Flagellar motor tuning - The hybrid motor in Shewanella oneidensis MR-1

Bacteria are exposed to constantly changing environments. An efficient way to navigate towards favourable conditions is flagella-mediated motility. Flagellar rotation is achieved by the bacterial flagellar motor, composed of the rotor and stator complexes which surround the rotor in a ring-like stru...

Ausführliche Beschreibung

Gespeichert in:
1. Verfasser: Paulick, Anja
Beteiligte: Thormann, Kai M. (Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Englisch
Veröffentlicht: Philipps-Universität Marburg 2012
Biologie
Ausgabe:http://dx.doi.org/10.17192/z2012.0924
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

1. Romine MF, Carlson TS, Norbeck AD, McCue LA, Lipton MS: Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome. Appl Environ Microbiol 2008, 74:3257-3265.


2. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.


3. http://archiv.ub.uni-marburg.de/diss/z2011/0053/


4. Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22:195-201.


5. Magariyama Y, Sugiyama S, Muramoto K, Maekawa Y, Kawagishi I, Imae Y, Kudo S: Very fast flagellar rotation. Nature 1994, 371:752.


6. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, et al.: Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004, 304:66-74.


7. Murray TS, Kazmierczak BI: FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J Bacteriol 2006, 188:6995-7004.


8. Bertani G: Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 1951, 62:293-300.


9. Jones DT: Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999, 292:195-202.


10. Breakwell DP, Moyes RB, Reynolds J: Differential staining of bacteria: flagella stain. Curr Protoc Microbiol 2009, Appendix 3:Appendix 3G.


11. Van Way SM, Hosking ER, Braun TF, Manson MD: Mot protein assembly into the bacterial flagellum: a model based on mutational analysis of the motB gene. J Mol Biol 2000, 297:7- 24.


12. Fujinami S, Terahara N, Lee S, Ito M: Na(+) and flagella-dependent swimming of alkaliphilic Bacillus pseudofirmus OF4: a basis for poor motility at low pH and enhancement in viscous media in an "up-motile" variant. Arch Microbiol 2007, 187:239-247.


13. Meister M, Lowe G, Berg HC: The proton flux through the bacterial flagellar motor. Cell 1987, 49:643-650.


14. Fukuoka H, Yakushi T, Kusumoto A, Homma M: Assembly of motor proteins, PomA and PomB, in the Na+-driven stator of the flagellar motor. J Mol Biol 2005, 351:707-717.


15. Hosking ER, Vogt C, Bakker EP, Manson MD: The Escherichia coli MotAB proton channel unplugged. J Mol Biol 2006, 364:921-937.


16. Inoue Y, Lo CJ, Fukuoka H, Takahashi H, Sowa Y, Pilizota T, Wadhams GH, Homma M, Berry RM, Ishijima A: Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli. J Mol Biol 2008, 376:1251-1259.


17. Yorimitsu T, Sowa Y, Ishijima A, Yakushi T, Homma M: The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA. J Mol Biol 2002, 320:403-413.


18. Asai Y, Yakushi T, Kawagishi I, Homma M: Ion-coupling determinants of Na+-driven and H+- driven flagellar motors. J Mol Biol 2003, 327:453-463.


19. MacDonell M. CR: Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. appl. Microbiol 1985, 6:171-182.


20. Godeke J, Paul K, Lassak J, Thormann KM: Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. ISME J 2011, 5:613-626.


21. Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M, Ishijima A, Berry RM: Direct observation of steps in rotation of the bacterial flagellar motor. Nature 2005, 437:916-919.


22. Pandza S, Baetens M, Park CH, Au T, Keyhan M, Matin A: The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol Microbiol 2000, 36:414-423.


23. Okabe M, Yakushi T, Kojima M, Homma M: MotX and MotY, specific components of the sodium-driven flagellar motor, colocalize to the outer membrane in Vibrio alginolyticus. Mol Microbiol 2002, 46:125-134.


24. Yuan J, Berg HC: Resurrection of the flagellar rotary motor near zero load. Proc Natl Acad Sci U S A 2008, 105:1182-1185.


25. Kojima S, Shinohara A, Terashima H, Yakushi T, Sakuma M, Homma M, Namba K, Imada K: Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY. Proc Natl Acad Sci U S A 2008, 105:7696-7701.


26. Paul K, Brunstetter D, Titen S, Blair DF: A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Proc Natl Acad Sci U S A 2011, 108:17171-17176.


27. Silverman M, Matsumura P, Simon M: The identification of the mot gene product with Escherichia coli-lambda hybrids. Proc Natl Acad Sci U S A 1976, 73:3126-3130.


28. Scharf BE, Fahrner KA, Turner L, Berg HC: Control of direction of flagellar rotation in bacterial chemotaxis. Proc Natl Acad Sci U S A 1998, 95:201-206.


29. Kusumoto A, Kamisaka K, Yakushi T, Terashima H, Shinohara A, Homma M: Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. J Biochem 2006, 139:113-121.


30. Kusumoto A, Nishioka N, Kojima S, Homma M: Mutational analysis of the GTP-binding motif of FlhF which regulates the number and placement of the polar flagellum in Vibrio alginolyticus. J Biochem 2009, 146:643-650.


31. Hizukuri Y, Kojima S, Homma M: Disulphide cross-linking between the stator and the bearing components in the bacterial flagellar motor. J Biochem 2010, 148:309-318.


32. Toft C, Fares MA: The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. Mol Biol Evol 2008, 25:2069-2076.


33. Kibbe WA: OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Research 2007, 35:W43-W46.


34. Sutherland I: Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 2001, 147:3-9.


35. O'Neill J, Xie M, Hijnen M, Roujeinikova A: Role of the MotB linker in the assembly and activation of the bacterial flagellar motor. Acta Crystallogr D Biol Crystallogr 2011, 67:1009- 1016.


36. Kojima M, Nishioka N, Kusumoto A, Yagasaki J, Fukuda T, Homma M: Conversion of mono- polar to peritrichous flagellation in Vibrio alginolyticus. Microbiol Immunol 2011, 55:76-83.


37. Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers BD, Zvi L, Uematsu K, Krulwich TA: MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 2004, 53:1035-1049.


38. Kojima S, Imada K, Sakuma M, Sudo Y, Kojima C, Minamino T, Homma M, Namba K: Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol Microbiol 2009, 73:710-718.


39. Morimoto YV, Nakamura S, Kami-ike N, Namba K, Minamino T: Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Mol Microbiol 2010, 78:1117-1129.


40. Merino S, Shaw JG, Tomas JM: Bacterial lateral flagella: an inducible flagella system. FEMS Microbiol Lett 2006, 263:127-135.


41. Bai F, Branch RW, Nicolau DV, Jr., Pilizota T, Steel BC, Maini PK, Berry RM: Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 2010, 327:685-689.


42. Blair DF, Berg HC: Restoration of torque in defective flagellar motors. Science 1988, 242:1678- 1681.


43. Li N, Kojima S, Homma M: Characterization of the periplasmic region of PomB, a Na+- driven flagellar stator protein in Vibrio alginolyticus. J Bacteriol 2011, 193:3773-3784.


44. Morehouse KA, Hobley L, Capeness M, Sockett RE: Three motAB stator gene products in Bdellovibrio bacteriovorus contribute to motility of a single flagellum during predatory and prey-independent growth. J Bacteriol 2011, 193:932-943.


45. Doyle TB, Hawkins AC, McCarter LL: The complex flagellar torque generator of Pseudomonas aeruginosa. J Bacteriol 2004, 186:6341-6350.


46. Allen RD, Baumann P: Structure and arrangement of flagella in species of the genus Beneckea and Photobacterium fischeri. J Bacteriol 1971, 107:295-302.


47. Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, Blair DF: Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J Bacteriol 1998, 180:2729-2735.


48. Canals R, Altarriba M, Vilches S, Horsburgh G, Shaw JG, Tomas JM, Merino S: Analysis of the lateral flagellar gene system of Aeromonas hydrophila AH-3. J Bacteriol 2006, 188:852-862.


49. Terahara N, Fujisawa M, Powers B, Henkin TM, Krulwich TA, Ito M: An intergenic stem-loop mutation in the Bacillus subtilis ccpA-motPS operon increases motPS transcription and the MotPS contribution to motility. J Bacteriol 2006, 188:2701-2705.


50. Caccavo F, Blakemore RP, Lovley DR: A Hydrogen-Oxidizing, Fe(III)-Reducing Microorganism from the Great Bay Estuary, New Hampshire. Appl Environ Microbiol 1992, 58:3211-3216. References 111


51. Cluzel P, Surette M, Leibler S: An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 2000, 287:1652-1655.


52. Prospiech N: A versatile quick prep of chromosomal DNA from gram-positive bacteria. Trends in genetics 1995, 11:217-218.


53. Chun SY, Parkinson JS: Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 1988, 239:276-278.


54. Derby H. HB: Bacteriology of butter. IV. Bacteriological studies of surface taint butter. Iowa Agric. Ecp. Stn. Res. Bull. 1931, 145:387-416.


55. Feustel L, Nakotte S, Durre P: Characterization and development of two reporter gene systems for Clostridium acetobutylicum. Appl Environ Microbiol 2004, 70:798-803.


56. Lloyd SA, Blair DF: Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol 1997, 266:733-744.


57. Long H. HB: Classification of organisms important in dairy products. III. Pseudomonas putrefaciens. Iowa Agric. Exp. Stn. Res. Bull. 1941, 285:176-195.


58. Okunishi I, Kawagishi I, Homma M: Cloning and characterization of motY, a gene coding for a component of the sodium-driven flagellar motor in Vibrio alginolyticus. J Bacteriol 1996, 178:2409-2415.


59. Hosking ER, Manson MD: Clusters of charged residues at the C-terminus of MotA and N- terminus of MotB are important for function of the Escherichia coli flagellar motor. J Bacteriol 2008, 190:5517-5521.


60. Kuwajima G: Construction of a minimum-size functional flagellin of Escherichia coli. J Bacteriol 1988, 170:3305-3309.


61. Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, Hayakawa Y, Spormann AM: Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 2006, 188:2681-2691.


62. Washizu M, Kurahashi Y, Iochi H, Kurosawa O, Aizawa S, Kudo S, Magariyama Y, Hotani H: Dielectrophoretic Measurement of Bacterial Motor Characteristics. Ieee Transactions on Industry Applications 1993, 29:286-294.


63. Gescher JS, Cordova CD, Spormann AM: Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. Mol Microbiol 2008, 68:706-719.


64. Lovley DR: Dissimilatory metal reduction. Annu Rev Microbiol 1993, 47:263-290.


65. Ueno T, Oosawa K, Aizawa S: Domain structures of the MS-ring component protein (FliF) of References 107


66. Heß N: Einfluss von FlhF und FlhG auf die Motilität von S. oneidensis MR-1. Marburg: Philipps University Marburg; 2010, B.Sc. thesis References 112


67. Stolz B, Berg HC: Evidence for interactions between MotA and MotB, torque-generating elements of the flagellar motor of Escherichia coli. J Bacteriol 1991, 173:7033-7037.


68. Dohlich K: Flagellare Untereinheiten des Filaments aus Shewanella oneidensis MR-1.


69. Schirm M, Kalmokoff M, Aubry A, Thibault P, Sandoz M, Logan SM: Flagellin from Listeria monocytogenes is glycosylated with beta-O-linked N-acetylglucosamine. J Bacteriol 2004, 186:6721-6727.


70. Inoue H: High efficiency transformation of Escherichia coli with plasmids. gene 1990, 96.


71. Thormann KM, Saville RM, Shukla S, Spormann AM: Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 2005, 187:1014-1021.


72. Dobell C: Antony van Leeuwenhoek and His "Little Animals.". Sons&Danielsson, Reprinted by Dover, New York, 1960 1932.


73. Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual edn third: Cold Spring Harbor Laboratory Press; 2001.


74. Koerdt A, Paulick A, Mock M, Jost K, Thormann KM: MotX and MotY are required for flagellar rotation in Shewanella oneidensis MR-1. J Bacteriol 2009, 191:5085-5093.


75. Stader J, Matsumura P, Vacante D, Dean GE, Macnab RM: Nucleotide sequence of the Escherichia coli motB gene and site-limited incorporation of its product into the cytoplasmic membrane. J Bacteriol 1986, 166:244-252.


76. Shimada T, Sakazaki R, Suzuki K: Peritrichous flagella in mesophilic strains of Aeromonas. Jpn J Med Sci Biol 1985, 38:141-145.


77. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, et al.: Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 1999, 49 Pt 2:705-724.


78. Bardy SL, Ng SY, Jarrell KF: Prokaryotic motility structures. Microbiology 2003, 149:295-304.


79. Koebnik R: Proposal for a peptidoglycan-associating alpha-helical motif in the C-terminal regions of some bacterial cell-surface proteins. Mol Microbiol 1995, 16:1269-1270.


80. Asai Y, Kojima S, Kato H, Nishioka N, Kawagishi I, Homma M: Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 1997, 179:5104-5110.


81. Aldridge P, Hughes KT: Regulation of flagellar assembly. Curr Opin Microbiol 2002, 5:160-165.


82. Gosink KK, Hase CC: Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli. J Bacteriol 2000, 182:4234- References 108


83. Toutain CM, Caizza NC, Zegans ME, O'Toole GA: Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Res Microbiol 2007, 158:471-477.


84. Yakushi T, Yang J, Fukuoka H, Homma M, Blair DF: Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. J Bacteriol 2006, 188:1466-1472.


85. Correa NE, Peng F, Klose KE: Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. J Bacteriol 2005, 187:6324-6332.


86. Thomas DR, Morgan DG, DeRosier DJ: Rotational symmetry of the C-ring and a mechanism for the flagellar rotary motor. Proc Natl Acad Sci U S A 1999, 96:10134-10139.


87. Mittl PR, Schneider-Brachert W: Sel1-like repeat proteins in signal transduction. Cell Signal 2007, 19:20-31.


88. Delalez NJ, Wadhams GH, Rosser G, Xue Q, Brown MT, Dobbie IM, Berry RM, Leake MC, Armitage JP: Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proc Natl Acad Sci U S A 2010, 107:11347-11351.


89. Heimbrook ME, Wang WL, Campbell G: Staining bacterial flagella easily. J Clin Microbiol 1989, 27:2612-2615.


90. Blair DF: Structure and Mechanism of the Flagellar Rotary Motor. In Pili and Flagella: Current Research and Future Trends. Edited by Jarrell KF: Caister Academic Press; 2009.


91. Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: An automated protein homology- modeling server. Nucleic Acids Res 2003, 31:3381-3385.


92. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997, 18:2714-2723.


93. Baumann L, Baumann P, Mandel M, Allen RD: Taxonomy of aerobic marine eubacteria. J Bacteriol 1972, 110:402-429.


94. Grant B, Greenwald I: The Caenorhabditis elegans sel-1 gene, a negative regulator of lin-12 and glp-1, encodes a predicted extracellular protein. Genetics 1996, 143:237-247.


95. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25:4876-4882.


96. Guttenplan SB, Blair KM, Kearns DB: The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet 2010, 6:e1001243.


97. Reid SW, Leake MC, Chandler JH, Lo CJ, Armitage JP, Berry RM: The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci U S A 2006, 103:8066-8071.


98. Berg HC: The rotary motor of bacterial flagella. Annu Rev Biochem 2003, 72:19-54.


99. Wilhelms M, Vilches S, Molero R, Shaw JG, Tomas JM, Merino S: Two redundant sodium- driven stator motor proteins are involved in Aeromonas hydrophila polar flagellum rotation. J Bacteriol 2009, 191:2206-2217.


100. Kusumoto A, Shinohara A, Terashima H, Kojima S, Yakushi T, Homma M: Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus. Microbiology 2008, 154:1390-1399.


101. McCarter L, Silverman M: Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol Microbiol 1990, 4:1057-1062.


102. Kearns DB, Chu F, Branda SS, Kolter R, Losick R: A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 2005, 55:739-749.


103. Fukuoka H, Wada T, Kojima S, Ishijima A, Homma M: Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol Microbiol 2009, 71:825-835.


104. Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8:785-786.


105. Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB: A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 2008, 320:1636-1638.


106. Myers CR, Nealson KH: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 1988, 240:1319-1321.


107. Hau HH, Gralnick JA: Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 2007, 61:237-258.


108. McCarter LL: Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 2004, 7:18-29.


109. Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP: Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 2006, 443:355-358.


110. Lee LK, Ginsburg MA, Crovace C, Donohoe M, Stock D: Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 2010, 466:996- 1000.


111. Southern E: Southern blotting. Nat Protoc 2006, 1:518-525.


112. Porter SL, Wadhams GH, Armitage JP: Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 2011, 9:153-165.


113. Miller VL, Mekalanos JJ: A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 1988, 170:2575-2583.


114. Wolfe AJ, Visick KL: Get the message out: cyclic-Di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol 2008, 190:463-475.


115. Shinoda S, Okamoto K: Formation and function of Vibrio parahaemolyticus lateral flagella. J Bacteriol 1977, 129:1266-1271.


116. Sarkar MK, Paul K, Blair D: Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proc Natl Acad Sci U S A 2010, 107:9370-9375.


117. Wu L, Wang J, Tang P, Chen H, Gao H: Genetic and molecular characterization of flagellar assembly in Shewanella oneidensis. PLoS One 2011, 6:e21479.


118. Toutain CM, Zegans ME, O'Toole GA: Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. J Bacteriol 2005, 187:771-777.


119. Welch M, Oosawa K, Aizawa S, Eisenbach M: Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc Natl Acad Sci U S A 1993, 90:8787-8791.


120. Sanger F, Coulson AR: A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 1975, 94:441-448.


121. Fukuoka H, Inoue Y, Terasawa S, Takahashi H, Ishijima A: Exchange of rotor components in functioning bacterial flagellar motor. Biochem Biophys Res Commun 2010, 394:130-135.


122. Pilizota T, Bilyard T, Bai F, Futai M, Hosokawa H, Berry RM: A programmable optical angle clamp for rotary molecular motors. Biophys J 2007, 93:264-275. References 115


123. Dyer CM, Vartanian AS, Zhou H, Dahlquist FW: A molecular mechanism of bacterial flagellar motor switching. J Mol Biol 2009, 388:71-84.


124. Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983, 166:557-580.


125. Zhou J, Blair DF: Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. J Mol Biol 1997, 273:428-439.