Publikationsserver der Universitätsbibliothek Marburg

Titel:TAF4B begleitet die Differenzierung von humanen Makrophagen und bindet nach inflammatorischer Stimulation zusammen mit NFkappaB an den Promotor von tumor necrosis factor alpha
Autor:Schipper, Michael
Weitere Beteiligte: Renkawitz-Pohl, Renate (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0077
URN: urn:nbn:de:hebis:04-z2013-00771
DOI: https://doi.org/10.17192/z2013.0077
DDC:570 Biowissenschaften, Biologie
Titel (trans.):TAF4B accompanies the differentiation of human macrophages and binds together with NFkappaB on the promoter of tumor necrosis factor alpha
Publikationsdatum:2013-02-20
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Tumorassoziierter Makrophage, TAF TBP associated Factors, TATA Box Binding protein associated Factor, Transkription, Transkription <Genetik>, TATA-Box, TAF TBP assoziierte Faktoren, Int, Makrophage, TATA Box Bindeprotein assoziierte Faktoren, Interleukin 13, Interleukin 10, Interleukin 4, Macrophage, Transcription

Zusammenfassung:
Die TATA-Box-Bindeprotein-assoziierten Faktoren (TAFs) des TFIID-Komplexes bilden zahlreiche Funktionen aus, welche essentiell sind für die Regulation der Transkriptionsinitiation. Unter anderem interagieren verschiedene der TAFs mit Enhancer-gebundenen Aktivatoren. Dies ist notwendig für die Bildung des Transkriptionskomplexes und die Aktivierung der Transkription durch die RNA-Polymerase II an zahlreichen Genen. Das gewebespezifische TAF4B stellt ein Paralog des ubiquitär exprimierten TAF4 dar. TAF4B interagiert in verschiedenen Zelltypen spezifisch mit Transkriptionsaktivatoren, u.a. mit NFkappaB RelA und cRel. Der Koaktivator TAF4B ist dadurch notwendig für die Vermittlung der NFkappaB-induzierten Aktivierung der Transkription durch die RNA-Polymerase II. Bisher war eine Rolle von TAF4B im Immunsystem nur für T-und B-Lymphozyten aufgezeigt. Die Zielsetzung dieser Arbeit war es, eine Funktion von TAF4B in der Reifung und Funktion von Makrophagen als Zellen des angeborenen Immunsystems aufzuzeigen. Die Ergebnisse deuten darauf hin, dass die Translation von TAF4B in primären humanen Monozyten inhibiert ist. Mit einsetzender Adhärenz und Differenzierung wird das TAF4B-Protein in Makrophagen exprimiert. In dieser Phase der Makrophagen-Entwicklung kolokalisiert nukleäres TAF4B zudem partiell mit aktiver RNA Polymerase II, was auf eine transkriptionelle Funktion von TAF4B in der Zelldifferenzierung hindeutet. In reifen Makrophagen induziert die Stimulation mit bakteriellen Lipopolysacchariden die Anreicherung von TAF4B in den Nukleus. Diese Stimulation der Makrophagen induziert zudem die spezifische Bindung von TAF4B an den Promotor von tumor necrosis factor alpha, zusammen mit den Trankriptions-Aktivatoren RelA und cRel. Auch die Stimulation der Makrophagen mit inflammatorischen Cytokinen wie Interferon gamma oder Interleukin 4, 10 und 13 bedingt darüber hinaus eine distinkte Lokalisation des TAF4B-Proteins in reifen Makrophagen, was auf eine Regulation von TAF4B durch diese Cytokine hindeutet.

Bibliographie / References

  1. Laemmli, K. U. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature Publishing Group.
  2. Hiller, M., Chen, X., Pringle, M. J., Suchorolski, M., Sancak, Y., Viswanathan, S., Bolival, B., Lin, T., Marino, S., and Fuller, M. T. (2004). Testis-specific TAF homologs collaborate to control a tissue-specific transcription program. Wild, 5297–5308.
  3. Mao, H., Polliackq, A., B, V., Bfziv, S., Bimn, S., and Monocyte, K. W. (1986). Parameters Affecting the In Vitro Maturation of Human Monocytes to Macrophages. International Journal Of Cell Cloning 185, 167–185.
  4. Liu, H., Shi, B., Huang, C., Eksarko, P., and Pope, R. M. (2008a). Transcriptional diversity during monocyte to macrophage differentiation. Immunology letters 117, 70–80.
  5. Fairweather, D., and Cihakova, D. (2010). Alternatively activated macrophages in infection and autoimmunity. Journal of Autoimmunity 33, 222–230.
  6. Ongeri, E. M., Verderame, M. F., and Hammond, J. H. (2007). The TATA binding protein associated factor 4b (TAF4b) mediates FSH stimulation of the IGFBP-3 promoter in cultured porcine ovarian granulosa cells. Molecular and cellular endocrinology 278 (1-2), 29–35.
  7. Liang, J., Jiang, D., Griffith, J., Yu, S., Fan, J., Zhao, X., Bucala, R., and Noble, P. W. (2012). Engagement of CD44 by hyaluronan suppresses TLR4 signaling and the septic response to LPS. The Journal of Immunology 178, 2469–2475.
  8. Wolstein, O., Silkov, A., Revach, M., and Dikstein, R. (2000). Specific Interaction of TAF II 105 with OCA-B Is Involved in Activation of Octamer-dependent Transcription *. Biochemistry 275, 16459 –16465.
  9. Yamit-hezi, A., Nir, S., Wolstein, O., and Dikstein, R. (2000). Interaction of TAF II 105 with Selected p65 / RelA Dimers Is Associated with Activation of Subset of NFkB Genes. The Journal of biological chemistry 275, 18180–18187.
  10. Rashevsky-Finkel, a, Silkov, a, and Dikstein, R. (2001). A composite nuclear export signal in the TBP-associated factor TAFII105. The Journal of biological chemistry 276, 44963–44969.
  11. Gazit, K., Moshonov, S., Elfakess, R., Sharon, M., Mengus, G., and Davidson, I. (2009). TAF4 / 4b TAF12 Displays a Unique Mode of DNA Binding and Is Required for Core Promoter Function of a Subset of Genes. Journal of Biological Chemistry 284, 26286 –26296.
  12. Gamma interferon enhances macrophage transcription of the tumor necrosis factor/cachectin, interleukin 1, and urokinase genes, which are controlled by short-lived repressors. J. Exp. Med 164, 2113–2118.
  13. Werner, S. L., Kearns, J. D., Zadorozhnaya, V., Lynch, C., O'Dea, E., Boldin, M. P., Ma, A., Baltimore, D., and Hoffmann, A. (2012). Encoding NF-kB temporal control in response to TNF distinct roles for the negative regulators IκBα and A20.pdf. Genes & development 22, 2093– 2101.
  14. Tora, L. (2002). A unified nomenclature for TATA box binding protein (TBP)-associated factors (TAFs) involved in RNA polymerase II transcription. Genes & Development 16, 673–675.
  15. Parker, L. C., Prince, L. R., and Sabroe, I. (2007). Translational Mini-Review Series on Toll-like Receptors : Networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clinical and Experimental Immunology 147, 199–207.
  16. Collart, M. A., Baeuerle, P., and Vassalli, P. (1990). Regulation of Tumor Necrosis Factor Alpha Transcription in Macrophages : Involvement of Four KB-Like Motifs and of Constitutive and Inducible Forms of NF-KB. Melecular and Cellular Biology 10, 1498–1506.
  17. Freiman, R. N., Albright, S. R., Chu, L. E., Zheng, S., Liang, H., Sha, W. C., and Tjian, R. (2002). Redundant Role of Tissue-Selective TAF II 105 in B Lymphocytes. Society 22, 6564–6572.
  18. Soutoglou, E., Demény, M. A., Scheer, E., Sassone-corsi, P., Tora, L., and Fienga, G. (2005). The Nuclear Import of TAF10 Is Regulated by One of Its Three Histone Fold Domain-Containing Interaction Partners. Molecular and cellular biology 25, 4092–4104.
  19. Garrett, S., Dietzmann-Maurer, K., Song, L., and Sullivan, K. E. (2008). Polarization of primary human monocytes by IFN-gamma induces chromatin changes and recruits RNA Pol II to the TNF-alpha promoter. Journal of immunology (Baltimore, Md. : 1950) 180, 5257–5266.
  20. Zolti, M., Meirom, R., Shemesh, M., Wollach, D., Mashiach, S., Shore, L., and Ben Rafael, Z. (1990). Granulosa cells as a source and target organ for tumor necrosis factor-α. FEBS Letters 261, 253– 255. Available at: http://linkinghub.elsevier.com/retrieve/pii/001457939080565Z. (http://www.ensembl.org/). Der Sequenz-Vergleich wurde mit Clustal Omega erstellt (http://www.ebi.ac.uk/Tools/msa/clustalo/) und dargestellt durch MView (http://www.ebi.ac.uk/Tools/msa/mview/).
  21. Fischle, W., Wang, Y., and Allis, C. D. (2003a). Histone and chromatin cross-talk. Current Opinion in Cell Biology 15, 172–183. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0955067403000139 [Accessed July 14, 2010].
  22. Gordon, S., and Martinez, F. O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1074761310001731 [Accessed July 19, 2011].
  23. Pfeffer, K. (2003). Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine & Growth Factor Reviews 14, 185–191. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1359610103000224 [Accessed April 25, 2012].
  24. Freiman, R. N. (2009). Specific variants of general transcription factors regulate germ cell development in diverse organisms. Biochimica et Biophysica Acta (BBA) -Gene Regulatory Mechanisms 1789, 161–166. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1874939909000169 [Accessed October 9, 2012].
  25. Hambleton, J., Weinsteint, S. L., Lemt, L., Defrancots, A. L., and Bishop, J. M. (1996). Activation of c-Jun N-terminal kniase in bacterial lipopolysaccharide-stimulated macrophages. Immunology 93, 2774–2778.
  26. L E B E N S L A U F Michael Schipper Kontaktdaten: Adresse: Schwanallee 40, 35037 Marburg Festnetz: 06421/893988; Handy: 0176/21066420 schippe3@staff.uni-marburg.de
  27. Kao, W. J., and Liu, Y. (2002). Cellular signaling involved in macrophage adhesion and FBGC formation as mediated by ligand –. INTRACELLULAR SIGNALING, 478–487.
  28. Hamilton, J. A. (1993). Colony stimulating factors , cytokines some controversies. Immunology Today 14, 18–24.
  29. Suk, K., and Erickson, K. L. (1996). Differential regulation of tumour necrosis factor-α mRNA degradation in macrophages by interleukin-4 and interferon-γ.pdf. Immunology 87, 551–558.
  30. Schneider, R., and Grosschedl, R. (2007). Dynamics and interplay of nuclear architecture , genome organization , and gene expression. Genes & Development 21, 3027–3043.
  31. Taira, N., Mimoto, R., Kurata, M., Yamaguchi, T., Kitagawa, M., Miki, Y., and Yoshida, K. (2012). DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells. The Journal of clinical investigation 122, 859–872.
  32. Lee, J. Y., and Sullivan, K. E. (2001). Gamma Interferon and Lipopolysaccharide Interact at the Level of Transcription To Induce Tumor Necrosis Factor Alpha Expression. Society 69, 2847–2852.
  33. Schütt, C., and Bröker, B. (2009). Grundwissen Immunologie 2nd ed. (Spektrum Akademischer Verlag Heidelberg 2009).
  34. Fiskus, W., Pranpat, M., Balasis, M., Herger, B., Rao, R., Chinnaiyan, A., Atadja, P., and Bhalla, K. (2006). Histone deacetylase inhibitors deplete enhancer of zeste 2 and associated polycomb repressive complex 2 proteins in human acute leukemia cells. Molecular Cancer Therapeutics 5, 3096–3104.
  35. Witte, V., Laffert, B., Rosorius, O., Lischka, P., Blume, K., Galler, G., Stilper, A., Willbold, D., Aloja, P. D., Sixt, M., et al. (2004). HIV-1 Nef Mimics an Integrin Receptor Signal that Recruits the Polycomb Group Protein Eed to the Plasma Membrane Nikolaus-Fiebiger-Center for Molecular Medicine Institute for Experimental Pathology. Molecular Cell 13, 179–190.
  36. Janeway, C. a, Travers, P., Walport, M., and Shlomchik, M. J. (2001). Immuno biology THE IMMUNE SYSTEME IN HEALTH AND DISEASE 5th ed. D. Schank, P. Austin, E. Lawrence, and M. Morales, eds. (Garland Publishing).
  37. Fleetwood, A. J., Lawrence, T., Hamilton, J. A., and Cook, A. D. (2012). Implications for CSF Blockade in Profiles and Transcription Factor Activities: Phenotypes Display Differences in Cytokine Macrophage CSF-Dependent Macrophage Colony-Stimulating Factor (CSF) and Granulocyte-Macrophage Inflammation. The Journal of Immunology 178, 5245–5252.
  38. Conti, L., Hiscott, J., Wainberg, M. A., Gessani, S., G, S., and Davis, Lady (1997). Induction of relA(p65) and I kappa B alpha subunit expression during differentiation of human peripheral blood monocytes to macrophages. Cell Growth & Differentiation 8, 435–442.
  39. Erwig, L., Kluth, D. C., Walsh, G. M., and Rees, A. J. (1998). Initial Cytokine Exposure Determines Function of Macrophages and Renders Them Unresponsive to Other Cytokines. The Journal of Immunology 161, 1983–1988.
  40. Schroder, K., Hertzog, P. J., Ravasi, T., and Hume, D. A. (2004). Interferon-g : an overview of signals , mechanisms and functions. Journal of leukocyte biology 75, 163–189.
  41. Hall, B. F., Mellors, I. W., and Al, G. A. N. E. T. (1991). Interleukin-6 Expression in Primary Macrophages Infected with Hiv-, Human Immunodeficiency Virus-1 (HIV-1). AIDS RESEARCH AND HUMAN RETROVIRUSES 7.
  42. Lavigne, A., Mengus, G., May, M., Dubrovskaya, V., Tora, L., Chambon, P., and Davidson, I. (1996). Multiple Interactions between hTAF II 55 and Other TFIID Subunits. The Journal of biological chemistry 271, 19774–19780.
  43. Ghosh, S., May, M. J., and Kopp, E. B. (1998). NF-κ B AND REL PROTEINS : Evolutionarily Conserved Mediators of Immune Responses. Annual review of immunology 16, 225–260.
  44. Persönliche Daten: Geboren am 25.04.1982 in Mainz, ledig Deutsche Staatsangehörigkeit Schulbildung: 1989-1993
  45. Hayes, M. P., and Zoon, K. C. (1993). Priming of human monocytes for enhanced lipopolysaccharide responses : expression of Priming of Human Monocytes for Enhanced Lipopolysaccharide Responses : Expression of Alpha Interferon , Interferon Regulatory Factors , and Tumor Necrosis Factor. Infection and Immunity 61, 3222–3227.
  46. Abbildung 23. Negativ-Kontrollen des Immunofluoreszenz-Protokolls. Das Immunofluoreszenz- Protokoll wurde ohne spezifischen, primären Antikörper durchgeführt. An Stelle des primären Antikörpers wurde Blocklösung (Block-Lsg.) oder unspezifische Kaninchen IgGs verwendet. In Reihe A und B sind Immunofluoreszenz-Färbungen gezeigt in welchen lediglich der gegen Kaninchen-IgG gerichtete, Cy3-gekoppelte Sekundär-Antikörper verwendet wurde. Zusätzlich sind die DAPI- Färbungen und Phasenkontrast-Aufnahmen der Zellen dargestellt. Reihen C und D, Immunofluoreszenz-Färbungen, in welchen die Cy3-gekoppelten, gegen Kaninchen-IgG gerichtete und zusammen mit Cy2-gekoppelten, gegen Maus-IgG gerichte Sekundär-Antikörper verwendet wurden, wie sie auch in Ko-Immunoflureszenz-Färbungen eingesetzt wurden. Maßstabsbalken = 20 µm. Unabhängig von der Stimulation der Zellen oder Differenzierung zeigte sich lediglich eine geringe Hintergrund-Färbung in Kaninchen-IgG-Kontrollen.
  47. Grundschule Kurt-Schumacher-Schule, Windecken 1993-1997 Gymnasium Steinmühle, Marburg 1997-1999 Gymnasium der Otto-Hahn-Schule, Hanau 1999-2003 Gymnasium Steinmühle, Marburg Abschluss: Abitur Bundeswehr: ausgemustert
  48. Shao, H., Revach, M., Moshonov, S., Gazit, K., Albeck, S., Unger, T., Tzuman, Y., and Dikstein, R. (2005). Core Promoter Binding by Histone-Like TAF Complexes. Molecular and cellular biology 25, 206–219.
  49. Goh, F. G., Thomson, S. J. P., Krausgruber, T., Lanfrancotti, A., Copley, R. R., and Udalova, I. a (2010). Beyond the enhanceosome: cluster of novel κB sites downstream of the human IFN-β gene is essential for lipopolysaccharide-induced gene activation. Blood 116, 5580–5588.
  50. Segil, N., Guermah, M., Hoffmann, a, Roeder, R. G., and Heintz, N. (1996). Mitotic regulation of TFIID: inhibition of activator-dependent transcription and changes in subcellular localization. Genes & Development 10, 2389–2400. Available at: http://www.genesdev.org/cgi/doi/10.1101/gad.10.19.2389 [Accessed August 12, 2011].
  51. Pugh, B. F., and Tjian, R. (1991). Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes & Development 5, 1935–1945. Available at: http://www.genesdev.org/cgi/doi/10.1101/gad.5.11.1935 [Accessed October 26, 2012].
  52. Colgan, J., and Manley, J. L. (1992). TFIID can be rate limiting in vivo for TATA-containing, but not TATA-lacking, RNA polymerase II promoters. Genes & Development 6, 304–315. Available at: http://www.genesdev.org/cgi/doi/10.1101/gad.6.2.304 [Accessed November 19, 2012].
  53. Saurin, A. J., Shao, Z., Erdjument-bromage, H., Tempst, P., and Kingston, R. E. (2001). A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 412, 655–660.
  54. Cohen, P. E., Nishimura, K., Zhu, L., and Pollard, J. W. (1999). Macrophages: important accessory cells for reproductive function. Journal of leukocyte biology 66, 765–772. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10577508.
  55. Liu, H., Sidiropoulos, P., Song, G., Pagliari, L. J., Birrer, M. J., Stein, B., Anrather, J., and Pope, R. M. (2000). TNF-alpha gene expression in macrophages: regulation by NF-kappa B is independent of c-Jun or C/EBP beta. Journal of immunology (Baltimore, Md. : 1950) 164, 4277– 4285. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10754326.
  56. Hodel, M. R., Corbett, a H., and Hodel, a E. (2001). Dissection of a nuclear localization signal. The Journal of biological chemistry 276, 1317–1325. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11038364 [Accessed October 24, 2012].
  57. Matza, D., Wolstein, O., Dikstein, R., and Shachar, I. (2001). Invariant chain induces B cell maturation by activating a TAF(II)105-NF-kappaB-dependent transcription program. The Journal of biological chemistry 276, 27203–27206. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11371575 [Accessed August 27, 2010].
  58. Freiman, R. N., Albright, S. R., Zheng, S., Sha, W. C., Hammer, R. E., and Tjian, R. (2001). Requirement of tissue-selective TBP-associated factor TAFII105 in ovarian development. Science (New York, N.Y.) 293, 2084–2087. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11557891 [Accessed July 26, 2012].
  59. Paulson, M., Press, C., Smith, E., Tanese, N., and Levy, D. E. (2002). IFN-Stimulated transcription through a TBP-free acetyltransferase complex escapes viral shutoff. Nature cell biology 4, 140– 147. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11802163 [Accessed October 18, 2012].
  60. Silkov, A., Wolstein, O., Shachar, I., and Dikstein, R. (2002). Enhanced apoptosis of B and T lymphocytes in TAFII105 dominant-negative transgenic mice is linked to nuclear factor-kappa B. The Journal of biological chemistry 277, 17821–17829. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11856754 [Accessed August 27, 2010].
  61. MacKenzie, S., Ferna, N., Espel, E., and Fernàndez-Troy, N. (2002). Post-transcriptional regulation of TNF-alpha during in vitro differentiation of human monocytes/macrophages in primary culture. Journal of leukocyte biology 71, 1026–1032. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12050189.
  62. Dobrovolskaia, M. a, and Vogel, S. N. (2002). Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes and infection / Institut Pasteur 4, 903–914. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12106783.
  63. Dvir, A. (2002). Promoter escape by RNA polymerase II. Biochimica et biophysica acta 1577, 208– 223. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12213653.
  64. Matza, D., Kerem, A., Medvedovsky, H., Lantner, F., and Shachar, I. (2002). Invariant chain-induced B cell differentiation requires intramembrane proteolytic release of the cytosolic domain. Immunity 17, 549–560. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12433362.
  65. Fischle, W., Wang, Y., Jacobs, S. a, Kim, Y., Allis, C. D., and Khorasanizadeh, S. (2003b). Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes & development 17, 1870–1881. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12897054.
  66. Takita, M., Furuya, T., Sugita, T., Kawauchi, S., Oga, A., Hirano, T., Tsunoda, S., and Sasaki, K. (2003). An analysis of changes in the expression of cyclins A and B1 by the cell array system during the cell cycle: comparison between cell synchronization methods. Cytometry. Part A : the journal of the International Society for Analytical Cytology 55, 24–29. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12938185 [Accessed August 27, 2010].
  67. Wynes, M. W., and Riches, D. W. H. (2003). Induction of macrophage insulin-like growth factor-I expression by the Th2 cytokines IL-4 and IL-13. Journal of immunology (Baltimore, Md. : 1950) 171, 3550–3559. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14500651.
  68. Yang, X.-J. (2004). Lysine acetylation and the bromodomain: a new partnership for signaling. BioEssays : news and reviews in molecular, cellular and developmental biology 26, 1076–1087. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15382140 [Accessed August 11, 2010].
  69. Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E., and Helin, K. (2004). Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. The EMBO journal 23, 4061–4071. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15385962.
  70. Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., and Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in immunology 25, 677–686. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15530839 [Accessed March 1, 2012].
  71. Kreutz, M., Krause, S. W., Hennemann, B., Rehm, a, and Andreesen, R. (1992). Macrophage heterogeneity and differentiation: defined serum-free culture conditions induce different types of macrophages in vitro. Research in immunology 143, 107–115. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1565839.
  72. Su, I., Dobenecker, M.-W., Dickinson, E., Oser, M., Basavaraj, A., Marqueron, R., Viale, A., Reinberg, D., Wülfing, C., and Tarakhovsky, A. (2005). Polycomb group protein ezh2 controls actin polymerization and cell signaling. Cell 121, 425–436. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15882624 [Accessed July 15, 2012].
  73. Tuomisto, T. T., Riekkinen, M. S., Viita, H., Levonen, A.-L., and Ylä-Herttuala, S. (2005). Analysis of gene and protein expression during monocyte-macrophage differentiation and cholesterol loading--cDNA and protein array study. Atherosclerosis 180, 283–291. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15910854 [Accessed August 30, 2012].
  74. Wu, Y., Lu, Y., Hu, Y., and Li, R. (2005). Cyclic AMP-dependent modification of gonad-selective TAF(II)105 in a human ovarian granulosa cell line. Journal of cellular biochemistry 96, 751–759. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16088961 [Accessed August 30, 2010].
  75. Verreck, F. a W., De Boer, T., Langenberg, D. M. L., Van der Zanden, L., and Ottenhoff, T. H. M. (2006). Phenotypic and functional profiling of human proinflammatory type-1 and anti- inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma-and CD40L-mediated costimulation. Journal of leukocyte biology 79, 285–293. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16330536.
  76. Gwack, Y., Sharma, S., Nardone, J., Tanasa, B., Iuga, A., Srikanth, S., Okamura, H., Bolton, D., Feske, S., Hogan, P. G., et al. (2006). A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646–650. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16511445 [Accessed October 3, 2012].
  77. Shi, C., and Simon, D. I. (2006). Integrin signals, transcription factors, and monocyte differentiation. Trends in cardiovascular medicine 16, 146–152. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16781947.
  78. Thomas, M. C., and Chiang, C.-M. (2006). The general transcription machinery and general cofactors. Critical reviews in biochemistry and molecular biology 41, 105–178. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16858867.
  79. Uematsu, S., and Akira, S. (2006). Toll-like receptors and innate immunity. Journal of molecular medicine (Berlin, Germany) 84, 712–725. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16924467 [Accessed November 30, 2012].
  80. Phatnani, H. P., and Greenleaf, A. L. (2006). Phosphorylation and functions of the RNA polymerase II CTD. Genes & development 20, 2922–2936. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17079683.
  81. Keslacy, S., Tliba, O., Baidouri, H., and Amrani, Y. (2007). Inhibition of tumor necrosis factor-alpha- inducible inflammatory genes by interferon-gamma is associated with altered nuclear factor- kappaB transactivation and enhanced histone deacetylase activity. Molecular pharmacology 71, 609–618. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17108260.
  82. Wang, R., and Brattain, M. G. (2007). The maximal size of protein to diffuse through the nuclear pore is larger than 60kDa. FEBS letters 581, 3164–3170. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17588566 [Accessed July 30, 2012].
  83. Panne, D. (2008). The enhanceosome. Current opinion in structural biology 18, 236–242. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18206362 [Accessed October 18, 2012].
  84. Larosa, D. F., and Orange, J. S. (2008). 1. Lymphocytes. The Journal of allergy and clinical immunology 121, S364–9; quiz S412. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18241683 [Accessed August 11, 2011].
  85. Hitotsumatsu, O., Ahmad, R.-C., Tavares, R., Wang, M., Philpott, D., Turer, E. E., Lee, B. L., Shiffin, N., Advincula, R., Malynn, B. a, et al. (2008). The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28, 381– 390. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18342009 [Accessed September 11, 2012].
  86. Egloff, S., and Murphy, S. (2008). Cracking the RNA polymerase II CTD code. Trends in genetics : TIG 24, 280–288. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18457900 [Accessed July 26, 2010].
  87. Sica, A., Larghi, P., Mancino, A., Rubino, L., Porta, C., Totaro, M. G., Rimoldi, M., Biswas, S. K., Allavena, P., and Mantovani, A. (2008). Macrophage polarization in tumour progression. Seminars in cancer biology 18, 349–355. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18467122 [Accessed August 23, 2010].
  88. LeBien, T. W., and Tedder, T. F. (2008). B lymphocytes: how they develop and function. Blood 112, 1570–1580. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18725575 [Accessed June 28, 2011].
  89. Guven-Ozkan, T., Nishi, Y., Robertson, S. M., and Lin, R. (2008). Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 135, 149–160. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18854162.
  90. Nakamura, A., and Seydoux, G. (2008). Less is more: specification of the germline by transcriptional repression. Development (Cambridge, England) 135, 3817–3827. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18997110 [Accessed August 3, 2012].
  91. Martinez, F. O., Helming, L., and Gordon, S. (2009). Alternative activation of macrophages: an immunologic functional perspective. Annual review of immunology 27, 451–483. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19105661 [Accessed March 9, 2012].
  92. Cler, E., Papai, G., Schultz, P., Davidson, I., Papai, AE. G., and Schultz, AE. P. (2009). Recent advances in understanding the structure and function of general transcription factor TFIID. Cellular and Molecular Life Sciences 66, 2123–2134. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19308322 [Accessed October 4, 2012].
  93. Rasmussen, S. B., Reinert, L. S., and Paludan, S. R. (2009). Innate recognition of intracellular pathogens: detection and activation of the first line of defense. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica 117, 323–337. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19400860.
  94. Vereecke, L., Beyaert, R., and Van Loo, G. (2009). The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends in immunology 30, 383–391. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19643665 [Accessed November 8, 2012].
  95. Falvo, J. V, Tsytsykova, A. V, and Goldfeld, A. E. (2010). Transcriptional control of the TNF gene. Current directions in autoimmunity 11, 27–60. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20173386.
  96. Morey, L., and Helin, K. (2010). Polycomb group protein-mediated repression of transcription. Trends in biochemical sciences 35, 323–332. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20346678.
  97. Kalogeropoulou, M., Voulgari, A., Kostourou, V., Sandaltzopoulos, R., Dikstein, R., Davidson, I., Tora, L., and Pintzas, A. (2010). TAF4b and Jun/activating protein-1 collaborate to regulate the expression of integrin alpha6 and cancer cell migration properties. Molecular cancer research : MCR 8, 554–568. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20353996.
  98. Verstrepen, L., Verhelst, K., Van Loo, G., Carpentier, I., Ley, S. C., and Beyaert, R. (2010). Expression, biological activities and mechanisms of action of A20 (TNFAIP3). Biochemical pharmacology 80, 2009–2020. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20599425 [Accessed March 8, 2012].
  99. Komeili, a, and O'Shea, E. K. (2000). Nuclear transport and transcription. Current opinion in cell biology 12, 355–360. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20946882.
  100. De Kretser, D. M., O'Hehir, R. E., Hardy, C. L., and Hedger, M. P. (2012). The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair. Molecular and cellular endocrinology 359, 101–106. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22037168 [Accessed October 8, 2012].
  101. Newman, S. L., Musson, R. a, and Henson, P. M. (1980). Development of functional complement receptors during in vitro maturation of human monocytes into macrophages. Journal of immunology (Baltimore, Md. : 1950) 125, 2236–2244. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7430626.
  102. Hayes, M. P., Freeman, S. L., and Donnelly, R. P. (1995). IFN-gamma priming of monocytes enhances LPS-induced TNF production by augmenting both transcription and MRNA stability. Cytokine 7, 427–435. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7578980.
  103. Gessani, S., Testa, U., Varano, B., Di Marzio, P., Borghi, P., Conti, L., Barberi, T., Tritarelli, E., Martucci, R., and Seripa, D. (1993). Enhanced production of LPS-induced cytokines during differentiation of human monocytes to macrophages. Role of LPS receptors. Journal of immunology (Baltimore, Md. : 1950) 151, 3758–3766. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7690813.
  104. Knehr, M., Poppe, M., Enulescu, M., Eickelbaum, W., Stoehr, M., Schroeter, D., and Paweletz, N. (1995). A critical appraisal of synchronization methods applied to achieve maximal enrichment of HeLa cells in specific cell cycle phases. Experimental cell research 217, 546–553. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7698256.
  105. Surh, C. D., and Sprent, J. (1994). T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372, 100–103. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7969401.
  106. Fearon, D. T., and Locksley, R. M. (1996). The instructive role of innate immunity in the acquired immune response. Science (New York, N.Y.) 272, 50–53. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8600536.
  107. Sweet, M. J., and Hume, D. a (1996). Endotoxin signal transduction in macrophages. Journal of leukocyte biology 60, 8–26. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8699127.
  108. Verrijzer, C. P., and Tjian, R. (1996). TAFs mediate transcriptional activation and promoter selectivity. Trends in biochemical sciences 21, 338–342. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8870497.
  109. Naito, M., Hasegawa, G., and Takahashi, K. (1997). Development, differentiation, and maturation of Kupffer cells. Microscopy research and technique 39, 350–364. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9407545.
  110. Fomproix, N., Gébrane-Younès, J., and Hernandez-Verdun, D. (1998). Effects of anti-fibrillarin antibodies on building of functional nucleoli at the end of mitosis. Journal of cell science 111 ( Pt 3, 359–372. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9427684.
  111. Valledor, a F., Borràs, F. E., Cullell-Young, M., and Celada, a (1998). Transcription factors that regulate monocyte/macrophage differentiation. Journal of leukocyte biology 63, 405–417. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9544570.
  112. Rennert, P. D., James, D., Mackay, F., Browning, J. L., and Hochman, P. S. (1998). Lymph node genesis is induced by signaling through the lymphotoxin beta receptor. Immunity 9, 71–79. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9697837.
  113. Falender, A. E., Freiman, R. N., Geles, K. G., Lo, K. C., Hwang, K., Lamb, D. J., Morris, P. L., Tjian, R., and Richards, J. S. (2005). Maintenance of spermatogenesis requires TAF4b, a gonad- specific subunit of TFIID. Genes & development 19, 794–803. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1074317&tool=pmcentrez&renderty pe=abstract [Accessed August 18, 2010].
  114. Yamit-hezi, A., and Dikstein, R. (1998). TAFII105 mediates activation of anti-apoptotic genes by NF- kappaB. The EMBO journal 17, 5161–5169. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1170844&tool=pmcentrez&renderty pe=abstract.
  115. Mengus, G., Fadloun, A., Kobi, D., Thibault, C., Perletti, L., Michel, I., and Davidson, I. (2005). TAF4 inactivation in embryonic fibroblasts activates TGF beta signalling and autocrine growth. The EMBO journal 24, 2753–2767. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1182243&tool=pmcentrez&renderty pe=abstract [Accessed October 22, 2010].
  116. Vassallo, M. F., and Tanese, N. (2002). Isoform-specific interaction of HP1 with human TAFII130. Proceedings of the National Academy of Sciences of the United States of America 99, 5919– 5924. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=122877&tool=pmcentrez&rendertyp e=abstract.
  117. Geles, K. G., Freiman, R. N., Liu, W.-L., Zheng, S., Voronina, E., and Tjian, R. (2006). Cell-type- selective induction of c-jun by TAF4b directs ovarian-specific transcription networks. Proceedings of the National Academy of Sciences of the United States of America 103, 2594– 2599. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1413803&tool=pmcentrez&renderty pe=abstract.
  118. Marafioti, T., Ascani, S., Pulford, K., Sabattini, E., Piccioli, M., Jones, M., Zinzani, P. L., Delsol, G., Mason, D. Y., and Pileri, S. a (2003). Expression of B-lymphocyte-associated transcription factors in human T-cell neoplasms. The American journal of pathology 162, 861–871. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1868085&tool=pmcentrez&renderty pe=abstract [Accessed October 22, 2012].
  119. Wollenberg, G. K., DeForge, L. E., Bolgos, G., and Remick, D. G. (1993). Differential expression of tumor necrosis factor and interleukin-6 by peritoneal macrophages in vivo and in culture. The American journal of pathology 143, 1121–1130. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1887059&tool=pmcentrez&renderty pe=abstract.
  120. Ovarian granulosa cell survival and proliferation requires the gonad-selective TFIID subunit TAF4b. Developmental biology 303, 715–726. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1950739&tool=pmcentrez&renderty pe=abstract [Accessed August 27, 2010].
  121. Kearns, J. D., Basak, S., Werner, S. L., Huang, C. S., and Hoffmann, A. (2006). IkappaBepsilon provides negative feedback to control NF-kappaB oscillations, signaling dynamics, and inflammatory gene expression. The Journal of cell biology 173, 659–664. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2063883&tool=pmcentrez&renderty pe=abstract.
  122. Sherry, B., and Cerami, A. (1988). Cachectin/tumor necrosis factor exerts endocrine, paracrine, and autocrine control of inflammatory responses. The Journal of cell biology 107, 1269–1277. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2115248&tool=pmcentrez&renderty pe=abstract.
  123. Shaw, L. M., Messier, J. M., and Mercurio, a M. (1990). The Activation Dependent Adhesion of Macrophages to Laminin Involves Cytoskeletal Anchoring and Phosphorylation of the oL6/31 Integrin. The Journal of cell biology 110, 2167–2174. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2116124&tool=pmcentrez&renderty pe=abstract.
  124. Koutroubas, G., Merika, M., and Thanos, D. (2008). Bypassing the requirements for epigenetic modifications in gene transcription by increasing enhancer strength. Molecular and cellular biology 28, 926–938. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2223377&tool=pmcentrez&renderty pe=abstract [Accessed August 27, 2010].
  125. Noursadeghi, M., Tsang, J., Haustein, T., Miller, R. F., Chain, B. M., and Katz, D. R. (2008). Quantitative imaging assay for NF-kappaB nuclear translocation in primary human macrophages. Journal of immunological methods 329, 194–200. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2225449&tool=pmcentrez&renderty pe=abstract [Accessed July 16, 2012].
  126. Liu, W., Coleman, R. A., Grob, P., King, D. S., Florens, L., Washburn, M. P., Geles, K. G., Yang, J. L., Ramey, V., Nogales, E., et al. (2008b). Structural changes in TAF4b-TFIID correlate with promoter selectivity. Molecular cell 29, 81–91. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2486835&tool=pmcentrez&renderty pe=abstract [Accessed August 12, 2011].
  127. Li, V. C., Davis, J. C., Lenkov, K., Bolival, B., Fuller, M. T., and Petrov, D. a (2009). Molecular evolution of the testis TAFs of Drosophila. Molecular biology and evolution 26, 1103–1116. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2727373&tool=pmcentrez&renderty pe=abstract.
  128. Pijnappel, W. P., Kolkman, A., Baltissen, M. P., Heck, A., and Timmers, H. M. (2009). Quantitative mass spectrometry of TATA binding protein-containing complexes and subunit phosphorylations during the cell cycle. Proteome science 7, 46. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2804597&tool=pmcentrez&renderty pe=abstract [Accessed October 11, 2012].
  129. O'Dea, E., and Hoffmann, A. (2010). The regulatory logic of the NF-kappaB signaling system. Cold Spring Harbor perspectives in biology 2, a000216. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2827908&tool=pmcentrez&renderty pe=abstract [Accessed June 28, 2010].
  130. Sen, R., and Smale, S. T. (2010). Selectivity of the NF-{kappa}B response. Cold Spring Harbor perspectives in biology 2, a000257. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2845200&tool=pmcentrez&renderty pe=abstract.
  131. Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., and Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science (New York, N.Y.) 327, 656–661. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2887389&tool=pmcentrez&renderty pe=abstract [Accessed July 4, 2011].
  132. Rodero, M. P., and Khosrotehrani, K. (2010). Skin wound healing modulation by macrophages. International journal of clinical and experimental pathology 3, 643–653. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2933384&tool=pmcentrez&renderty pe=abstract.
  133. Lovren, F., Pan, Y., Quan, A., Szmitko, P. E., Singh, K. K., Shukla, P. C., Gupta, M., Chan, L., Al- Omran, M., Teoh, H., et al. (2010). Adiponectin primes human monocytes into alternative anti- inflammatory M2 macrophages. American journal of physiology. Heart and circulatory physiology 299, H656–63. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2944489&tool=pmcentrez&renderty pe=abstract [Accessed October 15, 2012].
  134. Woodward, E. a, Prêle, C. M., Nicholson, S. E., Kolesnik, T. B., and Hart, P. H. (2010). The anti- inflammatory effects of interleukin-4 are not mediated by suppressor of cytokine signalling-1 (SOCS1). Immunology 131, 118–127. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2966764&tool=pmcentrez&renderty pe=abstract [Accessed October 20, 2011].
  135. Park, S. H., Park-Min, K.-H., Chen, J., Hu, X., and Ivashkiv, L. B. (2011). Tumor necrosis factor induces GSK3 kinase-mediated cross-tolerance to endotoxin in macrophages. Nature immunology 12, 607–615. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3258532&tool=pmcentrez&renderty pe=abstract [Accessed November 12, 2012].
  136. Westra, J., Doornbos-van der Meer, B., De Boer, P., Van Leeuwen, M. a, Van Rijswijk, M. H., and Limburg, P. C. (2004). Strong inhibition of TNF-alpha production and inhibition of IL-8 and COX-2 mRNA expression in monocyte-derived macrophages by RWJ 67657, a p38 mitogen- activated protein kinase (MAPK) inhibitor. Arthritis research & therapy 6, R384–92. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=464924&tool=pmcentrez&rendertyp e=abstract [Accessed March 12, 2012].
  137. Peralta, A. L., Malinarich, F., and Hermoso, M. A. (2007). Toll-like Receptors are Key Participants in Innate Immune Responses. Biological Research 40, 97–112.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten