Publikationsserver der Universitätsbibliothek Marburg

Titel:Flagellar motor tuning - The hybrid motor in Shewanella oneidensis MR-1
Autor:Paulick, Anja
Weitere Beteiligte: Thormann, Kai M. (Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0924
DOI: https://doi.org/10.17192/z2012.0924
URN: urn:nbn:de:hebis:04-z2012-09245
DDC: Biowissenschaften, Biologie
Titel (trans.):Flagellenmotor-Tuning - Der Hybridmotor in Shewanella oneidensis MR-1
Publikationsdatum:2012-10-01
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Bewegung, Flagellar motor, Shewanella oneidensis MR-1, Flagellen, Bacteria, Shewanella oneidensis MR-1, Motility, Flagella, Flagellenmotor, Bakterien
Referenziert von:

Summary:
Bacteria are exposed to constantly changing environments. An efficient way to navigate towards favourable conditions is flagella-mediated motility. Flagellar rotation is achieved by the bacterial flagellar motor, composed of the rotor and stator complexes which surround the rotor in a ring-like structure. As an exception among the Shewanella species, the fresh-water organism S. oneidensis MR-1 harbours two different stator complexes, the sodium-ion dependent PomAB and the proton-dependent MotAB, differentially supporting rotation of a single polar flagellum. Both PomAB and MotAB are simultaneously present and required for full speed under low sodium-ion conditions. Although tightly anchored to the cell wall, stators are constantly exchanged even during ongoing rotation. Moreover, sodium-ion and proton-dependent stators can function with the same rotor. This raises the question of how PomAB and MotAB contribute to rotation of a single flagellum and whether PomAB and MotAB coexist in the stator ring of S. oneidensis MR-1, forming a hybrid motor. Here, I report a novel model for the dynamic adaptation of the rotor-stator configuration in response to the environmental sodium ion level in S. oneidensis MR-1. Transcriptional fusions to lucB revealed that both pomAB and motAB are concurrently transcribed. By using fluorescence microscopy, functional fusions of mCherry to the B-subunits revealed that in sharp contrast to MotB, a fraction of PomB is polarly positioned independently of the sodium-ion concentration. At low sodium-ion concentration, PomB and MotB appear to coexist in the flagellar motor. However, in the absence of PomAB, MotB is recruited to the flagellated pole independently of the sodium-ion concentration. Interestingly, induced production of PomAB displaces polar MotB from the motor and confines it to the membrane. By quantifying single sfGfp molecules fused to PomB, I could show that the number of PomB in the stator ring is reduced from nine to five complexes when cells were shifted from a high to a low sodium-ion concentration. Thus, the incorporation efficiency of PomAB is directly modified in response to the sodium-ion concentration, whereas the association of MotAB into the stator ring rather depends on the presence of PomAB. Furthermore, two auxiliary proteins, MotX and MotY, were identified and shown to be essential for functionality of both PomAB and MotAB. Localisation studies revealed that, in contrast to Vibrio MotXY are not required for recruitment of the stator complexes to the flagellated pole. Taken together, my data support the model of dynamic stator swapping to tune the flagellar motor in response to environmental conditions, e.g. the availability of sodium ions. The concurrent presence of PomB and MotB at low sodium-ion concentration suggests the existence of a hybrid motor in S. oneidensis. Since it remains to be demonstrated whether MotAB stators are functionally incorporated in this hybrid motor, the second aim of this work was to biophysically analyse the contribution of MotAB and PomAB to motor rotation at the single cell level. To this end, a ‘bead assay’ and a ‘tethered cell assay’ were established. These set-ups required the delocalisation of the polar filament to a lateral position, the preparation of a highly specific antibody against the modified filament and, for the bead assay the attachment of polystyrene beads to the filament. While the bead assay was limited to short-term measurements, the tethered cell assay was optimised for long-term studies. The optimisation now permits a constant buffer exchange as well as the modulation of the stator complex level by an inducible promoter upstream of pomAB and motAB. Single cell analysis comparing the wild-type and the PomAB-driven motor revealed a significantly higher rotation speed for the wild-type motor at low sodium-ion concentration. Moreover, induced production of PomAB in a stator deletion background resurrected rotation speed in a stepwise manner, whereas production of MotAB in a PomAB-driven motor decreased rotation speed stepwise. These results strongly indicate that MotAB is incorporated into the force-generating PomAB-occupied stator ring, slowing down motor rotation. MotAB production in a stator deletion background did not restore rotation. However, swimming assays revealed that MotAB is sufficient to drive flagellar rotation in a subpopulation of cells, strongly suggesting that both stators are able to function together in a single motor. To clearly characterise the role of MotAB and PomAB in the hybrid motor of S. oneidensis MR-1 further biophysical studies are required. The genome wide bioinformatic analysis of all sequenced bacterial genomes revealed that dual or multiple stator complexes along with a single flagellar system are surprisingly widespread among bacterial species. Moreover, stator complex homology comparison in S. oneidensis MR-1 indicated that MotAB has recently been acquired by lateral gene transfer as a consequence of adaptation to a fresh-water environment. Thus, the flagellar motor might still be in a process of optimisation. Collectively, I hypothesize that S. oneidensis tunes its flagellar motor by exchanging stator complexes and that stator swapping represents a common mechanism applicable to other bacteria to adapt to changing environments.

Bibliographie / References

  1. Romine MF, Carlson TS, Norbeck AD, McCue LA, Lipton MS: Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome. Appl Environ Microbiol 2008, 74:3257-3265.
  2. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
  3. Lassak J: Evolution von Zwei-Komponenten-Systemen in Shewanella oneidensis MR-1: Die Histidinkinase ArcS und der Antwortregulator SO_4444, Zwei Komponenten, Zwei Modelle. Marburg: Philipps University Marburg; 2010, PhD thesis vol Dr. rer. nat. References 113
  4. Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22:195-201.
  5. Magariyama Y, Sugiyama S, Muramoto K, Maekawa Y, Kawagishi I, Imae Y, Kudo S: Very fast flagellar rotation. Nature 1994, 371:752.
  6. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, et al.: Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004, 304:66-74.
  7. Murray TS, Kazmierczak BI: FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J Bacteriol 2006, 188:6995-7004.
  8. Bertani G: Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 1951, 62:293-300.
  9. Jones DT: Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999, 292:195-202.
  10. Breakwell DP, Moyes RB, Reynolds J: Differential staining of bacteria: flagella stain. Curr Protoc Microbiol 2009, Appendix 3:Appendix 3G.
  11. Van Way SM, Hosking ER, Braun TF, Manson MD: Mot protein assembly into the bacterial flagellum: a model based on mutational analysis of the motB gene. J Mol Biol 2000, 297:7- 24.
  12. Fujinami S, Terahara N, Lee S, Ito M: Na(+) and flagella-dependent swimming of alkaliphilic Bacillus pseudofirmus OF4: a basis for poor motility at low pH and enhancement in viscous media in an "up-motile" variant. Arch Microbiol 2007, 187:239-247.
  13. Meister M, Lowe G, Berg HC: The proton flux through the bacterial flagellar motor. Cell 1987, 49:643-650.
  14. Fukuoka H, Yakushi T, Kusumoto A, Homma M: Assembly of motor proteins, PomA and PomB, in the Na+-driven stator of the flagellar motor. J Mol Biol 2005, 351:707-717.
  15. Hosking ER, Vogt C, Bakker EP, Manson MD: The Escherichia coli MotAB proton channel unplugged. J Mol Biol 2006, 364:921-937.
  16. Inoue Y, Lo CJ, Fukuoka H, Takahashi H, Sowa Y, Pilizota T, Wadhams GH, Homma M, Berry RM, Ishijima A: Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli. J Mol Biol 2008, 376:1251-1259.
  17. Yorimitsu T, Sowa Y, Ishijima A, Yakushi T, Homma M: The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA. J Mol Biol 2002, 320:403-413.
  18. Asai Y, Yakushi T, Kawagishi I, Homma M: Ion-coupling determinants of Na+-driven and H+- driven flagellar motors. J Mol Biol 2003, 327:453-463.
  19. MacDonell M. CR: Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. appl. Microbiol 1985, 6:171-182.
  20. Godeke J, Paul K, Lassak J, Thormann KM: Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. ISME J 2011, 5:613-626.
  21. Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M, Ishijima A, Berry RM: Direct observation of steps in rotation of the bacterial flagellar motor. Nature 2005, 437:916-919.
  22. Pandza S, Baetens M, Park CH, Au T, Keyhan M, Matin A: The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol Microbiol 2000, 36:414-423.
  23. Okabe M, Yakushi T, Kojima M, Homma M: MotX and MotY, specific components of the sodium-driven flagellar motor, colocalize to the outer membrane in Vibrio alginolyticus. Mol Microbiol 2002, 46:125-134.
  24. Yuan J, Berg HC: Resurrection of the flagellar rotary motor near zero load. Proc Natl Acad Sci U S A 2008, 105:1182-1185.
  25. Kojima S, Shinohara A, Terashima H, Yakushi T, Sakuma M, Homma M, Namba K, Imada K: Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY. Proc Natl Acad Sci U S A 2008, 105:7696-7701.
  26. Paul K, Brunstetter D, Titen S, Blair DF: A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Proc Natl Acad Sci U S A 2011, 108:17171-17176.
  27. Silverman M, Matsumura P, Simon M: The identification of the mot gene product with Escherichia coli-lambda hybrids. Proc Natl Acad Sci U S A 1976, 73:3126-3130.
  28. Scharf BE, Fahrner KA, Turner L, Berg HC: Control of direction of flagellar rotation in bacterial chemotaxis. Proc Natl Acad Sci U S A 1998, 95:201-206.
  29. Kusumoto A, Kamisaka K, Yakushi T, Terashima H, Shinohara A, Homma M: Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. J Biochem 2006, 139:113-121.
  30. Kusumoto A, Nishioka N, Kojima S, Homma M: Mutational analysis of the GTP-binding motif of FlhF which regulates the number and placement of the polar flagellum in Vibrio alginolyticus. J Biochem 2009, 146:643-650.
  31. Hizukuri Y, Kojima S, Homma M: Disulphide cross-linking between the stator and the bearing components in the bacterial flagellar motor. J Biochem 2010, 148:309-318.
  32. Toft C, Fares MA: The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. Mol Biol Evol 2008, 25:2069-2076.
  33. Kibbe WA: OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Research 2007, 35:W43-W46.
  34. Sutherland I: Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 2001, 147:3-9.
  35. O'Neill J, Xie M, Hijnen M, Roujeinikova A: Role of the MotB linker in the assembly and activation of the bacterial flagellar motor. Acta Crystallogr D Biol Crystallogr 2011, 67:1009- 1016.
  36. Kojima M, Nishioka N, Kusumoto A, Yagasaki J, Fukuda T, Homma M: Conversion of mono- polar to peritrichous flagellation in Vibrio alginolyticus. Microbiol Immunol 2011, 55:76-83.
  37. Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers BD, Zvi L, Uematsu K, Krulwich TA: MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 2004, 53:1035-1049.
  38. Kojima S, Imada K, Sakuma M, Sudo Y, Kojima C, Minamino T, Homma M, Namba K: Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol Microbiol 2009, 73:710-718.
  39. Morimoto YV, Nakamura S, Kami-ike N, Namba K, Minamino T: Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Mol Microbiol 2010, 78:1117-1129.
  40. Merino S, Shaw JG, Tomas JM: Bacterial lateral flagella: an inducible flagella system. FEMS Microbiol Lett 2006, 263:127-135.
  41. Bai F, Branch RW, Nicolau DV, Jr., Pilizota T, Steel BC, Maini PK, Berry RM: Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 2010, 327:685-689.
  42. Blair DF, Berg HC: Restoration of torque in defective flagellar motors. Science 1988, 242:1678- 1681.
  43. Li N, Kojima S, Homma M: Characterization of the periplasmic region of PomB, a Na+- driven flagellar stator protein in Vibrio alginolyticus. J Bacteriol 2011, 193:3773-3784.
  44. Morehouse KA, Hobley L, Capeness M, Sockett RE: Three motAB stator gene products in Bdellovibrio bacteriovorus contribute to motility of a single flagellum during predatory and prey-independent growth. J Bacteriol 2011, 193:932-943.
  45. Doyle TB, Hawkins AC, McCarter LL: The complex flagellar torque generator of Pseudomonas aeruginosa. J Bacteriol 2004, 186:6341-6350.
  46. Allen RD, Baumann P: Structure and arrangement of flagella in species of the genus Beneckea and Photobacterium fischeri. J Bacteriol 1971, 107:295-302.
  47. Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, Blair DF: Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J Bacteriol 1998, 180:2729-2735.
  48. Canals R, Altarriba M, Vilches S, Horsburgh G, Shaw JG, Tomas JM, Merino S: Analysis of the lateral flagellar gene system of Aeromonas hydrophila AH-3. J Bacteriol 2006, 188:852-862.
  49. Terahara N, Fujisawa M, Powers B, Henkin TM, Krulwich TA, Ito M: An intergenic stem-loop mutation in the Bacillus subtilis ccpA-motPS operon increases motPS transcription and the MotPS contribution to motility. J Bacteriol 2006, 188:2701-2705.
  50. Caccavo F, Blakemore RP, Lovley DR: A Hydrogen-Oxidizing, Fe(III)-Reducing Microorganism from the Great Bay Estuary, New Hampshire. Appl Environ Microbiol 1992, 58:3211-3216. References 111
  51. Cluzel P, Surette M, Leibler S: An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 2000, 287:1652-1655.
  52. Prospiech N: A versatile quick prep of chromosomal DNA from gram-positive bacteria. Trends in genetics 1995, 11:217-218.
  53. Chun SY, Parkinson JS: Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 1988, 239:276-278.
  54. Derby H. HB: Bacteriology of butter. IV. Bacteriological studies of surface taint butter. Iowa Agric. Ecp. Stn. Res. Bull. 1931, 145:387-416.
  55. Feustel L, Nakotte S, Durre P: Characterization and development of two reporter gene systems for Clostridium acetobutylicum. Appl Environ Microbiol 2004, 70:798-803.
  56. Lloyd SA, Blair DF: Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol 1997, 266:733-744.
  57. Long H. HB: Classification of organisms important in dairy products. III. Pseudomonas putrefaciens. Iowa Agric. Exp. Stn. Res. Bull. 1941, 285:176-195.
  58. Okunishi I, Kawagishi I, Homma M: Cloning and characterization of motY, a gene coding for a component of the sodium-driven flagellar motor in Vibrio alginolyticus. J Bacteriol 1996, 178:2409-2415.
  59. Hosking ER, Manson MD: Clusters of charged residues at the C-terminus of MotA and N- terminus of MotB are important for function of the Escherichia coli flagellar motor. J Bacteriol 2008, 190:5517-5521.
  60. Kuwajima G: Construction of a minimum-size functional flagellin of Escherichia coli. J Bacteriol 1988, 170:3305-3309.
  61. Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, Hayakawa Y, Spormann AM: Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 2006, 188:2681-2691.
  62. Washizu M, Kurahashi Y, Iochi H, Kurosawa O, Aizawa S, Kudo S, Magariyama Y, Hotani H: Dielectrophoretic Measurement of Bacterial Motor Characteristics. Ieee Transactions on Industry Applications 1993, 29:286-294.
  63. Gescher JS, Cordova CD, Spormann AM: Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. Mol Microbiol 2008, 68:706-719.
  64. Lovley DR: Dissimilatory metal reduction. Annu Rev Microbiol 1993, 47:263-290.
  65. Ueno T, Oosawa K, Aizawa S: Domain structures of the MS-ring component protein (FliF) of References 107
  66. Heß N: Einfluss von FlhF und FlhG auf die Motilität von S. oneidensis MR-1. Marburg: Philipps University Marburg; 2010, B.Sc. thesis References 112
  67. Stolz B, Berg HC: Evidence for interactions between MotA and MotB, torque-generating elements of the flagellar motor of Escherichia coli. J Bacteriol 1991, 173:7033-7037.
  68. Dohlich K: Flagellare Untereinheiten des Filaments aus Shewanella oneidensis MR-1.
  69. Schirm M, Kalmokoff M, Aubry A, Thibault P, Sandoz M, Logan SM: Flagellin from Listeria monocytogenes is glycosylated with beta-O-linked N-acetylglucosamine. J Bacteriol 2004, 186:6721-6727.
  70. Inoue H: High efficiency transformation of Escherichia coli with plasmids. gene 1990, 96.
  71. Thormann KM, Saville RM, Shukla S, Spormann AM: Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 2005, 187:1014-1021.
  72. Dobell C: Antony van Leeuwenhoek and His "Little Animals.". Sons&Danielsson, Reprinted by Dover, New York, 1960 1932.
  73. Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual edn third: Cold Spring Harbor Laboratory Press; 2001.
  74. Koerdt A, Paulick A, Mock M, Jost K, Thormann KM: MotX and MotY are required for flagellar rotation in Shewanella oneidensis MR-1. J Bacteriol 2009, 191:5085-5093.
  75. Stader J, Matsumura P, Vacante D, Dean GE, Macnab RM: Nucleotide sequence of the Escherichia coli motB gene and site-limited incorporation of its product into the cytoplasmic membrane. J Bacteriol 1986, 166:244-252.
  76. Shimada T, Sakazaki R, Suzuki K: Peritrichous flagella in mesophilic strains of Aeromonas. Jpn J Med Sci Biol 1985, 38:141-145.
  77. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, et al.: Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 1999, 49 Pt 2:705-724.
  78. Bardy SL, Ng SY, Jarrell KF: Prokaryotic motility structures. Microbiology 2003, 149:295-304.
  79. Koebnik R: Proposal for a peptidoglycan-associating alpha-helical motif in the C-terminal regions of some bacterial cell-surface proteins. Mol Microbiol 1995, 16:1269-1270.
  80. Asai Y, Kojima S, Kato H, Nishioka N, Kawagishi I, Homma M: Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 1997, 179:5104-5110.
  81. Aldridge P, Hughes KT: Regulation of flagellar assembly. Curr Opin Microbiol 2002, 5:160-165.
  82. Gosink KK, Hase CC: Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli. J Bacteriol 2000, 182:4234- References 108
  83. Toutain CM, Caizza NC, Zegans ME, O'Toole GA: Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Res Microbiol 2007, 158:471-477.
  84. Yakushi T, Yang J, Fukuoka H, Homma M, Blair DF: Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. J Bacteriol 2006, 188:1466-1472.
  85. Correa NE, Peng F, Klose KE: Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. J Bacteriol 2005, 187:6324-6332.
  86. Thomas DR, Morgan DG, DeRosier DJ: Rotational symmetry of the C-ring and a mechanism for the flagellar rotary motor. Proc Natl Acad Sci U S A 1999, 96:10134-10139.
  87. Mittl PR, Schneider-Brachert W: Sel1-like repeat proteins in signal transduction. Cell Signal 2007, 19:20-31.
  88. Delalez NJ, Wadhams GH, Rosser G, Xue Q, Brown MT, Dobbie IM, Berry RM, Leake MC, Armitage JP: Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proc Natl Acad Sci U S A 2010, 107:11347-11351.
  89. Heimbrook ME, Wang WL, Campbell G: Staining bacterial flagella easily. J Clin Microbiol 1989, 27:2612-2615.
  90. Blair DF: Structure and Mechanism of the Flagellar Rotary Motor. In Pili and Flagella: Current Research and Future Trends. Edited by Jarrell KF: Caister Academic Press; 2009.
  91. Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: An automated protein homology- modeling server. Nucleic Acids Res 2003, 31:3381-3385.
  92. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997, 18:2714-2723.
  93. Baumann L, Baumann P, Mandel M, Allen RD: Taxonomy of aerobic marine eubacteria. J Bacteriol 1972, 110:402-429.
  94. Grant B, Greenwald I: The Caenorhabditis elegans sel-1 gene, a negative regulator of lin-12 and glp-1, encodes a predicted extracellular protein. Genetics 1996, 143:237-247.
  95. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25:4876-4882.
  96. Guttenplan SB, Blair KM, Kearns DB: The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet 2010, 6:e1001243.
  97. Reid SW, Leake MC, Chandler JH, Lo CJ, Armitage JP, Berry RM: The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci U S A 2006, 103:8066-8071.
  98. Berg HC: The rotary motor of bacterial flagella. Annu Rev Biochem 2003, 72:19-54.
  99. Wilhelms M, Vilches S, Molero R, Shaw JG, Tomas JM, Merino S: Two redundant sodium- driven stator motor proteins are involved in Aeromonas hydrophila polar flagellum rotation. J Bacteriol 2009, 191:2206-2217.
  100. Kusumoto A, Shinohara A, Terashima H, Kojima S, Yakushi T, Homma M: Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus. Microbiology 2008, 154:1390-1399.
  101. McCarter L, Silverman M: Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol Microbiol 1990, 4:1057-1062.
  102. Kearns DB, Chu F, Branda SS, Kolter R, Losick R: A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 2005, 55:739-749.
  103. Fukuoka H, Wada T, Kojima S, Ishijima A, Homma M: Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol Microbiol 2009, 71:825-835.
  104. Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8:785-786.
  105. Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB: A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 2008, 320:1636-1638.
  106. Myers CR, Nealson KH: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 1988, 240:1319-1321.
  107. Hau HH, Gralnick JA: Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 2007, 61:237-258.
  108. McCarter LL: Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 2004, 7:18-29.
  109. Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP: Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 2006, 443:355-358.
  110. Lee LK, Ginsburg MA, Crovace C, Donohoe M, Stock D: Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 2010, 466:996- 1000.
  111. Southern E: Southern blotting. Nat Protoc 2006, 1:518-525.
  112. Porter SL, Wadhams GH, Armitage JP: Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 2011, 9:153-165.
  113. Miller VL, Mekalanos JJ: A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 1988, 170:2575-2583.
  114. Wolfe AJ, Visick KL: Get the message out: cyclic-Di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol 2008, 190:463-475.
  115. Shinoda S, Okamoto K: Formation and function of Vibrio parahaemolyticus lateral flagella. J Bacteriol 1977, 129:1266-1271.
  116. Sarkar MK, Paul K, Blair D: Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proc Natl Acad Sci U S A 2010, 107:9370-9375.
  117. Wu L, Wang J, Tang P, Chen H, Gao H: Genetic and molecular characterization of flagellar assembly in Shewanella oneidensis. PLoS One 2011, 6:e21479.
  118. Toutain CM, Zegans ME, O'Toole GA: Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. J Bacteriol 2005, 187:771-777.
  119. Welch M, Oosawa K, Aizawa S, Eisenbach M: Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc Natl Acad Sci U S A 1993, 90:8787-8791.
  120. Sanger F, Coulson AR: A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 1975, 94:441-448.
  121. Fukuoka H, Inoue Y, Terasawa S, Takahashi H, Ishijima A: Exchange of rotor components in functioning bacterial flagellar motor. Biochem Biophys Res Commun 2010, 394:130-135.
  122. Pilizota T, Bilyard T, Bai F, Futai M, Hosokawa H, Berry RM: A programmable optical angle clamp for rotary molecular motors. Biophys J 2007, 93:264-275. References 115
  123. Dyer CM, Vartanian AS, Zhou H, Dahlquist FW: A molecular mechanism of bacterial flagellar motor switching. J Mol Biol 2009, 388:71-84.
  124. Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983, 166:557-580.
  125. Zhou J, Blair DF: Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. J Mol Biol 1997, 273:428-439.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten