay Chain π+-μ+-e+. Physical Review 105, 1681–1682 (1957).
  96. Dale, J. A. & Mosher, H. S. Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and .alpha-methoxy-alpha- trifluoromethylphenylacetate (MTPA) esters. Journal of the American Chemical Society 95, 512–519 (1973).
  97. Alfano, R. & Shapiro, S. Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses. Physical Review Letters 24, 592–594 (1970).
  98. Russell, G. F. & Hills, J. I. Odor Differences between Enantiomeric Isomers. Science 172, 1043–1044 (1971).
  99. Quack, M. On the measurement of the parity violating energy difference between enantiomers. Chemical Physics Letters 132, 147–153 (1986).
  100. Photoionization and photodetachement 1. (World Scientific, 2000).
  101. Reider, G. A. Photonik : eine Einführung in die Grundlagen. (Springer, 2005).
  102. Dela Cruz, J. M., Lozovoy, V. V. & Dantus, M. Quantitative Mass Spectrometric Identification of Isomers Applying Coherent Laser Control. The Journal of Physical Chemistry A 109, 8447–8450 (2005).
  103. Barron, L. D., Bogaard, M. P. & Buckingham, A. D. Raman scattering of circularly polarized light by optically active molecules. Journal of the American Chemical Society 95, 603–605 (1973).
  104. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).
  105. Brunner, H. Rechts oder links : in der Natur und anderswo. (Wiley-VCH, 1999).
  106. Levis, R. J. Selective Bond Dissociation and Rearrangement with Optimally Tailored, Strong-Field Laser Pulses. Science 292, 709–713 (2001).
  107. Sutter, D. H. et al. Semiconductor saturable-absorber mirror assisted Kerr-lens mode- locked Ti:sapphire laser producing pulses in the two-cycle regime. Optics Letters 24, 631 (1999).
  108. Zayhowski, J. J. & Mooradian, A. Single-frequency microchip Nd lasers. 14, 24–26 (1989).
  109. Al-Basheer, W., Pagni, R. M. & Compton, R. N. Spectroscopic and Theoretical Investigation of (R)-3-Methylcyclopentanone. The Effect of Solvent and Temperature on the Distribution of Conformers. The Journal of Physical Chemistry A 111, 2293– 2298 (2007).
  110. Cahn, R. S., Ingold, C. & Prelog, V. Spezifikation der molekularen Chiralität. Angewandte Chemie 78, 413–447 (1966).
  111. E. J. Ariens. Stereochemistry, a Basis for Sophisticated Nonsense in Pharmacokinetics and Clinical Pharmacology. Eur. J. Clin. Pharmacol. 26, 663–668 (1984).
  112. Pasteur, L. Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire. nnales de Chimie et de Physique 24, 442–459
  113. Schirmel, N., Reusch, N., Horsch, P. & Weitzel, K.-M. The formation of fragment ions (H + ,H 3 + ,CH 3 + ) from ethane in intense femtosecond laser fields -from understanding to control. Faraday Disscussion (2013).
  114. Linker, T. The Jacobsen–Katsuki Epoxidation and Its Controversial Mechanism.
  115. Mamyrin, B. A., Karataev, V. I., Shmikk, D. V. & Zagulin, V. A. The Mass-Reflectron, a New Nonmagnetic Time-of-Flight Mass Spectrometer with High Resolution. 37, 45–48 (1973).
  116. Dekkers, H. P. J. M. & Closs, L. E. The optical activity of low-symmetry ketones in absorption and emission. Journal of the American Chemical Society 98, 2210–2219 (1976).
  117. Wiley, W. C. & McLaren, I. H. Time-of-Flight Mass Spectrometer with Improved Resolution. Review of Scientific Instruments 26, 1150 (1955).
  118. Ammosov, M. V., Delone, N. B. & Kraìnov, V. P. Tunnel ionization of complex atoms and of atmic ions in alternating electromagnetic field. Sov. Phys. JETP 64, 1191–1194 (1986).
  119. Tinoco, I. Two-photon circular dichroism. The Journal of Chemical Physics 62, 1006 (1975).
  120. Schöniger, M. Untersuchungen zum Circulardichroismus von Phenylethylenoxid und Butenoxid mit Hilfe der Femtosekunden-Laserionisation. (2012).
  121. Kraus, P. Untersuchungen zur Femtosekundenlaserpuls induzierten H+3-Bildung aus Ethan. (2010).
  122. Quack, M. Wie wichtig ist Paritätsverletzung für die molekulare und biomolekulare Chiralität? Angewandte Chemie 114, 4812–4825 (2002).
  123. Rizzo, A., Jansik, B., Pedersen, T. B. & Agren, H. Origin invariant approaches to the calculation of two-photon circular dichroism. The Journal of Chemical Physics 125, 064113 (2006).
  124. Logé, C. & Boesl, U. Multiphoton Ionization and Circular Dichroism: New Experimental Approach and Application to Natural Products. ChemPhysChem 12, 1940–1947 (2011).
  125. Boesl von Grafenstein, U. & Bornschlegl, A. Circular Dichroism Laser Mass Spectrometry: Differentiation of 3-Methylcyclopentanone Enantiomers. ChemPhysChem 7, 2085–2087 (2006).
  126. Logé, C., Bornschlegl, A. & Boesl, U. Progress in circular dichroism laser mass spectrometry. Analytical and Bioanalytical Chemistry 395, 1631–1639 (2009).
  127. Boesl, U., Neusser, H. J. & Schlag, E. W. Multi-photon ionization in the mass spectrometry of polyatomic molecules: Cross sections. Chemical Physics 55, 193– 204 (1981).
  128. Boesl, U., Weinkauf, R. & Schlag, E. W. Reflectron time-of-flight mass spectrometry and laser excitation for the analysis of neutrals, ionized molecules and secondary fragments. International Journal of Mass Spectrometry and Ion Processes 112, 121– 166 (1992).
  129. Lezius, M., Blanchet, V., Ivanov, M. Y. & Stolow, A. Polyatomic molecules in strong laser fields: Nonadiabatic multielectron dynamics. The Journal of Chemical Physics 117, 1575 (2002).
  130. Wang, T.-I., Chu, C.-W., Hung, H.-M., Kuo, G.-S. & Han, C.-C. Design parameters of dual-stage ion reflectrons. Review of Scientific Instruments 65, 1585 (1994).
  131. Abbate, S., Longhi, G. & Santina, C. Theoretical and experimental studies for the interpretation of vibrational circular dichroism spectra in the CH-stretching overtone region. Chirality 12, 180–190 (2000).
  132. Schurig, V., Koppenhöfer, B. & Bürkle, W. Korrelation der absoluten Konfiguration chiraler Epoxide durch Komplexierungschromatographie; Synthese und Enantiomerenreinheit von (+)-und (−)-1,2-Epoxypropan. Angewandte Chemie 90, 993–995 (1978).
  133. Horsch, P., Urbasch, G. & Weitzel, K.-M. Analysis of Chirality by Femtosecond Laser Ionization Mass Spectrometry. Chirality 24, 684–690 (2012).
  134. Brittain, H. G. & Richardson, F. S. Circularly polarized emission studies on the chiral nuclear magnetic resonance lanthanide shift reagent tris(3-trifluoroacetyl-d- camphorato)europium(III). Journal of the American Chemical Society 98, 5858–5863 (1976).
  135. Lin, N. et al. Theory for Vibrationally Resolved Two-Photon Circular Dichroism Spectra. Application to (R)-(+)-3-Methylcyclopentanone. The Journal of Physical Chemistry A 113, 4198–4207 (2009).
  136. Berova, N., Bari, L. D. & Pescitelli, G. Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chemical Society Reviews 36, 914 (2007).
  137. Dimitrovski, D., Martiny, C. & Madsen, L. Strong-field ionization of polar molecules: Stark-shift-corrected strong-field approximation. Physical Review A 82, (2010).
  138. Banerjee, S., Ravindra Kumar, G. & Mathur, D. Multiple ionization of N 2 in intense, linearly and circularly polarized light fields. Physical Review A 60, R25–R28 (1999).
  139. Mathur, D. & Rajgara, F. A. Dissociative ionization of methane by chirped pulses of intense laser light. The Journal of Chemical Physics 120, 5616 (2004).
  140. Stener, M., Fronzoni, G., Tommaso, D. D. & Decleva, P. Density functional study on the circular dichroism of photoelectron angular distribution from chiral derivatives of oxirane. The Journal of Chemical Physics 120, 3284 (2004).
  141. Tchaplyguine, M. et al. Ionization and fragmentation of C 60 with sub-50 fs laser pulses. The Journal of Chemical Physics 112, 2781 (2000).
  142. Goswami, T., Das, D. K. & Goswami, D. Controlling the femtosecond laser-driven transformation of dicyclopentadiene into cyclopentadiene. Chemical Physics Letters 558, 1–7 (2013).
  143. McAlduff, E. J. & Houk, K. N. Photoelectron spectra of substituted oxiranes and thiiranes. Substituent effects on ionization potentials involving sigma orbitals. Can. J. Chem. 55, 318–332 (1977).
  144. Spence, D. E., Kean, P. N. & Sibbett, W. 60-fsec pulse generation from a self-mode- locked Ti:sapphire laser. Optics Letters 16, 42 (1991).
  145. Paschotta, R. Article on parametric amplification, phase sensitive, amplifier, phase insensitive, signal, idler, gain, phase mismatch, fiber -Encyclopedia of Laser Physics and Technology. at <http://www.rp-photonics.com/parametric_amplification.html> 84. Thorlabs Katalog. Thorlabs Katalog. (2009).
  146. Auto-Tune: Why Pop Music Sounds Perfect --Printout --TIME. at <http://www.time.com/time/printout/0,8816,1877372,00.html> 87. Diels, J.-C. & Rudolph, W. Ultrashort laser pulse phenomena : fundamentals, techniques, and applications on a femtosecond time scale. (Academic Press, 1996).
  147. Le Barbu, K. et al. Spectroscopic studies of enantiomeric discrimination in jet-cooled chiral complexes. Chirality 13, 715–721 (2001).
  148. Dudley, J. M. & Taylor, J. R. Ten years of nonlinear optics in photonic crystal fibre. Nature Photonics 3, 85–90 (2009).
  149. Weiner, A. M. Ultrafast optics. (Wiley, 2009).
  150. Rhee, H., June, Y.-G., Kim, Z. H., Jeon, S.-J. & Cho, M. Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD. Journal of the Optical Society of America B 26, 1008 (2009).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten