Publikationsserver der Universitätsbibliothek Marburg

Titel:Characterization of the Esp signalosome: Two hybrid histidine kinases utilize a novel signaling mechanism to regulate developmental progression in Myxococcus xanthus.
Autor:Schramm, Andreas
Weitere Beteiligte: Søgaard-Andersen, Lotte (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/1050
URN: urn:nbn:de:hebis:04-z2012-10508
DOI: https://doi.org/10.17192/z2012.1050
DDC: Biowissenschaften, Biologie
Titel (trans.):Charakterisierung des Esp Signalosoms: Zwei Hybridhistidinkinasen benutzen einen neuen Signaltransduktionsmechanismus um den Entwicklungszyklus von Myxococcus xanthus zu regulieren.
Publikationsdatum:2013-02-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Phosphatase activity, Protein-Histidin-Kinasen, Proteolyse, Zweikomponentensystem, Protein-Histidin-Phosphatase, Myxococcus xanthus, Two component system, Hybrid histidine kinase, Proteolysis, Signaltransduktion
Referenziert von:

Summary:
Histidine-aspartate signaling systems are used by bacteria, archaea and eukarya to integrate stimuli over time and space generating coordinated, fine-tuned cellular responses. A hallmark feature is the high modularity of the signaling protein modules which can form simple ’two-component‘ systems, and also sophisticated ’multi-component’ systems. The deltaproteobacterium Myxococcus xanthus contains a large repertoire of signaling proteins, many of which regulate its complex multicellular developmental program. In this respect, one important systems is the Esp signaling system, consisting of the hybrid histidine protein kinase, EspA, two serine/threonine protein kinases (PktA5 and PktB8), and a putative transport protein (EspB). In the presented study, I assign an orphan hybrid histidine protein kinase, EspC, to the Esp signaling system which negatively regulates progression through the M. xanthus developmental program. The genetic analysis revealed that EspC is an essential component of this system, because ΔespA, ΔespC, and ΔespAΔespC double mutants shared an identical early developmental phenotype. Surprisingly, disruption of EspC’s auto-phosphorylation in vivo did not produce a mutant developmental phenotype, whereas substitution of its phospho-accepting residue within the receiver domain resulted in the null phenotype. Furthermore, it is shown that although the EspC histidine kinase could efficiently autophosphorylate in vitro, it did not act as a phospho-donor to its own receiver domain. Instead, both, in vitro and in vivo analyses elucidated that the phospho-donor instead is EspA’s histidine kinase. Therefore, EspA and EspC participate in a novel hybrid histidine protein kinase signaling mechanism involving both inter- and intraprotein phosphotransfer. This inter- and intraprotein phosphotransfer results in the combined phosphorylation of EspA’s and EspC’s receiver domains which represents the output of the Esp signaling system. Further genetic analyses suggested that this Esp system is regulated on the level of its phosphatase activity, likely involving the sensing domains of EspC for regulation. Finally, I uncovered that the Esp system stimulates the proteolytic turnover of MrpC, a crucial transcription factor of the developmental program, via as yet unidentified serine protease. Altogether, these data unravel a novel signaling mechanism of His-Asp signaling systems, and thus expand the knowledge about the complexity and plasticity of these crucial signal transduction systems.

Bibliographie / References

  1. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685
  2. Bertani, G. (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62, 293-300
  3. McEvoy, M.M., et al. (1999) Identification of the binding interfaces on CheY for two of its targets, the phosphatase CheZ and the flagellar switch protein fliM. J Mol Biol 289, 1423-1433
  4. Harcum, S.W. and Bentley, W.E. (1993) Detection, Quantification, and Characterization of Proteases in Recombinant Escherichia coli. Biotechnology Techniques 7, 441-447
  5. Rawlings, N.D. (2010) Peptidase inhibitors in the MEROPS database. Biochimie 92, 1463-1483
  6. Nariya, H. and Inouye, M. (2008) MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132, 55 REFERENCES
  7. Rolbetzki, A., et al. (2008) Regulated secretion of a protease activates intercellular signaling during fruiting body formation in M. xanthus. Dev Cell 15, 627-634
  8. Goulian, M. (2010) Two-component signaling circuit structure and properties. Curr Opin Microbiol 13, 184-189
  9. Yamada, S., et al. (2009) Structure of PAS-linked histidine kinase and the response regulator complex. Structure 17, 1333-1344
  10. Laub, M.T., et al. (2007) Phosphotransfer profiling: systematic mapping of two- component signal transduction pathways and phosphorelays. Methods Enzymol 423, 531-548
  11. Lee, B., et al. (2010) Two-component systems and regulation of developmental progression in Myxococcus xanthus. Methods Enzymol 471, 253-278
  12. Kato, M., et al. (1997) Insights into multistep phosphorelay from the crystal structure of the C-terminal HPt domain of ArcB. Cell 88, 717-723
  13. Varughese, K.I., et al. (1998) Formation of a novel four-helix bundle and molecular recognition sites by dimerization of a response regulator phosphotransferase. Mol Cell 2, 485-493
  14. Jiang, P., et al. (2000) Functional dissection of the dimerization and enzymatic activities of Escherichia coli nitrogen regulator II and their regulation by the PII protein. Biochemistry 39, 13433-13449
  15. Wanner, B.L. (1996) Signal transduction in the control of phosphate-regulated genes of Escherichia coli. Kidney Int 49, 964-967
  16. Zusman, D.R., et al. (2007) Chemosensory pathways, motility and development in Myxococcus xanthus. Nat Rev Microbiol 5, 862-872
  17. Ellehauge, E., et al. (1998) The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. Mol Microbiol 30, 807-817
  18. Cho, K. and Zusman, D.R. (1999) Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol Microbiol 34, 714-725
  19. Garza, A.G., et al. (2000) The asgE locus is required for cell-cell signalling during Myxococcus xanthus development. Mol Microbiol 35, 812-824
  20. Jiang, M., et al. (2000) Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38, 535-542
  21. Kruse, T., et al. (2001) C-signal: a cell surface-associated morphogen that induces and co-ordinates multicellular fruiting body morphogenesis and sporulation in Myxococcus xanthus. Mol Microbiol 40, 156-168
  22. Klauck, E., et al. (2001) Role of the response regulator RssB in sigma recognition and initiation of sigma proteolysis in Escherichia coli. Mol Microbiol 40, 1381- 1390
  23. Alves, R. and Savageau, M.A. (2003) Comparative analysis of prototype two- component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological function. Molecular Microbiology 48, 25- 51
  24. Ferrieres, L. and Clarke, D.J. (2003) The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol 50, 1665-1682
  25. Viswanathan, P., et al. (2007) Combinatorial regulation of genes essential for Myxococcus xanthus development involves a response regulator and a LysR-type regulator. Proc Natl Acad Sci U S A 104, 7969-7974
  26. Strickland, D., et al. (2008) Light-activated DNA binding in a designed allosteric protein. Proc Natl Acad Sci U S A 105, 10709-10714
  27. Zhu, Y., et al. (2000) Phosphatase activity of histidine kinase EnvZ without kinase catalytic domain. Proc Natl Acad Sci U S A 97, 7808-7813
  28. Jagadeesan, S., et al. (2009) A Novel "Four-component" Two-component Signal Transduction Mechanism Regulates Developmental Progression in Myxococcus xanthus. Journal of Biological Chemistry 284, 21435-21445
  29. Fleischer, R., et al. (2007) Purification, reconstitution, and characterization of the CpxRAP envelope stress system of Escherichia coli. J Biol Chem 282, 8583-8593
  30. Larkin, M.A., et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948
  31. Studemann, A., et al. (2003) Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. EMBO J 22, 4111-4120
  32. Huntley, S., et al. (2011) Comparative genomic analysis of fruiting body formation in Myxococcales. Mol Biol Evol 28, 1083-1097 REFERENCES 111
  33. Altschul, S.F., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402
  34. Zhang, W. and Shi, L. (2005) Distribution and evolution of multiple-step phosphorelay in prokaryotes: lateral domain recruitment involved in the formation of hybrid-type histidine kinases. Microbiology 151, 2159-2173
  35. Harris, B.Z., et al. (1998) The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes Dev 12, 1022-1035
  36. Kearns, D.B. and Losick, R. (2005) Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19, 3083-3094
  37. Lobedanz, S. and Sogaard-Andersen, L. (2003) Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev 17, 2151-2161
  38. Zhou, Y., et al. (2001) The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev 15, 627-637
  39. Singer, M. and Kaiser, D. (1995) Ectopic production of guanosine penta-and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev 9, 1633-1644
  40. Tsuzuki, M., et al. (1995) Phosphotransfer circuitry of the putative multi-signal transducer, ArcB, of Escherichia coli: in vitro studies with mutants. Mol Microbiol 18, 953-962
  41. Rasmussen, A.A., et al. (2006) Four signalling domains in the hybrid histidine protein kinase RodK of Myxococcus xanthus are required for activity. Mol Microbiol 60, 525-534
  42. Stein, E.A., et al. (2006) Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthus. Mol Microbiol 60, 1414-1431
  43. Inclan, Y.F., et al. (2008) The receiver domain of FrzE, a CheA-CheY fusion protein, regulates the CheA histidine kinase activity and downstream signalling to the A-and S-motility systems of Myxococcus xanthus. Mol Microbiol 68, 1328- 1339
  44. Siryaporn, A. and Goulian, M. (2008) Cross-talk suppression between the CpxA- CpxR and EnvZ-OmpR two-component systems in E. coli. Mol Microbiol 70, 494- 506
  45. Petters, T., et al. (2012) The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus. Mol Microbiol 84, 147-165
  46. Konovalova, A., et al. (2012) Two intercellular signals required for fruiting body formation in Myxococcus xanthus act sequentially but non-hierarchically. Mol Microbiol 86, 65-81
  47. Sudha, V.T., et al. (2008) Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy 63, 768-776
  48. Catlett, N.L., et al. (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2, 1151-1161
  49. Huntley, S., et al. (2012) Complete genome sequence of the fruiting myxobacterium Corallococcus coralloides DSM 2259. J Bacteriol 194, 3012-3013
  50. Chen, Y.E., et al. (2009) Dynamics of Two Phosphorelays Controlling Cell Cycle Progression in Caulobacter crescentus. Journal of Bacteriology 191, 7417-7429
  51. Romagnoli, S. and Tabita, F.R. (2007) Phosphotransfer reactions of the CbbRRS three-protein two-component system from Rhodopseudomonas palustris CGA010 appear to be controlled by an internal molecular switch on the sensor kinase. J Bacteriol 189, 325-335
  52. Wegener-Feldbrugge, S. and Sogaard-Andersen, L. (2009) The atypical hybrid histidine protein kinase RodK in Myxococcus xanthus: spatial proximity supersedes kinetic preference in phosphotransfer reactions. J Bacteriol 191, 1765-1776
  53. Gutu, A.D., et al. (2010) Kinetic characterization of the WalRKSpn (VicRK) two- component system of Streptococcus pneumoniae: dependence of WalKSpn (VicK) phosphatase activity on its PAS domain. J Bacteriol 192, 2346-2358
  54. Galperin, M.Y. (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188, 4169-4182
  55. Li, Z.F., et al. (2011) Genome sequence of the halotolerant marine bacterium Myxococcus fulvus HW-1. J Bacteriol 193, 5015-5016
  56. Cho, K., et al. (2000) Developmental aggregation of Myxococcus xanthus requires frgA, an frz-related gene. J Bacteriol 182, 6614-6621
  57. Garza, A.G., et al. (2000) Control of asgE expression during growth and development of Myxococcus xanthus. J Bacteriol 182, 6622-6629
  58. Teplitski, M., et al. (2003) Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella. J Bacteriol 185, 7257-7265
  59. Carmany, D.O., et al. (2003) Genetic and biochemical studies of phosphatase activity of PhoR. J Bacteriol 185, 1112-1115
  60. Baruah, A., et al. (2004) Mutational analysis of the signal-sensing domain of ResE histidine kinase from Bacillus subtilis. J Bacteriol 186, 1694-1704
  61. Willett, J.W. and Kirby, J.R. (2011) CrdS and CrdA comprise a two-component system that is cooperatively regulated by the Che3 chemosensory system in Myxococcus xanthus. MBio 2
  62. Kroos, L. (2007) The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annu Rev Genet 41, 13-39
  63. Bueno, R., et al. (1985) Role of Glnb and Glnd Gene-Products in Regulation of the Glnalg Operon of Escherichia-Coli. Journal of Bacteriology 164, 816-822
  64. Tojo, N., et al. (1993) Cloning and nucleotide sequence of the Myxococcus xanthus lon gene: indispensability of lon for vegetative growth. J Bacteriol 175, 2271-2277
  65. Hagiwara, D., et al. (2003) Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 185, 5735-5746
  66. Sambrook, J., et al. (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  67. Iuchi, S., et al. (1989) A second global regulator gene (arcB) mediating repression of enzymes in aerobic pathways of Escherichia coli. J Bacteriol 171, 868-873
  68. Kuspa, A., et al. (1992) A-signalling and the cell density requirement for Myxococcus xanthus development. J Bacteriol 174, 7360-7369
  69. Ng, W.L. and Bassler, B.L. (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43, 197-222
  70. Menon, A.S. and Goldberg, A.L. (1987) Binding of nucleotides to the ATP- dependent protease La from Escherichia coli. J Biol Chem 262, 14921-14928
  71. Shi, X., et al. (2008) Bioinformatics and experimental analysis of proteins of two- component systems in Myxococcus xanthus. J Bacteriol 190, 613-624
  72. Schneiker, S., et al. (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25, 1281-1289
  73. Varughese, K.I. (2005) Conformational changes of Spo0F along the phosphotransfer pathway. J Bacteriol 187, 8221-8227
  74. Huynh, T.N., et al. (2010) Conserved mechanism for sensor phosphatase control of two-component signaling revealed in the nitrate sensor NarX. Proc Natl Acad Sci U S A 107, 21140-21145
  75. Ninfa, A.J., et al. (1988) Crosstalk between bacterial chemotaxis signal transduction proteins and regulators of transcription of the Ntr regulon: evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransfer mechanism. Proc Natl Acad Sci U S A 85, 5492-5496
  76. Fisher, S.L., et al. (1995) Cross-talk between the histidine protein kinase VanS and the response regulator PhoB. Characterization and identification of a VanS domain that inhibits activation of PhoB. J Biol Chem 270, 23143-23149
  77. O'Connor, K.A. and Zusman, D.R. (1991) Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores. J Bacteriol 173, 3318-3333
  78. Thony-Meyer, L. and Kaiser, D. (1993) devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J Bacteriol 175, 7450-7462
  79. Swamy, K.H. and Goldberg, A.L. (1981) E. coli contains eight soluble proteolytic activities, one being ATP dependent. Nature 292, 652-654
  80. Plamann, L., et al. (1994) Evidence that asgB encodes a DNA-binding protein essential for growth and development of Myxococcus xanthus. J Bacteriol 176, 2013-2020
  81. Capra, E.J. and Laub, M.T. (2012) Evolution of Two-Component Signal Transduction Systems. Annu Rev Microbiol 180 Groban, E.S., et al. (2009) Kinetic buffering of cross talk between bacterial two- component sensors. J Mol Biol 390, 380-393
  82. Lopez, D. and Kolter, R. (2010) Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev 34, 134-149
  83. Ogawa, M., et al. (1996) FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol Microbiol 22, 757-767
  84. Hsing, W. and Silhavy, T.J. (1997) Function of conserved histidine-243 in phosphatase activity of EnvZ, the sensor for porin osmoregulation in Escherichia coli. J Bacteriol 179, 3729-3735 REFERENCES 103
  85. Kuspa, A. and Kaiser, D. (1989) Genes required for developmental signalling in Myxococcus xanthus: three asg loci. J Bacteriol 171, 2762-2772
  86. Salmon, K.A., et al. (2005) Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA. J Biol Chem 280, 15084-15096
  87. Gao, Z., et al. (2008) Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem 283, 23801-23810 REFERENCES 101
  88. Inoue, H., et al. (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23-28
  89. Yadav, S.C., et al. (2011) Identification and characterization of cysteine proteinases of Trypanosoma evansi. Parasitol Res 109, 559-565
  90. Abramoff, M.D., Magalhaes, P.J., Ram, S.J. (2004) Image Processing with ImageJ. Biophotonics International 11, 7
  91. Burbulys, D., et al. (1991) Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545-552
  92. Schramm, A., et al. (2012) Intra-and Interprotein Phosphorylation between Two- hybrid Histidine Kinases Controls Myxococcus xanthus Developmental Progression. J Biol Chem 287, 25060-25072
  93. Georgellis, D., et al. (1997) In vitro phosphorylation study of the arc two- component signal transduction system of Escherichia coli. J Bacteriol 179, 5429- 5435
  94. Silva, J.C., et al. (1998) In vivo characterization of the type A and B vancomycin- resistant enterococci (VRE) VanRS two-component systems in Escherichia coli: a nonpathogenic model for studying the VRE signal transduction pathways. Proc Natl Acad Sci U S A 95, 11951-11956
  95. Nakano, M.M. and Zhu, Y. (2001) Involvement of ResE phosphatase activity in down-regulation of ResD-controlled genes in Bacillus subtilis during aerobic growth. J Bacteriol 183, 1938-1944
  96. Hoch, J.A. and Varughese, K.I. (2001) Keeping signals straight in phosphorelay signal transduction. J Bacteriol 183, 4941-4949
  97. Iuchi, S. and Lin, E.C. (1992) Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli. J Bacteriol 174, 3972-3980
  98. Zhou, H., et al. (1995) NMR studies of the phosphotransfer domain of the histidine kinase CheA from Escherichia coli: assignments, secondary structure, general fold, and backbone dynamics. Biochemistry 34, 13858-13870
  99. Igo, M.M., et al. (1989) Phosphorylation and dephosphorylation of a bacterial transcriptional activator by a transmembrane receptor. Genes Dev 3, 1725-1734
  100. Ueki, T., et al. (1996) Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene 183, 153-157
  101. Yu, C.S., et al. (2004) Predicting subcellular localization of proteins for Gram- negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13, 1402-1406
  102. Yu, C.S., et al. (2006) Prediction of protein subcellular localization. Proteins 64, 643-651
  103. Mastro, R. and Hall, M. (1999) Protein delipidation and precipitation by tri-n- butylphosphate, acetone, and methanol treatment for isoelectric focusing and two- dimensional gel electrophoresis. Anal Biochem 273, 313-315
  104. Belle, A., et al. (2006) Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci U S A 103, 13004-13009
  105. Schweder, T., et al. (1996) Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease. J Bacteriol 178, 470-476
  106. Suzuki, K., et al. (2002) Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 184, 5130-5140
  107. Batchelor, E. and Goulian, M. (2003) Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc Natl Acad Sci U S A 100, 691-696
  108. Kinoshita, E., et al. (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4, 1513-1521 REFERENCES 107
  109. Francez-Charlot, A., et al. (2009) Sigma factor mimicry involved in regulation of general stress response. Proc Natl Acad Sci U S A 106, 3467-3472
  110. Kaiser, D. (2004) Signaling in myxobacteria. Annu Rev Microbiol 58, 75-98
  111. Amerik, A., et al. (1991) Site-directed mutagenesis of La protease. A catalytically active serine residue. FEBS Lett 287, 211-214
  112. Mullis, K., et al. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51 Pt 1, 263-273
  113. Albanesi, D., et al. (2009) Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc Natl Acad Sci U S A 106, 16185-16190
  114. Arias, I.M., et al. (1969) Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver. J Biol Chem 244, 3303-3315
  115. Capra, E.J., et al. (2010) Systematic dissection and trajectory-scanning mutagenesis of the molecular interface that ensures specificity of two-component signaling pathways. PLoS Genet 6, e1001220
  116. Tojo, N., et al. (1993) The lonD gene is homologous to the lon gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus. J Bacteriol 175, 4545-4549
  117. Thomas, S.H., et al. (2008) The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta- proteobacteria. PLoS One 3, e2103 252 Ivanova, N., et al. (2010) Complete genome sequence of Haliangium ochraceum type strain (SMP-2). Stand Genomic Sci 2, 96-106
  118. Plamann, L., et al. (1995) The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. J Bacteriol 177, 2014-2020
  119. Lee, B., et al. (2011) The Myxococcus xanthus spore cuticula protein C is a fragment of FibA, an extracellular metalloprotease produced exclusively in aggregated cells. PLoS One 6, e28968 174 Avery, L. and Wasserman, S. (1992) Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet 8, 312-316
  120. Bren, A. and Eisenbach, M. (1998) The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. J Mol Biol 278, 507-514 REFERENCES 109
  121. Dahl, M.K., et al. (1992) The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J Biol Chem 267, 14509- 14514
  122. Muffler, A., et al. (1996) The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. EMBO J 15, 1333-1339
  123. Simon, G., et al. (1994) The torR gene of Escherichia coli encodes a response regulator protein involved in the expression of the trimethylamine N-oxide reductase genes. J Bacteriol 176, 5601-5606
  124. Eguchi, Y., et al. (2003) Transcriptional regulation of drug efflux genes by EvgAS, a two-component system in Escherichia coli. Microbiology 149, 2819-2828
  125. Haldimann, A., et al. (1997) Transcriptional regulation of the Enterococcus faecium BM4147 vancomycin resistance gene cluster by the VanS-VanR two-component regulatory system in Escherichia coli K-12. J Bacteriol 179, 5903-5913
  126. Raivio, T.L. and Silhavy, T.J. (1997) Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol 179, 7724-7733
  127. Qian, W., et al. (2008) Two-component signal transduction systems of Xanthomonas spp.: a lesson from genomics. Mol Plant Microbe Interact 21, 151 REFERENCES
  128. Rodrigue, A., et al. (2000) Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol 8, 498-504
  129. Garcia Vescovi, E., et al. (2010) Two component systems in the spatial program of bacteria. Curr Opin Microbiol 13, 210-218
  130. Birnboim, H.C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7, 1513-1523
  131. Cho, K. and Zusman, D.R. (1999) AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol Microbiol 34, 268-281
  132. Inclan, Y.F., et al. (2007) FrzZ, a dual CheY-like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus. Mol Microbiol 65, 90-102
  133. Thomas, S.A., et al. (2008) Two variable active site residues modulate response regulator phosphoryl group stability. Mol Microbiol 69, 453-465
  134. Gonnet, G.H., et al. (1992) Exhaustive matching of the entire protein sequence database. Science 256, 1443-1445
  135. Shapiro, J.A. (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52, 81-104
  136. Moreno, M., et al. (2000) Regulation of sigma S degradation in Salmonella enterica var typhimurium: in vivo interactions between sigma S, the response regulator MviA(RssB) and ClpX. J Mol Microbiol Biotechnol 2, 245-254
  137. 244 Nath, K. and Koch, A.L. (1971) Protein degradation in Escherichia coli. II. Strain differences in the degradation of protein and nucleic acid resulting from starvation. J Biol Chem 246, 6956-6967
  138. Biondi, E.G., et al. (2006) Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 444, 899-904
  139. Higgs, P.I., et al. (2005) Four unusual two-component signal transduction homologs, RedC to RedF, are necessary for timely development in Myxococcus xanthus. J Bacteriol 187, 8191-8195
  140. Boysen, A., et al. (2002) The DevT protein stimulates synthesis of FruA, a signal transduction protein required for fruiting body morphogenesis in Myxococcus xanthus. J Bacteriol 184, 1540-1546
  141. Kearns, D.B., et al. (2002) An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J Bacteriol 184, 1678-1684
  142. Iniesta, A.A., et al. (2006) A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. Proc Natl Acad Sci U S A 103, 10935-10940
  143. Goldman, B.S., et al. (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A 103, 15200-15205
  144. Ueki, T. and Inouye, S. (2003) Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proc Natl Acad Sci U S A 100, 8782-8787
  145. Rasmussen, A.A. and Sogaard-Andersen, L. (2003) TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus. J Bacteriol 185, 5452-5464
  146. Kuspa, A., et al. (1992) Identification of heat-stable A-factor from Myxococcus xanthus. J Bacteriol 174, 3319-3326
  147. 'Connor, K.A. and Zusman, D.R. (1991) Analysis of Myxococcus xanthus cell types by two-dimensional polyacrylamide gel electrophoresis. J Bacteriol 173, 3334-3341
  148. Connor, K.A. and Zusman, D.R. (1991) Behavior of peripheral rods and their role in the life cycle of Myxococcus xanthus. J Bacteriol 173, 3342-3355
  149. Wireman, J.W. and Dworkin, M. (1977) Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 129, 798-802
  150. Mittal, S. and Kroos, L. (2009) A combination of unusual transcription factors binds cooperatively to control Myxococcus xanthus developmental gene expression. Proc Natl Acad Sci U S A 106, 1965-1970
  151. Mittal, S. and Kroos, L. (2009) Combinatorial regulation by a novel arrangement of FruA and MrpC2 transcription factors during Myxococcus xanthus development. J Bacteriol 191, 2753-2763
  152. Jenal, U. and Galperin, M.Y. (2009) Single domain response regulators: molecular switches with emerging roles in cell organization and dynamics. Curr Opin Microbiol 12, 152-160
  153. Bulyha, I., et al. (2009) Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol Microbiol 74, 691-706
  154. Paul, R., et al. (2008) Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Cell 133, 452-461
  155. Chung, C.T., et al. (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86, 2172-2175
  156. Sarkar, M.K., et al. (2010) Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proc Natl Acad Sci U S A 107, 9370-9375
  157. Lee, B., et al. (2012) Myxococcus xanthus developmental cell fate production: heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. J Bacteriol 194, 3058- 3068
  158. Shi, W., et al. (1996) Cell density regulates cellular reversal frequency in Myxococcus xanthus. Proc Natl Acad Sci U S A 93, 4142-4146
  159. Sogaard-Andersen, L. and Kaiser, D. (1996) C factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. Proc Natl Acad Sci U S A 93, 2675-2679
  160. Sun, H. and Shi, W. (2001) Analyses of mrp genes during Myxococcus xanthus development. J Bacteriol 183, 6733-6739
  161. Sun, H. and Shi, W. (2001) Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. J Bacteriol 183, 4786-4795 REFERENCES 105
  162. Segal, H.L. and Kim, Y.S. (1963) Glucocorticoid Stimulation of the Biosynthesis of Glutamic-Alanine Transaminase. Proc Natl Acad Sci U S A 50, 912-918
  163. Campos, J.M. and Zusman, D.R. (1975) Regulation of development in Myxococcus xanthus: effect of 3':5'-cyclic AMP, ADP, and nutrition. Proc Natl Acad Sci U S A 72, 518-522
  164. Iuchi, S. and Lin, E.C. (1988) arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci U S A 85, 1888-1892
  165. Domian, I.J., et al. (1997) Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90, 415-424
  166. Skerker, J.M., et al. (2008) Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043-1054
  167. Peterson, R., et al. (2009) Fungal proteins with mannanase activity identified directly from a Congo Red stained zymogram by mass spectrometry. J Microbiol Methods 79, 374-377
  168. 112 Silversmith, R.E. (2010) Auxiliary phosphatases in two-component signal transduction. Current Opinion in Microbiology 13, 177-183
  169. Pazy, Y., et al. (2010) Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate. Proc Natl Acad Sci U S A 107, 1924- 1929


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten