Publikationsserver der Universitätsbibliothek Marburg

Titel:GNA as a scaffold for chromophores aggregates and design of silicon-based DNA binders
Autor:Xiang, Yonggang
Weitere Beteiligte: Zhang, Lilu (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0233
DOI: https://doi.org/10.17192/z2013.0233
URN: urn:nbn:de:hebis:04-z2013-02338
DDC:540 Chemie
Titel (trans.):GNA als Gerüst für Chromophoreaggregaten und Design von Silizium-basierten DNA-Bindemitteln
Publikationsdatum:2013-05-23
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
GNA, Silikon, Silicon, DNA Bindemittel, DNA Binders, Chromophore, GNA, Chromophores

Summary:
My work mainly includes two parts, one is GNA as a scaffold for molecular aggregates of chromophores, and the other one is the design of octahedral silicon complexes as DNA binders. In the first part of the thesis, simplified glycol nucleic acid (GNA) was used as the template for the helical assembly of covalently bound homochromophores and heterochromophores: perylene bisimide (B), phthalocyanine (Y), and porphyrin (P), and different numbers of chromophores could be stacking inside a duplex which led to functional artificial double-helical structures. In the second part of the thesis, the first examples of biologically active complexes based on octahedral silicon were designed, and silicon complexes with simple arenediol ligands and phenazinediol ligands were successfully synthesized. These kinds of siliconcomplexes could be used to intercalate with DNA duplexes, detect mismatched DNA base pairs, and stabilize the formation of the G- quadruplex.

Bibliographie / References

  1. Hensen, R. Busch, Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences 1982, 37, 1174-1177. References: literature 165
  2. J. P. Corriu, C. Reye, J. C. Young, Chem. Rev. 1993, 93, 1371-1448. [70] Organofluorosilicates in Organic-Synthesis .12. Preparation of Organopentafluorosilicates and Their Cleavage Reactions by Halogens and N-Bromosuccinimide -Synthetic and Mechanistic Aspects, K. Tamao, J. Yoshida, H. Yamamoto, T. Kakui, H. Matsumoto, M.
  3. [15] Role of Environmental Factors on the Structure and Spectroscopic Response of 5 '-DNA-Porphyrin Conjugates Caused by Changes in the Porphyrin-Porphyrin Interactions, A. Mammmana, G. Pescitelli, T. Asakawa, S. Jockusch, A. G. Petrovic, R. R. Monaco, R.
  4. [95] Reaction of phenanthrene-9,10-dione with phenanthrene-9,10-diol: Synthesis and characterization of the first ortho-quinhydrone derivative, F. Calderazzo, C. Forte, F.
  5. [76] a) Electrochemical and spectral properties of hexacoordinate polypyridyl silicon complexes, B. Suthar, A. Aldongarov, I. S. Irgibaeva, M. Moazzen, B. T. Donovan-Merkert, J. W.
  6. [68] Advances in the analysis of isothermal titration calorimetry data for ligand-DNA interactions, N. J. Buurma, I. Haq, Methods 2007, 42, 162-172.
  7. Hydrophobic Self-Assembly of a Perylenediimide-Linked DNA Dumbbell into Supramolecular Polymers, P. P. Neelakandan, Z. Z. Pan, M. Hariharan, Y. Zheng, H. Weissman, B.
  8. Pyrene-zipper array assembled via RNA duplex formation, M. Nakamura, Y. Murakami, K.
  9. Metallophthalocyanines: Versatile electron-donating building blocks for fullerene dyads, D.
  10. Holmes, Chem. Rev. 1996, 96, 927-950; b) Novel neutral hexacoordinate benzamidinatosilicon(IV) complexes with SiN3OF2, SiN3OCl2, SiN3OBr2, SiN5O and SiN3O3 skeletons, K. Junold, C. Burschka, R. Bertermann, R. Tacke, Dalton Trans. 2011, 40, 9844-9857; c) Hexacoordinate Silacyclobutane Dichelate Complexes: Structure, Properties, and Ligand Crossover, S. Yakubovich, B. Gostevskii, I. Kalikhman, M. Botoshansky, L. E.
  11. [63] iFRET: an improved fluorescence system for DNA-melting analysis, W. M. Howell, M. Jobs, A. J. Brookes, Genome Res. 2002, 12, 1401-1407.
  12. [82] a) Targeting proteins with metal complexes, E. Meggers, Chem. Commun. 2009, 1001-1010; b) Supramolecular interactions between functional metal complexes and proteins, C. L. Davies, E. L. Dux, A. K. Duhme-Klair, Dalton Trans. 2009, 10141-10154. [83] a) Comparison of phosphorus and silicon: Hypervalency, stereochemistry, and reactivity, R. R.
  13. Turro, J. K. Barton, Biochemistry 1992, 31, 10809-10816; d) Photophysical evidence that Delta-and Lambda-[Ru(phen)(2)(dppz)](2+) intercalate DNA from the minor groove, E.
  14. Bis(1,10-phenanthrolin)-Komplexe des Siliciums. Darstellung, Struktur und Eigenschaften, D. Kummer, T. Seshadri, Chem. Ber. 1977, 110, 2355-2367.
  15. Pivonkova, L. Kalachova, H. Cernocka, H. Cahova, R. Pohl, P. Sebest, L. Havran, M. Hocek, M. Fojta, Chem.--Eur. J. 2009, 15, 1144-1154; e) DNA-directed synthesis of aniline and 4-aminobiphenyl, oligomers: Programmed transfer of sequence information to a conjoined polymer nanowire, B. Datta, G. B. Schuster, J. Am. Chem. Soc. 2008, 130, 2965-2973; f)
  16. [80] a) Electrontransfer through DNA and metal-containing DNA, T. Carell, C. Behrens, J. Gierlich, Org. Biomol. Chem. 2003, 1, 2221-2228; b) Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures, J. L. Fu, M. H. Liu, Y. Liu, H. Yan, Acc. Chem. Res. 2012, 45, 1215-1226; c) Functionalized DNA Nanostructures, O. I. Wilner, I. Willner, Chem. Rev. 2012, 112, 2528-2556.
  17. Shionoya, J. Am. Chem. Soc. 2002, 124, 12494-12498; c) Metal-mediated base pairing within the simplified nucleic acid GNA, M. K. Schlegel, L. L. Zhang, N. Pagano, E. Meggers, Org. Biomol. Chem. 2009, 7, 476-482.
  18. Barton, J. Am. Chem. Soc. 1997, 119, 12986-12987; b) A versatile mismatch recognition agent: Specific cleavage of a plasmid DNA at a single base mispair, B. A. Jackson, V. Y. Alekseyev, J. K. Barton, Biochemistry 1999, 38, 4655-4662; c) DNA base mismatch detection with bulky rhodium intercalators: synthesis and applications, B. M. Zeglis, J. K. Barton, Nat. Protoc. 2007, 2, 357-371.
  19. Huppert, Chem. Soc. Rev. 2008, 37, 1375-1384; b) G-quadruplex DNA structures -Variations on a theme, T. Simonsson, Biol. Chem. 2001, 382, 621-628; c) Methods for investigating G-quadruplex DNA/ligand interactions, P. Murat, Y. Singh, E. Defrancq, Chem. Soc. Rev. 2011, 40, 5293-5307.
  20. [19] DNA as supramolecular scaffold for porphyrin arrays on the nanometer scale, L. A. Fendt, I. Bouamaied, S. Thoni, N. Amiot, E. Stulz, J. Am. Chem. Soc. 2007, 129, 15319-15329. [20] a) An extremely stable and orthogonal DNA base pair with a simplified three-carbon backbone, L. L. Zhang, E. Meggers, J. Am. Chem. Soc. 2005, 127, 74-75; b) A simple glycol References: literature 161 nucleic acid, L. L. Zhang, A. Peritz, E. Meggers, J. Am. Chem. Soc. 2005, 127, 4174-4175; c) Synthesis and Properties of the Simplified Nucleic Acid Glycol Nucleic Acid, E. Meggers, L.
  21. [18] a) Duplex Stabilization and Energy Transfer in Zipper Porphyrin-DNA, T. Nguyen, A. Brewer, E. Stulz, Angew. Chem. Int. Ed. 2009, 48, 1974-1977; b) Interstrand communication between 2 '-N-(pyren-1-yl)methyl-2 '-amino-LNA monomers in nucleic acid duplexes: directional control and signalling of full complementarity, P. J. Hrdlicka, B. R. Babu, M. D. Sorensen, J. Wengel, Chem. Commun. 2004, 1478-1479; c) Functionalized LNA (locked nucleic acid): high-affinity hybridization of oligonucleotides containing N-acylated and N-alkylated 2
  22. [59] a) Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex, M. Y. Kim, H. Vankayalapati, S. Kazuo, K. Wierzba, L. H. Hurley, J. Am. Chem. Soc. 2002, 124, 2098-2099; b) Stabilization of G-quadruplex DNA by highly selective ligands via click chemistry, A. D. Moorhouse, A. M. Santos, M. Gunaratnam, M. Moore, S. Neidle, J. E. Moses, J. Am. Chem. Soc. 2006, 128, 15972-15973. [60] Structural and thermodynamic studies of the interaction of distamycin a with the parallel quadruplex structure [d(TGGGGT)](4), L. Martino, A. Virno, B. Pagano, A. Virgilio, S. Di Micco, A. Galeone, C. Giancola, G. Bifulco, L. Mayol, A. Randazzo, J. Am. Chem. Soc. 2007, 129, 16048-16056.
  23. Tuite, P. Lincoln, B. Norden, J. Am. Chem. Soc. 1997, 119, 239-240; e) DNA-Binding of Delta-[Ru(Phen)2dppz]2+ and Lambda-[Ru(Phen)2dppz]2+, C. Hiort, P. Lincoln, B. Norden, J. Am. Chem. Soc. 1993, 115, 3448-3454.
  24. Vandermarel, J. H. Vanboom, A. Rich, Nature 1978, 276, 471-474. [37] a) The DNA and RNA specificity of eilatin Ru(II) complexes as compared to eilatin and ethidium bromide, N. W. Luedtke, J. S. Hwang, E. Nava, D. Gut, M. Kol, Y. Tor, Nucleic Acids Res. 2003, 31, 5732-5740; b) Photo-reduction of polyazaaromatic Ru(II) complexes by biomolecules and possible applications, B. Elias, A. Kirsch-De Mesmaeker, Coord. Chem. Rev. 2006, 250, 1627-1641.
  25. Norden, B. Z. Chowdhry, J. B. Chaires, J. Am. Chem. Soc. 1995, 117, 4788-4796; b) Synthesis and DNA-binding properties of [Ru(NH3)(4)dppz](2+), R. B. Nair, E. S. Teng, S. L. Kirkland, C. J. Murphy, Inorg. Chem. 1998, 37, 139-141.
  26. Sauvage, N. J. Turro, J. K. Barton, J. Am. Chem. Soc. 1990, 112, 4960-4962; c) Characterization of Dipyridophenazine Complexes of Ruthenium(Ii) -the Light Switch Effect as a Function of Nucleic-Acid Sequence and Conformation, Y. Jenkins, A. E. Friedman, N. J.
  27. Sasa, H. Hayashi, K. Yamana, J. Am. Chem. Soc. 2008, 130, 6904-+; g) Porphyrin-DNA: A supramolecular scaffold for functional molecules on the nanometre scale, I. Bouamaied, L. A.
  28. R. Cech, D. M. Prescott, Nature 1991, 350, 718-720; b) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening, V. L.
  29. Tris(4,7-Diphenylphenanthroline)Ruthenium(Ii), J. K. Barton, L. A. Basile, A. Danishefsky, A.
  30. [16] a) Replacing the nucleohases in DNA with designer molecules, E. T. Kool, Acc. Chem. Res. 2002, 35, 936-943; b) C-nucleosides derived from simple aromatic hydrocarbons, N. C. Chaudhuri, R. X. F. Ren, E. T. Kool, Synlett 1997, 341-347. [17] Fluorescent hydrophobic zippers inside duplex DNA: Interstrand stacking of perylene-3,4 : 9,10-tetracarboxylic acid bisimides as artificial DNA base dyes, D. Baumstark, H. A. Wagenknecht, Chem.--Eur. J. 2008, 14, 6640-6645.
  31. [97] A convenient synthetic route to polyether-tagged cyclam ligands and their nickel derivatives, F. Bellouard, F. Chuburu, J. J. Yaouanc, H. Handel, Y. Le Mest, Eur. J. Org. Chem. 1999, 3257-3261.
  32. [71] Addition-Compounds of Methylhalogenosilanes and Pyridine at Low-Temperatures, K.
  33. An application of the stille coupling for the preparation of arylated phthalonitriles and phthalocyanines, H. Grennberg, V. Aranyos, A. M. Castano, Acta Chem. Scand. 1999, 53, 714-720.
  34. [40] A New Class of DNA Metallobinders Showing Spectator Ligand Size-Selectivity -Binding of Ligand-Bridged Bimetallic Complexes of Ru(Ii) to Calf Thymus DNA, D. L. Carlson, D. H.
  35. An Improved Procedure for Derivatization of Controlled-Pore Glass-Beads for Solid-Phase Oligonucleotide Synthesis, M. J. Damha, P. A. Giannaris, S. V. Zabarylo, Nucleic Acids Res. 1990, 18, 3813-3821.
  36. Rybtchinski, F. D. Lewis, J. Am. Chem. Soc. 2010, 132, 15808-15813. [13] Assembly of DNA Triangles Mediated by Perylene Bisimide Caps, H. A. Wagenknecht, F. Menacher, V. Stepanenko, F. Wurthner, Chem.--Eur. J. 2011, 17, 6683-6688.
  37. Merkert, T. A. Schmedake, Polyhedron 2012, 31, 754-758; b) Beiträge zur Chemie der Halogensilan-Addukte. XIV. Neutralligand-Komplexe des Siliciums mit sechs N-Donoratomen, D. Kummer, K. E. Gaisser, J. Seifert, R. Wagner, anorg. allg. chem. 1979, 459, 145-156. [77] Silicon(4) Compounds Containing 1,3-Diketo Ligands, R. M. Pike, R. R. Luongo, J. Am. Chem. Soc. 1966, 88, 2972-&.
  38. [48] Chiral Probe for a-Form Helices of DNA and Rna -
  39. [47] Chiral Probes for the Handedness of DNA Helices -Enantiomers of
  40. Acceptor Properties of Silicon(4) . Class (B) or Soft Acid Behaviour by Silicon Tetrachloride and Silicon Tetrabromide, I. R. Beattie, G. A. Ozin, J. Chem. SOC. (A) 1969, 2267-2269. [73] a) Reaktionen der Siliciumtetrahalogenide mit 2,2′-Dipyridyl und mit 1,10-Phenanthrolin, U. Wannagat, K. Hensen, P. Petesch, F. Vielberg, Monatsh. Chem. 1967, 98, 1415-1422; b)
  41. [96] NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist, G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I.
  42. [93] Molecular Mechanical Simulations on Double Intercalation of 9-Amino Acridine into D(Cgcgcgc).D(Gcgcgcg) -Analysis of the Physical Basis for the Neighbor-Exclusion Principle, S. N. Rao, P. A. Kollman, Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 5735-5739. [94] a) Interaction of Delta-[Ru(Phen)(2)Dppz](2+) and Lambda-[Ru(Phen)(2)Dppz](2+) with DNA -a Calorimetric and Equilibrium Binding Study, I. Haq, P. Lincoln, D. C. Suh, B.
  43. [42] a) Novel Dipyridophenazine Complexes of Ruthenium(Ii) -Exploring Luminescent Reporters of DNA, R. M. Hartshorn, J. K. Barton, J. Am. Chem. Soc. 1992, 114, 5919-5925; b) Molecular Light Switch for DNA -Ru(Bpy)2(Dppz)2+, A. E. Friedman, J. C. Chambron, J. P.
  44. [14] DNA conformational switches as sensitive electronic sensors of analytes, R. P. Fahlman, D. Sen, J. Am. Chem. Soc. 2002, 124, 4610-4616.
  45. Ru(phen)(2)dppz(2+) luminescence: Dependence on DNA sequences and groove-binding agents, R. E. Holmlin, E. D. A. Stemp, J. K. Barton, Inorg. Chem. 1998, 37, 29-34. [39] Dipyridophenazine complexes of cobalt(III) and nickel(II): DNA-Binding and photocleavage studies, S. Arounaguiri, B. G. Maiya, Inorg. Chem. 1996, 35, 4267-4270.
  46. [44] Crystal structures of Lambda-Ru(phen)(2)dppz (2+) with oligonucleotides containing TA/TA and AT/AT steps show two intercalation modes, H. Niyazi, J. P. Hall, K. O'Sullivan, G. Winter, T. Sorensen, J. M. Kelly, C. J. Cardin, Nature Chemistry 2012, 4, 621-628.
  47. [46] a) Enantiomeric Selectivity in Binding Tris(Phenanthroline)Zinc(Ii) to DNA, J. K. Barton, J. J. Dannenberg, A. L. Raphael, J. Am. Chem. Soc. 1982, 104, 4967-4969; b)
  48. Balasubramanian, L. H. Hurley, S. Neidle, Nat. Rev. Drug Discovery 2011, 10, 261-275. [54] Erosion of the telomeric single-strand overhang at replicative senescence, S. A. Stewart, I.
  49. [81] Exploring biologically relevant chemical space with metal complexes, E. Meggers, Curr. Opin. Chem. Biol. 2007, 11, 287-292.
  50. H-1-Nmr Studies of Tris(Phenanthroline) Metal-Complexes Bound to Oligonucleotides - Structural Characterizations Via Selective Paramagnetic Relaxation, J. P. Rehmann, J. K.
  51. [35] Binding of Platinum(Ii) Intercalation Reagents to Deoxyribonucleic-Acid -Dependence on Base-Pair Composition, Nature of the Intercalator, and Ionic-Strength, M. Howegrant, S. J. Lippard, Biochemistry 1979, 18, 5762-5769. References: literature 162 [36] Molecular-Structure of a Double Helical DNA Fragment Intercalator Complex between Deoxy Cpg and a Terpyridine Platinum Compound, A. H. J. Wang, J. Nathans, G.
  52. [66] NMR-based model of a telomerase-inhibiting compound bound to G-quadruplex DNA, O. Y.
  53. Fendt, D. Haussinger, M. Wiesner, S. Thoni, N. Amiot, E. Stulz, Nucleosides Nucleotides & Nucleic Acids 2007, 26, 1533-1538; h) DNA as a supramolecular scaffold for the helical arrangement of a stack of 1-ethynylpyrene chromophores, J. Barbaric, H. A. Wagenknecht, Org. Biomol. Chem. 2006, 4, 2088-2090.
  54. Tris(Phenanthroline)Ruthenium(Ii) Enantiomers with Nucleic-Acids -Tuning the
  55. Pyrene acetylide nucleotides in GNA: probing duplex formation and sensing of copper(II) ions, H. Zhou, X. Y. Ma, J. P. Wang, L. L. Zhang, Org. Biomol. Chem. 2009, 7, 2297-2302. [26] Incorporation of porphyrin acetylides into duplexes of the simplified nucleic acid GNA, L. L.
  56. [23] a) A purine-like nickel(II) base pair for DNA, C. Switzer, S. Sinha, P. H. Kim, B. D.
  57. [52] Quantitative visualization of DNA G-quadruplex structures in human cells, G. Biffi, D. Tannahill, J. McCafferty, S. Balasubramanian, Nature Chemistry 2013. [53] Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?, S.
  58. [41] Recognition and reaction of metallointercalators with DNA, K. E. Erkkila, D. T. Odom, J. K. Barton, Chem. Rev. 1999, 99, 2777-2795.
  59. [49] a) Recognition of DNA base mismatches by a rhodium intercalator, B. A. Jackson, J. K.
  60. Structure of a G-quadruplex-ligand complex, S. M. Haider, G. N. Parkinson, S. Neidle, J. Mol. Biol. 2003, 326, 117-125. References: literature 164 [58] Selective interactions of cationic porphyrins with G-quadruplex structures, H. Y. Han, D. R. Langley, A. Rangan, L. H. Hurley, J. Am. Chem. Soc. 2001, 123, 8902-8913.
  61. [67] Crystal structure of Delta-[Ru(bpy)(2)dppz](2+) bound to mismatched DNA reveals side-by-side metalloinsertion and intercalation, H. Song, J. T. Kaiser, J. K. Barton, Nature Chemistry 2012, 4, 615-620.
  62. Beiträge zur Chemie der Halogensilan-Addukte. V. [Si bipy3]Br4, ein neuer ionischer Tris-2,2-Bipyridin-Komplex des Siliciums, D. Kummer, H. Kö ster, anorg. allg. chem. 1973, 402, 297-304.
  63. The E. coli Siderophores Enterobactin and Salmochelin Form Six-Coordinate Silicon Complexes at Physiological pH, T. Schmiederer, S. Rausch, M. Valdebenito, Y. Mantri, E.
  64. [28] Small Molecule DNA And RNA Binders From Synthesis To Nucleic Acid Complexes, M. Demeunynck, C. Bailly, W. D. Wilson, 2002. [29]
  65. Xiang, Y. G.; Wang, X. W.; Zheng, X.; Ruan, Y. P.; Huang, P. Q. Chem. Commun. 2009, 7045-7047. " SmI 2 -Mediated Radical Cross-Couplings of alpha-Hydroxylated Aza-hemiacetals and N, S-Acetals with α, β-Unsaturated Compounds: Asymmetric Synthesis of (+)-Hyacinthacine A(2), (-)-Uniflorine A, and (+)-7-epi-Casuarine. " Liu, X. K.; Qiu, S.; Xiang, Y. G.; Ruan, Y. P.; Zheng, X.; Huang, P. Q. J. Org. Chem. 2011, 76, 4952-4963. " Asymmetric Syntheses of the Sex Pheromones of Pine Sawflies, Their Homologs and Stereoisomers " Zheng, J. F.; Zhang, Z.; Lan, H. Q.; Yang, R. F.; Peng, Q. L.; Xiao, Z. H.; Tuo, S. C.; Hu, K. Z.; Xiang, Y. G.; Wei, Z.; Huang, P. Q. Helvetica Chimica Acta. 2012, 1799-1808. " Hydrolytically stable octahedral silicon complexes as bioactive scaffolds: application to the design of DNA intercalators. " Xiang, Y. G.; Fu, C.; Breiding, T.; Sasmal, P. K.; Liu, H. D.; Shen, Q.; Harms, K.; Zhang, L. L.; Meggers, E. Chem. Commun. 2012, 48, 7131-7133 (Front Cover).
  66. Tris(Phenanthroline)Ruthenium(Ii) -Stereoselectivity in Binding to DNA, J. K. Barton, A. T. Danishefsky, J. M. Goldberg, J. Am. Chem. Soc. 1984, 106, 2172-2176; c) Photophysics of Ruthenium Complexes Bound to Double Helical DNA, C. V. Kumar, J. K. Barton, N. J. Turro, J. Am. Chem. Soc. 1985, 107, 5518-5523; d) Binding Modes and Base Specificity of References: literature 163
  67. [22] a) Synthesis of glycol nucleic acids, L. L. Zhang, A. E. Peritz, P. J. Carroll, E. Meggers, Synthesis 2006, 645-653; b) Improved Phosphoramidite Building Blocks for the Synthesis of the Simplified Nucleic Acid GNA, M. K. Schlegel, E. Meggers, J. Org. Chem. 2009, 74, 4615-4618.
  68. Chelating agents and metal chelates, F. P. J. Dwyer, D. P. Mellor, Academic Press, New York 1964. [30] Metallointercalation Reagents -2-Hydroxyethanethiolato(2,2',2''-Terpyridine)-Platinum(Ii) Monocation Binds Strongly to DNA by Intercalation, K. W. Jennette, S. J. Lippard, Vassilia.Ga, W. R. Bauer, Proc. Natl. Acad. Sci. U. S. A. 1974, 71, 3839-3843. [31] Metal Ions in Biological Systems, B. Nordé n, P. Lincoln, B. Akerman, E. Tuite, Marcel Dekker, New York, NY 1996, 33, 177. [32] Probing Nucleic-Acids with Transition-Metal Complexes, A. M. Pyle, J. K. Barton, Prog. Inorg. Chem. 1990, 38, 413-475.
  69. [51] Crystal structure of parallel quadruplexes from human telomeric DNA, G. N. Parkinson, M. P. H. Lee, S. Neidle, Nature 2002, 417, 876-880.
  70. Heuberger, Angew. Chem. Int. Ed. 2005, 44, 1529-1532; b) Efficient incorporation of a copper hydroxypyridone base pair in DNA, K. Tanaka, A. Tengeiji, T. Kato, N. Toyama, M. Shiro, M.
  71. [50] a) Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes, J. L.
  72. Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay, J. L. Mergny, L. Lacroix, M. P. Teulade-Fichou, C. Hounsou, L. Guittat, M. Hoarau, P. B.
  73. Makarov, Y. Hirose, J. P. Langmore, Cell 1997, 88, 657-666; c) Telomeres and telomerase as targets for anticancer drug development, K. A. Olaussen, K. Dubrana, J. Dornont, J. P. Spano, L. Sabatier, J. C. Soria, Crit. Rev. Oncol./Hematol 2006, 57, 191-214.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten