Publikationsserver der Universitätsbibliothek Marburg

Titel:Struktur und Funktion von Flokkulinen aus Saccharomyces cerevisiae sowie weiterer pilzlicher Zellwandproteine
Autor:Veelders, Maik Stefan
Weitere Beteiligte: Essen, Lars-Oliver (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0051
URN: urn:nbn:de:hebis:04-z2013-00517
DOI: https://doi.org/10.17192/z2013.0051
DDC: Chemie
Titel (trans.):Structure and function of flocculins from Saccharomyces cerevisiae and other fungal cell wall proteins
Publikationsdatum:2013-02-20
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Flocculation, Kristallographie, Flokkulin, Adhäsin, Saccharomyces cerevisiae, Flokkulation, Domäne, Flocculin, Adhesin

Zusammenfassung:
Die Zellwand ist die primäre Interaktionsfläche von Hefezellen mit ihrer Umwelt. Sie besteht in ihrer inneren Schicht aus Chitin, β1,3- und β1,6-Glucanen, die für ihre Stabilität entscheidend sind. In der äußeren Schicht der Hefezellwand finden sich verschiedene Glyco-proteine, die für die Erkennung und Bindung von Zellen untereinander und die Interaktion mit ihrer weiteren Umgebung notwendig sind. Der Aufbau und Umbau der Zellwand selbst während des Zellzyklus der Hefe ist ein essentieller Vorgang, in den ebenfalls verschiedene Proteine, die in der Zellwand vorkommen und Glucane prozessieren, involviert sind. In dieser Arbeit wurden Adhäsine und das innere Zellwandprotein Sun4 aus der Bäckerhefe Saccharomyces cerevisiae und der humanpathogenen Hefe Candida glabrata strukturell und funktionell untersucht. Die untersuchten pilzlichen Adhäsine Flo5, Flo11 und Epa1 vermitteln vegetative Adhäsion der Hefen entweder an weitere Hefezellen, abiotische Substrate oder Wirtszellen. Sie bilden eine Familie mit einer gemeinsamen Superstruktur, die aus einer adhäsionsvermittelnden, N-terminalen A-Domäne, einer mittleren, hochglycosylierten B Domäne und einer C-terminalen C-Domäne mit Glycosylphosphatidylinositolanker besteht. In dieser Arbeit war es möglich, die molekularen Strukturen der adhäsionsvermittelnden Domänen Flo5A, Epa1A und Flo11A bei atomaren Auflösungen (0.89-1.5 Å) zu bestimmen. Dabei wurde deutlich, dass die mit der PA14-Domäne aus dem Anthrax-protektiven Antigen verwandten A-Domänen von Flo5 und Epa1 eine C-Typ-Lektin-artige Aktivität aufweisen und Glycanstrukturen auf anderen Hefezellen (Flo5A) oder Wirtszellen (Epa1A) binden. Native, für die biologische Funktion relevante Liganden konnten in den Strukturen beobachtet und Bindungskonstanten bestimmt werden. Die Flo11A-Domäne zeigt einen vollständig neuen Faltungstyp, offenbarte ihre Ligandspezifität jedoch nicht durch strukturelle Untersuchungen. Allerdings konnte ein lektinartiger Mechanismus ausgeschlossen und ein auf aromatischen Bändern beruhender, homotypischer Mechanismus vorgeschlagen werden. Die Struktur der in Pilzen hochkonservierten C-terminalen SUN-Domäne des inneren Zellwandproteins Sun4 aus S. cerevisiae konnte ebenfalls in atomarer Auflösung aufgeklärt und Hinweise auf eine β-Glucanase Aktivität dieser Domäne gefunden werden. Durch strukturbasiertes Design sollte die Entwicklung von fungiziden Medikamenten gegen diese in Pilzen ubiquitäre, aber exklusiv vorkommende Domäne möglich sein. Ein heterotypischer Gadolinium-Oxo-Supercluster, der während der Phasierung auf der Oberfläche von Flo5A beobachtet wurde, könnte als Templat für die Inkorporation von Gadolinium in verschiedene Proteine und so langfristig für die Entwicklung eines biokompatiblen und gewebespezifischen MRT-Kontrastmittels dienen.

Bibliographie / References

  1. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227: 680-685.
  2. Maestre-Reyna, M., Structural and functional studies of mucin-interacting adhesion domains from Candida glabrata and Helicobacter pylori, Dissertation, Fachbereich Chemie 2011, Philipps-Universität Marburg
  3. Gasteiger, E., et al., Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, 2005: 571–607.
  4. Wüthrich, K., NMR of proteins and nucleic acids. Vol. 3. 1986: Wiley-Interscience.
  5. Terwilliger, T.C. and J. Berendzen, Automated MAD and MIR structure solution. Acta crystallographica. Section D, Biological crystallography, 1999. 55: 849-61.
  6. West, S.A. and A. Gardner, Altruism, spite, and greenbeards. Science, 2010. 327: 1341-4.
  7. Baker, N.A., et al., Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98: 10037-41.
  8. Dawkins, R., The Selfish Gene1976, Oxford: Oxford Univ. Press. Literatur ___________________________________________________________________________ 121
  9. Bennett, J. and K.J. Scott, Quantitative staining of fraction I protein in polyacrylamide gels using Coomassie brillant blue. Analytical Biochemistry, 1971. 43: 173-82.
  10. Mullis, K.B. and F.A. Faloona, Specific synthesis of DNA in vitro via a polymerase- catalyzed chain reaction. Methods in enzymology, 1987. 155: 335-350.
  11. Larkin, M., et al., Clustal W and Clustal X version 2.0. Bioinformatics, 2007. 23: 2947-2948.
  12. Lommel, M. and S. Strahl, Protein O-mannosylation: Conserved from bacteria to humans. Glycobiology, 2009. 19: 816-828.
  13. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997. 25: 3389-3402.
  14. Ferre, F. and P. Clote, DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Research, 2006. 34: 182-5.
  15. Berman, H., et al., The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Research, 2007. 35: 301-3.
  16. Ashkenazy, H., et al., ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 2010. 38: 529-33.
  17. Passerini, A., M. Lippi, and P. Frasconi, MetalDetector v2.0: predicting the geometry of metal binding sites from protein sequence. Nucleic Acids Research, 2011. 39: 288- 92.
  18. Munshi, S., et al., Rapid X-ray diffraction analysis of HIV-1 protease-inhibitor complexes: inhibitor exchange in single crystals of the bound enzyme. Acta Crystallographica Section D: Biological Crystallography, 1998. 54: 1053-1060.
  19. Zara, G., et al., FLO11 gene length and transcriptional level affect biofilm-forming ability of wild flor strains of Saccharomyces cerevisiae. Microbiology, 2009. 155: 3838-46.
  20. Integrated_DNA_Technologies. OligoAnalyzer 3.1. [zitiert am 07.03.2012]; URL: http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer/
  21. Govender, P., S. Kroppenstedt, and F.F. Bauer, Novel wine-mediated FLO11 flocculation phenotype of commercial Saccharomyces cerevisiae wine yeast strains with modified FLO gene expression. FEMS microbiology letters, 2011. 317: 117-26.
  22. Brunger, A.T., Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature, 1992. 355: 472-5.
  23. Patterson, A., A Fourier series method for the determination of the components of interatomic distances in crystals. Physical Review, 1934. 46: 372.
  24. Javadekar, V.S., et al., A mannose-binding protein from the cell surface of flocculent Saccharomyces cerevisiae (NCIM 3528): its role in flocculation. Yeast, 2000. 16: 99- 110.
  25. Hendrickson, W.A., Analysis of protein structure from diffraction measurement at multiple wavelengths. Transactions of the American Crystallographic Association, 1985. 21.
  26. Morris, R.J., A. Perrakis, and V.S. Lamzin, ARP/wARP and automatic interpretation of protein electron density maps. Methods in enzymology, 2003. 374: 229-44.
  27. Sheldrick, G.M., A short history of SHELX. Acta crystallographica. Section A, Foundations of crystallography, 2008. 64: 112-22.
  28. Castillo, L., et al., A study of the Candida albicans cell wall proteome. Proteomics, 2008. 8: 3871-81.
  29. Brennan, S. and P. Cowan, A suite of programs for calculating x‐ray absorption, reflection, and diffraction performance for a variety of materials at arbitrary wavelengths. Review of scientific instruments, 1992. 63: 850-853.
  30. Costes, J.P., F. Dahan, and F. Nicodème, A trinuclear gadolinium complex: structure and magnetic properties. Inorganic Chemistry, 2001. 40: 5285-5287.
  31. Cowie, D.B. and G.N. Cohen, Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur. Biochimica et biophysica acta, 1957. 26: 252-261.
  32. Cowtan, K., Book of Fourier, 1994.
  33. Gill, S.C. and P.H. von Hippel, Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry, 1989. 182: 319-26.
  34. Pitarch, A., C. Nombela, and C. Gil, Cell wall fractionation for yeast and fungal proteomics. Methods in molecular biology, 2008. 425: 217-39.
  35. Rhodes, G., Crystallography made crystal clear: a guide for users of macromolecular models2006: Academic press.
  36. Chevrier, B., et al., Crystal structure of Aeromonas proteolytica aminopeptidase: A prototypical member of the co-catalytic zinc enzyme family. Structure, 1994. 2: 283.
  37. Hendrickson, W.A., J.L. Smith, and S. Sheriff, Direct phase determination based on anomalous scattering. Methods in enzymology, 1985. 115: 41-55.
  38. Kuntal, B.K., P. Aparoy, and P. Reddanna, EasyModeller: A graphical interface to MODELLER. BMC research notes, 2010. 3: 226.
  39. Incardona, M.F., et al., EDNA: a framework for plugin-based applications applied to X-ray experiment online data analysis. Journal of synchrotron radiation, 2009. 16: 872-879.
  40. Ishigami, M., et al., FLO11 is essential for flor formation caused by the C-terminal deletion of NRG1 in Saccharomyces cerevisiae. FEMS microbiology letters, 2004. 237: 425-30.
  41. Porath, J., Gel filtration: a method for desalting and group separation. Nature, 1959. 183: 1657-59.
  42. Cowtan, K., Generic representation and evaluation of properties as a function of position in reciprocal space. Journal of applied crystallography, 2002. 35: 655-663.
  43. Adelberg, E.A. and S.N. Burns, Genetic variation in the sex factor of Escherichia coli. Journal of Bacteriology, 1960. 79: 321-30.
  44. DiMaio, F., et al., Improved molecular replacement by density-and energy-guided protein structure optimization. Nature, 2011. 473: 540-3.
  45. Krissinel, E. and K. Henrick, Inference of macromolecular assemblies from crystalline state. Journal of molecular biology, 2007. 372: 774-97.
  46. Shmueli, U., International tables for crystallography: Reciprocal space. Vol. 2. 2008: Wiley.
  47. Edwards, J.E., Jr., Invasive candida infections--evolution of a fungal pathogen. The New England journal of medicine, 1991. 324: 1060-2.
  48. Zeth, K., et al., Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low-and high-iron states. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101: 13780-5.
  49. Tamura, K., et al., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular biology and evolution, 2007. 24: 1596-9.
  50. Porath, J., et al., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975. 258: 598-599.
  51. Greenfield, N.J., Methods to Estimate the Conformation of Proteins and Polypeptides from Circular Dichroism Data. Analytical Biochemistry, 1996. 235: 1-10.
  52. Rossmann, M.G., et al., Molecular symmetry of glyceraldehyde-3-phosphate dehydrogenase. Journal of molecular biology, 1972. 64: 237-45.
  53. Haldar, S., et al., Moving Iron through ferritin protein nanocages depends on residues throughout each four alpha-helix bundle subunit. The Journal of biological chemistry, 2011. 286: 25620-7.
  54. Pelissier, P., et al., NCA3, a nuclear gene involved in the mitochondrial expression of subunits 6 and 8 of the Fo-F1 ATP synthase of S. cerevisiae. Current Genetics, 1995. 27: 409-16.
  55. Shuman, S., Novel approach to molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase. Journal of Biological Chemistry, 1994. 269: 32678- 32684.
  56. Stokes, G.G., On the change of refrangibility of light. Philosophical Transactions of the Royal Society of London, 1852. 142: 463-562.
  57. Leslie, A.G.W. and H.R. Powell, Processing diffraction data with MOSFLM. Evolving Methods for Macromolecular Crystallography, 2007. 245: 41-51.
  58. Quiocho, F., Protein-carbohydrate interactions: basic molecular features. Pure and Applied Chemistry, 1989. 61: 1293-1306.
  59. Davies, D.R. and D.M. Segal, Protein Crystallization: Micro Techniques Involving Vapor Diffusion. Methods in Enzymology, 1971. 22: 266-269.
  60. Lehle, L., S. Strahl, and W. Tanner, Protein glycosylation, conserved from yeast to man. A model organism helps elucidating congenital human diseases. Angewandte Chemie, International Edition in English, 2006. 45: 6802-6818.
  61. Molina, M., et al., Protein localisation approaches for understanding yeast cell wall biogenesis. Microscopy research and technique, 2000. 51: 601-12.
  62. Wuthrich, K., Protein structure determination in solution by NMR spectroscopy. The Journal of biological chemistry, 1990. 265: 22059-62.
  63. Eswar, N., et al., Protein structure modeling with MODELLER. Methods in molecular biology, 2008. 426: 145-59.
  64. Caravan, P., Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Accounts of chemical research, 2009. 42: 851-62.
  65. Groes, M., et al., Purification, crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding domain of flocculin, a cell-adhesion molecule from Saccharomyces carlsbergensis. Acta Crystallographica Section D: Biological Crystallography, 2002. 58: 2135-7.
  66. Colman, P., L. Weaver, and B. Matthews, Rare earths as isomorphous calcium replacements for protein crystallography. Biochemical and biophysical research communications, 1972. 46: 1999-2005.
  67. Henderson, R., Realizing the potential of electron cryo-microscopy. Quarterly reviews of biophysics, 2004. 37: 3-13.
  68. Murshudov, G.N., A.A. Vagin, and E.J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method. Acta crystallographica. Section D, Biological crystallography, 1997. 53: 240-55.
  69. Evans, P., Scaling and assessment of data quality. Acta crystallographica. Section D, Biological crystallography, 2006. 62: 72-82.
  70. Krissinel, E. and K. Henrick, Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta crystallographica. Section D, Biological crystallography, 2004. 60: 2256-68.
  71. Jancarik, J. and S.H. Kim, Sparse matrix sampling: a screening method for crystallization of proteins. Journal of applied crystallography, 1991. 24: 409-411.
  72. Koshland Jr, D., Stereochemistry and the mechanism of enzymatic reactions. Biological Reviews, 1953. 28: 416-436.
  73. Sondergaard, C.R., et al., Structural artifacts in protein-ligand X-ray structures: implications for the development of docking scoring functions. Journal of medicinal chemistry, 2009. 52: 5673-84.
  74. Weis, W.I. and K. Drickamer, Structural basis of lectin-carbohydrate recognition. Annual review of biochemistry, 1996. 65: 441-473.
  75. Kiselyov, V.V., et al., Structural biology of NCAM homophilic binding and activation of FGFR. Journal of Neurochemistry, 2005. 94: 1169-1179.
  76. Blow, N., Structural genomics: inside a protein structure initiative center. Nature methods, 2008. 5: 203-7.
  77. Walker, E.H., et al., Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature, 1999. 402: 313-319.
  78. Abrahams, J.P., et al., Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature, 1994. 370: 621-628.
  79. Weis, W.I., K. Drickamer, and W.A. Hendrickson, Structure of a C-type mannose- binding protein complexed with an oligosaccharide. Nature, 1992. 360: 127-34.
  80. Weis, W.I., et al., Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science, 1991. 254: 1608- 1615.
  81. Davies, G. and B. Henrissat, Structures and mechanisms of glycosyl hydrolases. Structure, 1995. 3: 853-9.
  82. The CCP4 suite: programs for protein crystallography. Acta crystallographica. Section D, Biological crystallography, 1994. 50: 760-3.
  83. Saxena, A.K., et al., The essential mosquito-stage P25 and P28 proteins from Plasmodium form tile-like triangular prisms. Nature structural & molecular biology, 2006. 13: 90-1.
  84. Ma, B.Q., et al., The formation of Gd4O4 cubane cluster controlled by L-valine. New Journal of Chemistry, 2000. 24: 251-252.
  85. Bowman, S.M. and S.J. Free, The structure and synthesis of the fungal cell wall. BioEssays : news and reviews in molecular, cellular and developmental biology, 2006. 28: 799-808.
  86. Green, D., V. Ingram, and M. Perutz, The structure of haemoglobin. IV. Sign determination by the isomorphous replacement method. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1954. 225: 287- 307.
  87. Crick, F. and B.S. Magdoff, The theory of the method of isomorphous replacement for protein crystals. I. Acta Crystallographica, 1956. 9: 901-908.
  88. Goncalves, S., et al., Three-Dimensional Structure of Mannosyl-3-phosphoglycerate Phosphatase from Thermus thermophilus HB27: A New Member of the Haloalcanoic Acid Dehalogenase Superfamily. Biochemistry, 2011. 50: 9551-67.
  89. Harker, D., X-ray diffraction applied to crystalline proteins. Advances in biological and medical physics, 1956. 4: 1-22.
  90. Dasgupta, S., et al., Extent and nature of contacts between protein molecules in crystal lattices and between subunits of protein oligomers. Proteins: Structure, Function, and Bioinformatics, 1997. 28: 494-514.
  91. Stratford, M. and S. Assinder, Yeast flocculation: Flo1 and NewFlo phenotypes and receptor structure. Yeast, 1991. 7: 559-74.
  92. Battye, T.G., et al., iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta crystallographica. Section D, Biological crystallography, 2011. 67: 271-81.
  93. McCoy, A.J., et al., Phaser crystallographic software. Journal of applied crystallography, 2007. 40: 658-674.
  94. Steinkellner, G., et al., VASCo: computation and visualization of annotated protein surface contacts. BMC bioinformatics, 2009. 10: 32.
  95. Golovin, A. and K. Henrick, MSDmotif: exploring protein sites and motifs. BMC bioinformatics, 2008. 9: 312.
  96. Kelly, S.M. and N.C. Price, The use of circular dichroism in the investigation of protein structure and function. Current Protein & Peptide Science, 2000. 1: 349-384.
  97. Liu, G., et al., NMR data collection and analysis protocol for high-throughput protein structure determination. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102: 10487-92.
  98. Lesage, G. and H. Bussey, Cell wall assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 2006. 70: 317-343.
  99. Ceroni, A., et al., DISULFIND: a disulfide bonding state and cysteine connectivity prediction server. Nucleic Acids Research, 2006. 34: 177-81.
  100. Fidalgo, M., et al., Adaptive evolution by mutations in the FLO11 gene. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103: 11228-33.
  101. Miki, B.L.A., et al., Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. Journal of Bacteriology, 1982. 150: 878- 889.
  102. Bessette, P.H., et al., Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96: 13703.
  103. Hassell, A.M., et al., Crystallization of protein-ligand complexes. Acta crystallographica. Section D, Biological crystallography, 2007. 63: 72-9.
  104. Smukalla, S., et al., FLO1 Is a Variable Green Beard Gene that Drives Biofilm-like Cooperation in Budding Yeast. Cell, 2008. 135: 726-737.
  105. Panjikar, S., et al., On the combination of molecular replacement and single- wavelength anomalous diffraction phasing for automated structure determination.
  106. Roy, A., A. Kucukural, and Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction. Nature protocols, 2010. 5: 725-38.
  107. Ritch, J.J., et al., The Saccharomyces SUN gene, UTH1, is involved in cell wall biogenesis. FEMS yeast research, 2010. 10: 168-176.
  108. Emsley, P., et al., Features and development of Coot. Acta crystallographica. Section D, Biological crystallography, 2010. 66: 486-501.
  109. Goossens, K.V., et al., The N-terminal domain of the Flo1 flocculation protein from Saccharomyces cerevisiae binds specifically to mannose carbohydrates. Eukaryotic Cell, 2011. 10: 110-7.
  110. Schmidt, A., et al., Crystal structure of small protein crambin at 0.48 A resolution. Acta crystallographica. Section F, Structural biology and crystallization communications, 2011. 67: 424-8.
  111. Vachova, L., et al., Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. The Journal of cell biology, 2011. 194: 679-87.
  112. Vogelstein, B. and D. Gillespie, Preparative and Analytical Purification of DNA from Agarose. Proceedings of the National Academy of Sciences of the United States of America, 1979. 76: 615-619.
  113. Bertani, G., STUDIES ON LYSOGENESIS I.: The Mode of Phage Liberation by Lysogenic Escherichia coli1. Journal of Bacteriology, 1951. 62: 293.
  114. Hendrickson, W.A., J.R. Horton, and D.M. LeMaster, Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. The EMBO Journal, 1990. 9: 1665-72.
  115. Sanger, F., S. Nicklen, and A.R. Coulson, DNA Sequencing with Chain-Terminating Inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 1977. 74: 5463-5467.
  116. DeLano, W.L., The PyMOL molecular graphics system. 2002.
  117. Kyte, J. and R.F. Doolittle, A simple method for displaying the hydropathic character of a protein. Journal of molecular biology, 1982. 157: 105-32.
  118. Bergfors, T., Seeds to crystals. Journal of structural biology, 2003. 142: 66-76.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten