Publikationsserver der Universitätsbibliothek Marburg

Titel:Das Effektorprotein Pep1 und seine Rolle in der Biotrophie von Brandpilzen
Autor:Hemetsberger, Christoph Florian
Weitere Beteiligte: Döhlemann, Gunther (Dr. )
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0079
DOI: https://doi.org/10.17192/z2013.0079
URN: urn:nbn:de:hebis:04-z2013-00794
DDC: Biowissenschaften, Biologie
Titel (trans.):The fungal effector Pep1 and its role in biotrophy of smut fungi
Publikationsdatum:2013-03-12
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Phytopathologie, Ustilago zeae, Abwehrreaktion, Flugbrand, Ustilago nuda, Peroxidase, plant immune response, smut fungi, oxidative burst suppression, phytopathology, Ustilago avenae, Ustilago

Zusammenfassung:
Der Brandpilz Ustilago maydis benötigt während der Interaktion mit seiner Wirtspflanze Mais eine Vielzahl sekretierter Effektoren zur Etablierung der Biotropie. Eine Deletion des Gens um01987, das für den sekretierten Effektor Pep1 (protein essential during penetration 1) codiert, führt zum vollständigen Verlust der Pathogenität. Auf Penetrationsversuche der pep1-Deletionsmutante reagiert die Maispflanze mit der Induktion verschiedener Abwehrmechanismen wie der Bildung von Papillen, der Anreicherung reaktiver Sauerstoffspezies und nekrotischen Läsionen. Pep1 lokalisiert in der biotrophen Interaktionszone und ist in verschiedenen Brandpilzarten konserviert. In der vorliegenden Arbeit wurde die Funktion von Pep1 durch biochemische und molekularbiologische Methoden charakterisiert. So konnte gezeigt werden, dass heterolog in Escherichia coli exprimiertes Pep1 den oxidative burst in Mais inhibieren kann. Eine Behandlung von Maispflanzen mit dem Radikalfänger Ascorbat hatte verminderte Abwehrreaktionen gegenüber Infektionen mit der pep1-Deletionsmutante zur Folge. Weiterhin wurde gezeigt, dass Pep1 die Aktivität einer Klasse-III-Peroxidase aus Meerrettich in vitro hemmt. Klasse-III-Peroxidasen spielen eine zentrale Rolle in der Produktion reaktiver Sauerstoffspezies beim oxidative burst. Bei Infektionen von Mais mit der pep1-Deletionsmutante ist die sekretierte Peroxidase-12 (POX12) transkriptionell induziert. Durch Bimolekulare Fluoreszenzkompementatiion und Hefe-2-Hybrid-Experimente konnte eine direkte Interaktion von Pep1 mit POX12 nachgewiesen werden. Durch virusinduziertes Gen-Silencing von pox12 in Mais konnte eine partielle Rettung des Δpep1-Phänotyps erreicht werden. Das Silencing von pox12 bewirkte verminderte Abwehrreaktionen der Wirtspflanze wie z. B. Papillenbildungen an Penetrationsstellen, so dass die Hyphen der pep1-Deletionsmutante in der Folge die Epidermiszellen penetrieren konnten. Darüber hinaus konnten Orthologe von pep1 in weiteren Brandpilzspezies identifiziert werden. Es wurde in vitro gezeigt, dass die Pep1-Orthologe aus Ustilago avenae, Ustilago nuda und Melanopsichium pennsylvanicum ebenfalls als Peroxidaseinhibitoren agieren. Weiterhin wurde die Inhibition apoplastischer Peroxidasen aus verschiedenen Wirtspflanzen durch Pep1 nachgewiesen. Schließlich wurde die Funktion der identifizierten Pep1-Orthologe in Infektionen von Mais mit U. maydis bestätigt. Diese Ergebnisse sprechen für eine Rolle von Pep1 als Inhibitor von Peroxidasen, einer zentralen Komponente der basalen pflanzlichen Abwehrreaktion.

Bibliographie / References

  1. Li, W., Wang, B., Wu, J., Lu, G., Hu, Y., Zhang, X., Zhang, Z., Zhao, Q., Feng, Q., Zhang, H., et al. (2009). The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact 22, 411-420.
  2. Martinez, C., Montillet, J.L., Bresson, E., Agnel, J.P., Dai, G.H., Daniel, J.F., Geiger, J.P., and Nicole, M. (1998). Apoplastic Peroxidase Generates Superoxide Anions in Cells of Cotton Cotyledons Undergoing the Hypersensitive Reaction to Xanthomonas campestris pv. malvacearum Race 18. Mol Plant Microbe Interact 11, 1038-1047.
  3. Oliva, R., Win, J., Raffaele, S., Boutemy, L., Bozkurt, T.O., Chaparro-Garcia, A., Segretin, M.E., Stam, R., Schornack, S., Cano, L.M., et al. (2010). Recent developments in effector biology of filamentous plant pathogens. Cell Microbiol 12, 705-715.
  4. Pieterse, C.M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C. (2009). Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5, 308-316.
  5. Knaggs, A.R. (2003). The biosynthesis of shikimate metabolites. Nat Prod Rep 20, 119-136.
  6. Martinez-Espinoza, A.D., Garcia-Pedrajas, M.D., and Gold, S.E. (2002). The Ustilaginales as plant pests and model systems. Fungal Genet Biol 35, 1-20.
  7. Passardi, F., Cosio, C., Penel, C., and Dunand, C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24, 255-265.
  8. O'Brien, J.A., Daudi, A., Butt, V.S., and Bolwell, G.P. (2012). Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236, 765-779.
  9. Pichorner, H., Couperus, A., Korori, S.A.A., and Ebermann, R. (1992). Plant peroxidase has a thiol oxidase function. Phytochem 31, 3371-3376.
  10. Zamocky, M., Furtmuller, P.G., and Obinger, C. (2010). Evolution of structure and function of Class I peroxidases. Arch Biochem Biophys 500, 45-57.
  11. Mathe, C., Barre, A., Jourda, C., and Dunand, C. (2010). Evolution and expression of class III peroxidases. Arch Biochem Biophys 500, 58-65.
  12. Vlasits, J., Jakopitsch, C., Bernroitner, M., Zamocky, M., Furtmuller, P.G., and Obinger, C. (2010). Mechanisms of catalase activity of heme peroxidases. Arch Biochem Biophys 500, 74- 81.
  13. van Doorn, W.G., and Yoshimoto, K. (2010). Role of chloroplasts and other plastids in ageing and death of plants and animals: a tale of Vishnu and Shiva. Ageing Res Rev 9, 117-130.
  14. Xiang, T., Zong, N., Zou, Y., Wu, Y., Zhang, J., Xing, W., Li, Y., Tang, X., Zhu, L., Chai, J., et al. (2008). Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18, 74-80.
  15. Rubartelli, A., and Lotze, M.T. (2007). Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trend Immunol 28, 429-436.
  16. Nomura, K., Melotto, M., and He, S.Y. (2005). Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr Opin Plant Biol 8, 361-368.
  17. Misas-Villamil, J.C., and van der Hoorn, R.A. (2008). Enzyme-inhibitor interactions at the plant-pathogen interface. Curr Opin Plant Biol 11, 380-388.
  18. Ma, W., and Guttman, D.S. (2008). Evolution of prokaryotic and eukaryotic virulence effectors. Curr Opin Plant Biol 11, 412-419.
  19. Lüthje, S., Meisrimler, C.N., Hopff, D., and Moller, B. (2011). Phylogeny, topology, structure and functions of membrane-bound class III peroxidases in vascular plants. Phytochem 72, 1124-1135.
  20. Juarez-Montiel, M., Ruiloba de Leon, S., Chavez-Camarillo, G., Hernandez-Rodriguez, C., and Villa-Tanaca, L. (2011). Huitlacoche (corn smut), caused by the phytopathogenic fungus Ustilago maydis, as a functional food. Rev Iberoam Micol 28, 69-73.
  21. Steinberg, G., and Perez-Martin, J. (2008). Ustilago maydis, a new fungal model system for cell biology. Trend Cell Biol 18, 61-67.
  22. Soanes, D.M., and Talbot, N.J. (2008). Moving targets: rapid evolution of oomycete effectors. Trends in microbiology 16, 507-510.
  23. Shewry, P.R., and Lucas, J.A. (1997). Plant Proteins that Confer Resistance to Pests and Pathogens. Adv Bot Res 26, 135-192.
  24. Sharma, Y.K., and Davis, K.R. (1997). The effects of ozone on antioxidant responses in plants. Free Radic Biol Med 23, 480-488.
  25. Kunkel, B.N., and Brooks, D.M. (2002). Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5, 325-331.
  26. Zamocky, M., Furtmuller, P.G., and Obinger, C. (2009). Two distinct groups of fungal catalase/peroxidases. Biochem Soc Trans 37, 772-777.
  27. Rentel, M.C., Leonelli, L., Dahlbeck, D., Zhao, B., and Staskawicz, B.J. (2008). Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proc Natl Acad Sci USA 105, 1091-1096.
  28. Lee, N., Bakkeren, G., Wong, K., Sherwood, J.E., and Kronstad, J.W. (1999). The mating- type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region. Proc Natl Acad Sci USA 96, 15026-15031.
  29. Kohen, R., and Nyska, A. (2002). Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30, 620-650.
  30. Morre, D.J. (2002). Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donor. Antioxid Redox Signal 4, 207- 212.
  31. Zhou, J., Lin, J., Zhou, C., Deng, X., and Xia, B. (2011). An improved bimolecular fluorescence complementation tool based on superfolder green fluorescent protein. Acta Biochim et Biohys Sin 43, 239-244.
  32. Wi, S.G., Singh, A.P., Lee, K.H., and Kim, Y.S. (2005). The pattern of distribution of pectin, peroxidase and lignin in the middle lamella of secondary xylem fibres in alfalfa (Medicago sativa). Annals of Botany 95, 863-868.
  33. Ranieri, A., Castagna, A., Pacini, J., Baldan, B., Mensuali Sodi, A., and Soldatini, G.F. (2003). Early production and scavenging of hydrogen peroxide in the apoplast of sunflower plants exposed to ozone. J Exp Bot 54, 2529-2540.
  34. Zhang, J., and Zhou, J.M. (2010). Plant immunity triggered by microbial molecular signatures. Mol Plant 3, 783-793.
  35. Kemen, E., Kemen, A.C., Rafiqi, M., Hempel, U., Mendgen, K., Hahn, M., and Voegele, R.T. (2005). Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant Microbe Interact 18, 1130-1139.
  36. Proels, R.K., Oberhollenzer, K., Pathuri, I.P., Hensel, G., Kumlehn, J., and Huckelhoven, R. (2010). RBOHF2 of barley is required for normal development of penetration resistance to the parasitic fungus Blumeria graminis f. sp. hordei. MPMI 23, 1143-1150.
  37. Pogány, M., von Rad, U., Grün, S., Dongó, A., Pintye, A., Simoneau, P., Bahnweg, G., Kiss, L., Barna, B., and Durner, J. (2009). Dual Roles of Reactive Oxygen Species and NADPH Oxidase RBOHD in an Arabidopsis-Alternaria Pathosystem. Plant Physiol 151, 1459- 1475.
  38. Weber, I., Gruber, C., and Steinberg, G. (2003). A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Plant Cell 15, 2826- 2842.
  39. Mendoza-Mendoza, A., Berndt, P., Djamei, A., Weise, C., Linne, U., Marahiel, M., Vraneš, M., Kämper, J., and Kahmann, R. (2009). Physical-chemical plant-derived signals induce differentiation in Ustilago maydis. Mol Microbiol 71, 895-911.
  40. Kelley, B.S., Lee, S.J., Damasceno, C.M., Chakravarthy, S., Kim, B.D., Martin, G.B., and Rose, J.K. (2010). A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death. Plant J 62, 357-366.
  41. Fluorescence studies of saccharide binding to wheat-germ agglutinin (lectin). Eur J Biochem 47, 5-14.
  42. Lehtonen, M.T., Akita, M., Kalkkinen, N., Ahola-Iivarinen, E., Ronnholm, G., Somervuo, P., Thelander, M., and Valkonen, J.P. (2009). Quickly-released peroxidase of moss in defense against fungal invaders. New Phytol 183, 432-443.
  43. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytol 189, 471-483.
  44. Nomura, K., Debroy, S., Lee, Y.H., Pumplin, N., Jones, J., and He, S.Y. (2006). A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313, 220- 223.
  45. Rowell, J.B. (1955). Segregation of sex factors in a diploid line of Ustilago zeae induced by alpha radiation. Science 121, 304-306.
  46. Rivas, S., and Thomas, C.M. (2005). Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu rev Phytopathol 43, 395-436.
  47. Saitoh, H., Fujisawa, S., Mitsuoka, C., Ito, A., Hirabuchi, A., Ikeda, K., Irieda, H., Yoshino, K., Yoshida, K., Matsumura, H., et al. (2012). Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PLoS pathogens 8, e1002711.
  48. Pataky, J.K., and Chandler, M.A. (2003). Production of huitlacoche, Ustilago maydis: timing inoculation and controlling pollination. Mycologia 95, 1261-1270.
  49. van der Linde, K., Mueller, A., Hemetsberger, C., Kaschani, F., Van der Hoorn, R.A., and Doehlemann, G. (2012b). The maize cystatin CC9 interacts with apoplastic cysteine proteases. Plant Sig Beh 13, 2327-2330
  50. Stergiopoulos, I., and de Wit, P.J. (2009). Fungal effector proteins. Annu Rev Phytopathol 47, 233-263.
  51. van der Linde, K., Hemetsberger, C., Kastner, C., Kaschani, F., van der Hoorn, R.A.L., Kumlehn, J., and Doehlemann, G. (2012a). A Maize Cystatin Suppresses Host Immunity by Inhibiting Apoplastic Cysteine Proteases. Plant Cell 24, 1285-1300.
  52. Kaschani, F., Shabab, M., Bozkurt, T., Shindo, T., Schornack, S., Gu, C., Ilyas, M., Win, J., Kamoun, S., and van der Hoorn, R.A.L. (2010). An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol 154, 1794-1804.
  53. Vlot, A.C., Dempsey, D.A., and Klessig, D.F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annu rev Phytopathol 47, 177-206.
  54. Vanholme, B., De Meutter, J., Tytgat, T., Van Montagu, M., Coomans, A., and Gheysen, G. (2004). Secretions of plant-parasitic nematodes: a molecular update. Gene 332, 13-27.
  55. Koeck, M., Hardham, A.R., and Dodds, P.N. (2011). The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell Microbiol 13(12), 1849-57.
  56. Khang, C.H., Berruyer, R., Giraldo, M.C., Kankanala, P., Park, S.-Y., Czymmek, K., Kang, S., and Valent, B. (2010). Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22, 1388-1403.
  57. van den Burg, H.A., Spronk, C.A., Boeren, S., Kennedy, M.A., Vissers, J.P., Vuister, G.W., de Wit, P.J., and Vervoort, J. (2004). Binding of the AVR4 elicitor of Cladosporium fulvum to chitotriose units is facilitated by positive allosteric protein-protein interactions: the chitin-binding site of AVR4 represents a novel binding site on the folding scaffold shared between the invertebrate and the plant chitin-binding domain. J Biol Chem 279, 16786-16796.
  58. Sambrook J, Fritsch EF, and Maniatis T (1989). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, 1.25-1.28
  59. Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annu rev Phytopathol 44, 41-60.
  60. A: Penetration durch SG200. In einigen Fällen wurden CeCl 3 -Signale in einiger Entfernung von der eindringenden Hyphe beobachtet (weiße Pfeilspitzen). H: Ustilago maydis Hyphe V: pflanzl.
  61. Orbach, M.J., Farrall, L., Sweigard, J.A., Chumley, F.G., and Valent, B. (2000). A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12, 2019- 2032.
  62. Whisson, S.C., Boevink, P.C., Moleleki, L., Avrova, A.O., Morales, J.G., Gilroy, E.M., Armstrong, M.R., Grouffaud, S., van West, P., Chapman, S., et al. (2007). A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450, 115-118.
  63. Vakuole, C: pflanzl. Cytosol, N: Nukleus, M: Mitochondrium, BO: Blattoberfläche. B: Penetration durch SG200∆pep1. Eine starke Anhäufung von CeCl 3 an der eindringenden Hyphe (schwarze Pfeilspitzen) zeigt großen oxidativen Stress an. Maßstabsbalken: 1 µm.
  64. Schipper, K. (2009). Charakterisierung eines Ustilago maydis Genclusters, das für drei neuartige sekretierte Effektoren kodiert. Dissertation, Philipps-Universität Marburg.
  65. Rooney, H.C., van't Klooster, J.W., van der Hoorn, R.A., Joosten, M.H., Jones, J.D., and de Wit, P.J. (2005). Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2- dependent disease resistance. Science 308, 1783-1786.
  66. van Doorn, W.G. (2011). Classes of programmed cell death in plants, compared to those in animals. J Exp Bot 62, 4749-4761.
  67. Thema der Forschungsarbeit: " Das Effektorprotein Pep1 und seine Rolle in der Biotrophie von Brandpilzen 04/2008 – 10/2008 Diplomarbeit an der University of Exeter, UK, School of Biosciences, bei Prof. Dr. Gero Steinberg. Thema der Diplomarbeit: " Entwicklung eines Mutantenscreens zur Identifikation von Komponenten des mikrotubuli- abhängigen Langstreckentransports in Hyphen von Ustilago maydis " 10/2004 – 12/2008
  68. Zusätzliche Abbildungen Abbildung 23: Die CeCl 3 – Färbung von Penetrationsereignissen zeigt die ROS- Akkumulation in ∆pep1-Infektionen auf.
  69. TEM-Aufnahme einer Mais-Epidermiszelle, die nach einer Penetration durch SG200 ∆pep1 programmierten Zelltod ausgelöst hat. Man beachte die gerissene Tonoplastmembran (Pfeilspitzen) und den starken oxidativen Stress, angezeigt durch CeCl3-Färbung in der Zellwand (Sparren). H: Ustilago maydis -Hyphe, ER: Endoplasmatisches Retikulum, V: pflanzl.
  70. Schirawski, J., Böhnert, H.U., Steinberg, G., Snetselaar, K., Adamikowa, L., and Kahmann, R. (2005). Endoplasmic reticulum glucosidase II is required for pathogenicity of Ustilago maydis. Plant Cell 17, 3532-3543.
  71. Kale, S.D., Gu, B., Capelluto, D.G., Dou, D., Feldman, E., Rumore, A., Arredondo, F.D., Hanlon, R., Fudal, I., Rouxel, T., et al. (2010). External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142, 284-295.
  72. Keen, N.T. (1990). Gene-for-gene complementarity in plant-pathogen interactions. Annu rev Genet 24, 447-463.
  73. Meyers, B.C., Kozik, A., Griego, A., Kuang, H., and Michelmore, R.W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809-834.
  74. Spellig, T., Bottin, A., and Kahmann, R. (1996). Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Molecular & general genetics : MGG 252, 503-509.
  75. Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei, G.P., and Schell, J. (1989). High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86, 8467-8471.
  76. Joosten, M.H., Cozijnsen, T.J., and De Wit, P.J. (1994). Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367, 384-386.
  77. Mueller, O., Schreier, P.H., and Uhrig, J.F. (2008). Identification and characterization of secreted and pathogenesis-related proteins in Ustilago maydis. Mol Genet Genomics 279, 27- 39.
  78. Snetselaar, K.M., and Mims, C.W. (1993). Infection of Maize Stigmas by Ustilago maydis - Light and Electron-Microscopy. Phytopathol 83, 843-850.
  79. Waadt, R., and Kudla, J. (2008). In planta visualization of protein interactions using bimolecular fluorescence complementation (BiFC). CSH Protoc 2008, pdb prot4995.
  80. Kämper, J., Kahmann, R., Bölker, M., Ma, L.J., Brefort, T., Saville, B.J., Banuett, F., Kronstad, J.W., Gold, S.E., Müller, O., et al. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444, 97-101.
  81. Shahidi, F., and Synowiecki, J. (1991). Isolation and characterization of nutrients and value- added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards J Agric Food Chem 39,1527-1532.
  82. van Kan, J.A. (2006). Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11, 247-253.
  83. Ros Barceló, A. (1997). Lignification in plant cell walls. Int Rev Cytol 176, 87-132.
  84. Luminolbasierte grafische Darstellung der H 2 O 2 -Produktion in Mais-Blattscheiben, ausgelöst durch die Zugabe von 2x10 8
  85. van Doorn, W.G., and Woltering, E.J. (2005). Many ways to exit? Cell death categories in plants. Trends Plant Sci 10, 117-122.
  86. Vakoule, BO: Blattoberfläche. Maßstabsbalken: 1 µm.
  87. Memelink, J., Verpoorte, R., and Kijne, J.W. (2001). ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6, 212-219.
  88. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium- mediated transformation. Cell 125, 749-760.
  89. Sels, J., Mathys, J., De Coninck, B.M., Cammue, B.P., and De Bolle, M.F. (2008). Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant physiology and biochemistry : PPB / Soc Franc Physiol Vegeta 46, 941-950.
  90. Morgan, W., and Kamoun, S. (2007). RXLR effectors of plant pathogenic oomycetes. Curr Opin Microbiol 10, 332-338.
  91. Shirasu, K., Nakajima, H., Rajasekhar, V.K., Dixon, R.A., and Lamb, C. (1997). Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9, 261-270.
  92. van Loon, L.C., Rep, M., and Pieterse, C.M.J. (2006). Significance of inducible defense- related proteins in infected plants. Annu rev Phytopathol 44, 135-162.
  93. Studium der Biologie an der Philipps-Universität Marburg 10/2002 – 09/2004
  94. Sagi, M., and Fluhr, R. (2001). Superoxide production by plant homologues of the gp91(phox) NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126, 1281-1290.
  95. Zarnack, K., Maurer, S., Kaffarnik, F., Ladendorf, O., Brachmann, A., Kamper, J., and Feldbrugge, M. (2006). Tetracycline-regulated gene expression in the pathogen Ustilago maydis. Fungal Genet Biol 43, 727-738.
  96. Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schafer, W., Martin, T., Herskowitz, I., and Kahmann, R. (1990). The b-alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60, 295-306.
  97. Lotze, M.T., Zeh, H.J., Rubartelli, A., Sparvero, L.J., Amoscato, A.A., Washburn, N.R., Devera, M.E., Liang, X., Tor, M., and Billiar, T. (2007). The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220, 60- 81.
  98. Morel, J.B., and Dangl, J.L. (1997). The hypersensitive response and the induction of cell death in plants. Cell Death Diff 4, 671-683.
  99. Lamb, C., and Dixon, R.A. (1997). The oxidative burst in plant disease resistance. Annu rev Plant physiol plant mol biol 48, 251-275.
  100. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329.
  101. Koncz, C., and Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molec Gen Genet 204, 383-396.
  102. Pitann, B., and Mühling, K.H. (2009). The role of plasma membrane H+-ATPase and apoplastic pH in adaptation of maize (Zea mays) to salt stress. Proc Intern plant Nutr Coll XVI, Sacramento, USA http//repositories. Cdlib.org/ipnc/xvi/1085
  103. Snetselaar, K.M., Bölker, M., and Kahmann, R. (1996). Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet Biol 20, 299-312.
  104. Kahmann, R., Steinberg, G., Basse, C., Feldbrügge, M., and Kämper, J. (2000). Ustilago maydis, the causative agent of corn smut disease. In Fungal Pathology, J.W. Kronstad, ed. (Dodrecht, the Netherlands: Kluwer academic publishers), 347-371.
  105. Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, et al. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J, 40:428–438.
  106. Sawyer, D.T., Gibian, M.J., Morrison, M.M., and Seo, E.T. (1978). On the chemical reactivity of superoxide ion. J Am Chem Soc 100, 627-628.
  107. Schirawski, J., Mannhaupt, G., Munch, K., Brefort, T., Schipper, K., Doehlemann, G., Di Stasio, M., Rossel, N., Mendoza-Mendoza, A., Pester, D., et al. (2010). Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330, 1546-1548.
  108. Snetselaar, K.M., and Mims, C.W. (1992). Sporidial Fusion and Infection of Maize Seedlings by the Smut Fungus Ustilago maydis. Mycologia 84, 193-203.
  109. Kay, S., Hahn, S., Marois, E., Hause, G., and Bonas, U. (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318, 648-651.
  110. Skibbe, D.S., Doehlemann, G., Fernandes, J., and Walbot, V. (2010). Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328, 89-92.
  111. Wertman, J., Lord, C.E., Dauphinee, A.N., and Gunawardena, A.H. (2012). The pathway of cell dismantling during programmed cell death in lace plant (Aponogeton madagascariensis) leaves. BMC Plant Biol 12, 115.
  112. James, P., Halladay, J., and Craig, E.A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425-1436.
  113. Mehdy, M.C. (1994). Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol 105, 467-472.
  114. van Esse, H.P., van't Klooster, J.W., Bolton, M.D., Yadeta, K.A., van Baarlen, P., Boeren, S., Vervoort, J., de Wit, P.J.G.M., and Thomma, B.P.H.J. (2008). The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20, 1948- 1963.
  115. Iriti, M., and Faoro, F. (2009). Chitosan as a MAMP, searching for a PRR. Plant signaling & behavior 4, 66-68.
  116. Song, J., Win, J., Tian, M., Schornack, S., Kaschani, F., Ilyas, M., van der Hoorn, R.A., and Kamoun, S. (2009). Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc Natl Acad Sci USA 106, 1654-1659.
  117. Panstruga, R., and Dodds, P.N. (2009). Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens. Science 324, 748-750.
  118. Allgemeine Hochschulreife, Justus von Liebig Gymnasium, Darmstadt Publikationen Hemetsberger C*, Herrberger C*, Zechmann B, Hillmer M, Doehlemann G. (2012). The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PloS Pathogens 2012 May; 8(5): e1002684.
  119. Schornack, S., van Damme, M., Bozkurt, T.O., Cano, L.M., Smoker, M., Thines, M., Gaulin, E., Kamoun, S., and Huitema, E. (2010). Ancient class of translocated oomycete effectors targets the host nucleus. Proc Natl Acad Sci U S A 107, 17421-17426.
  120. Sanger, F., Nicklen, S. und A.R. Coulson (1977). DNA sequencing with chain-terminating inhibitors. PNAS USA 74: 5463-5467.
  121. Zamocky, M., Gasselhuber, B., Furtmuller, P.G., and Obinger, C. (2012). Molecular evolution of hydrogen peroxide degrading enzymes. Arch Biochem Biophys 525, 131-144.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten