Neue Signalwege in Myxococcus xanthus : Die Entdeckung des SgmT/DigR-Regulons und die Untersuchung der zellulären Rolle von c-di-GMP

Die extrazelluläre Matrix von Myxococcus xanthus ist ein essentieller Bestandteil für ein funktionelles Typ-IV-Pili-abhängiges Bewegungssystem sowie für den kontrollierten Ablauf des charakteristischen Entwicklungs-programms in nährstoffarmer Umgebung. Die korrekte Zusammensetzung der extrazelluläre...

Ausführliche Beschreibung

Gespeichert in:
1. Verfasser: Petters, Tobias
Beteiligte: Søgaard-Andersen, Lotte (Prof. Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Deutsch
Veröffentlicht: Philipps-Universität Marburg 2012
Biologie
Ausgabe:http://dx.doi.org/10.17192/z2012.0902
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

1. http://archiv.ub.uni-marburg.de/diss/z2007/0685


2. Krogh, A., B. Larsson, G. von Heijne & E. L. Sonnhammer, (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567-580.


3. Gronewold, T. M. & D. Kaiser, (2007) Mutations of the act promoter in Myxococcus xanthus. J Bacteriol 189: 1836-1844.


4. Madan Babu, M. & S. A. Teichmann, (2003) Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res 31: 1234-1244.


5. Magrini, V., C. Creighton & P. Youderian, (1999) Site-specific recombination of temperate Myxococcus xanthus phage Mx8: genetic elements required for integration. J Bacteriol 181: 4050-4061.


6. Huitema, E., S. Pritchard, D. Matteson, S. K. Radhakrishnan & P. H. Viollier, (2006) Bacterial birth scar proteins mark future flagellum assembly site. Cell 124: 1025-1037.


7. Nariya, H. & M. Inouye, (2008) MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132: 55-66.


8. Zusman, D. R., A. E. Scott, Z. Yang & J. R. Kirby, (2007) Chemosensory pathways, motility and development in Myxococcus xanthus. Nat Rev Microbiol 5: 862-872.


9. Wu, S. S., J. Wu & D. Kaiser, (1997) The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 23: 109-121.


10. Ward, M. J., H. Lew & D. R. Zusman, (2000) Social motility in Myxococcus xanthus requires FrzS, a protein with an extensive coiled-coil domain. Mol Microbiol 37: 1357-1371.


11. Youderian, P., N. Burke, D. J. White & P. L. Hartzell, (2003) Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 49: 555-570.


12. Huntley, S., N. Hamann, S. Wegener-Feldbrügge, A. Treuner-Lange, M. Kube, R. Reinhardt, S. Klages, R. Müller, C. M. Ronning, W. C. Nierman & L. Søgaard-Andersen, (2011) Comparative genomic analysis of fruiting body formation in Myxococcales. Mol Biol Evol 28: 1083-1097.


13. Weinberg, Z., J. E. Barrick, Z. Yao, A. Roth, J. N. Kim, J. Gore, J. X. Wang, E. R. Lee, K. F. Block, N. Sudarsan, S. Neph, M. Tompa, W. L. Ruzzo & R. R. Breaker, (2007) Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res 35: 4809-4819.


14. Singer, M. & D. Kaiser, (1995) Ectopic production of guanosine penta-and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev 9: 1633-1644.


15. Wu, S. S. & D. Kaiser, (1995) Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 18: 547-558.


16. Lu, A., K. Cho, W. P. Black, X. Y. Duan, R. Lux, Z. Yang, H. B. Kaplan, D. R. Zusman & W. Shi, (2005) Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol Microbiol 55: 206-220.


17. Rasmussen, A. A., S. Wegener-Feldbrügge, S. L. Porter, J. P. Armitage & L. Søgaard-Andersen, (2006) Four signalling domains in the hybrid histidine protein kinase RodK of Myxococcus xanthus are required for activity. Mol Microbiol 60: 525-534.


18. Mignot, T., J. P. Merlie, Jr. & D. R. Zusman, (2007) Two localization motifs mediate polar residence of FrzS during cell movement and reversals of Myxococcus xanthus. Mol Microbiol 65: 363-372.


19. Yoder-Himes, D. R. & L. Kroos, (2006) Regulation of the Myxococcus xanthus C-signal-dependent Omega4400 promoter by the essential developmental protein FruA. J Bacteriol 188: 5167-5176.


20. Wegener-Feldbrügge, S. & L. Søgaard-Andersen, (2009) The atypical hybrid histidine protein kinase RodK in Myxococcus xanthus: spatial proximity supersedes kinetic preference in phosphotransfer reactions. J Bacteriol 191: 1765-1776.


21. Kroos, L., (2007) The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annu Rev Genet 41: 13-39.


22. Paul, R., S. Abel, P. Wassmann, A. Beck, H. Heerklotz & U. Jenal, (2007) Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem 282: 29170-29177.


23. Paul, R., S. Weiser, N. C. Amiot, C. Chan, T. Schirmer, B. Giese & U. Jenal, (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18: 715-727.


24. Spangler, C., A. Böhm, U. Jenal, R. Seifert & V. Kaever, (2010) A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Methods 81: 226- 231.


25. Aizawa, M. Gomelsky & R. E. Sockett, (2012) Discrete Cyclic di-GMP-Dependent Control of Bacterial Predation versus Axenic Growth in Bdellovibrio bacteriovorus. PLoS Pathog 8: e1002493.


26. Konovalova, A., T. Petters & L. Søgaard-Andersen, (2010) Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 34: 89-106.


27. Hsu, J. L., H. C. Chen, H. L. Peng & H. Y. Chang, (2008) Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J Biol Chem 283: 9933-9944.


28. Kyriakidis, D. A. & E. Tiligada, (2009) Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm. Amino Acids 37: 443-458.


29. Shi, X., S. Wegener-Feldbrügge, S. Huntley, N. Hamann, R. Hedderich & L. Søgaard-Andersen, (2008) Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 190: 613-624.


30. Römling, U., M. Rohde, A. Olsen, S. Normark & J. Reinköster, (2000) AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36: 10-23.


31. Kroos, L., P. Hartzell, K. Stephens & D. Kaiser, (1988) A link between cell movement and gene expression argues that motility is required for cell-cell signaling during fruiting body development. Genes Dev 2: 1677-1685.


32. Nan, B., E. M. Mauriello, I. H. Sun, A. Wong & D. R. Zusman, (2010) A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol Microbiol 76: 1539-1554.


33. Petters, T., (2008) Analyse von Proteinen im FruA-Signal-Transduktionsweg in Myxococcus xanthus. In: Diplomarbeit. Philipps-Universität Marburg, pp. 112.


34. Yang, Z., Y. Geng, D. Xu, H. B. Kaplan & W. Shi, (1998) A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30: 1123-1130.


35. Takeda, S., Y. Fujisawa, M. Matsubara, H. Aiba & T. Mizuno, (2001) A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC --> YojN --> RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 40: 440-450.


36. Slater, H., A. Alvarez-Morales, C. E. Barber, M. J. Daniels & J. M. Dow, (2000) A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38: 986-1003.


37. Pesavento, C. & R. Hengge, (2009) Bacterial nucleotide-based second messengers. Curr Opin Microbiol 12: 170-176.


38. Zhang, C. C., (1996) Bacterial signalling involving eukaryotic-type protein kinases. Mol Microbiol 20: 9-15.


39. Mandel, M. & A. Higa, (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53: 159-162.


40. Römling, U., M. Gomelsky & M. Y. Galperin, (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57: 629-639.


41. Ross, P., R. Mayer & M. Benziman, (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55: 35-58.


42. Zhang, X., (2005) Characterization of DigR, a novel response regulator protein in Myxococcus xanthus. In: Masterarbeit. University of Southern Denmark, Odense, pp.


43. Hinderberger, I., (2011) Charakterisierung der Funktion des kleinen G-Proteins SofG und der Antwortregulatoren MXAN_4463 und MXAN_5791 in M. xanthus. In: Bachelorarbeit. Marburg: Philipps-Universität, pp. 80.


44. Kearns, D. B. & L. J. Shimkets, (1998) Chemotaxis in a gliding bacterium. Proc Natl Acad Sci U S A 95: 11957-11962.


45. Valla, S., D. H. Coucheron, E. Fjaervik, J. Kjosbakken, H. Weinhouse, P. Ross, D. Amikam & M. Benziman, (1989) Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: complementation of cellulose- negative mutants by the UDPG pyrophosphorylase structural gene. Mol Gen Genet 217: 26-30.


46. Yang, Z., X.-y. Duan, M. Esmaeiliyan & H. B. Kaplan, (2008) Composition, Structure, and Function of the Myxococcus xanthus Cell Envelope. In: Myxobacteria. Multicellularity and Differentiation. D. E. Whitworth (ed). pp. 229- 240.


47. Thormann, K. M., S. Duttler, R. M. Saville, M. Hyodo, S. Shukla, Y. Hayakawa & A. M. Spormann, (2006) Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 188: 2681-2691.


48. Hengge, R., (2010) Cyclic-di-GMP reaches out into the bacterial RNA world. Sci Signal 3: pe44.


49. Wheeler, R. T. & L. Shapiro, (1999) Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol Cell 4: 683-694.


50. Grant, C. E., T. L. Bailey & W. S. Noble, (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27: 1017-1018.


51. Wenzel, S. C. & R. Müller, (2005) Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic. Curr Opin Chem Biol 9: 447-458.


52. McBride, M. J., R. A. Weinberg & D. R. Zusman, (1989) "Frizzy" aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc Natl Acad Sci U S A 86: 424-428.


53. Nicholas, K. B., H. B. Nicholas Jr. & D. W. Deerfield II., (1997) GeneDoc: Analysis and Visualization of Genetic Variation. EMBNEW.NEWS 14.


54. Hodgkin, J. & D. Kaiser, (1979) Genetics of Gliding Motility in Myxococcus xanthus (Myxobacterales) -2 Gene Systems Control Movement. Mol Gen Genet 171: 177-191.


55. Kashefi, K. & P. L. Hartzell, (1995) Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF-defect.


56. Simm, R., M. Morr, A. Kader, M. Nimtz & U. Romling, (2004) GGDEF and EAL domains inversely regulate cyclic di- GMP levels and transition from sessility to motility. Mol Microbiol 53: 1123-1134.


57. Mauriello, E. M., T. Mignot, Z. Yang & D. R. Zusman, (2010) Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol Mol Biol Rev 74: 229-249.


58. Manoil, C. & D. Kaiser, (1980) Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcus xanthus fruiting body development. J Bacteriol 141: 305-315.


59. Ramaswamy, S., M. Dworkin & J. Downard, (1997) Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J Bacteriol 179: 2863-2871.


60. Hickman, J. W. & C. S. Harwood, (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP- responsive transcription factor. Mol Microbiol 69: 376-389.


61. Rashid, M. H., C. Rajanna, A. Ali & D. K. Karaolis, (2003) Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol Lett 227: 113-119.


62. Wood, P. J. & R. G. Fulcher, (1978) Interaction of Some Dyes with Cereal Beta-Glucans. Cereal Chemistry 55: 952-966. LITERATURVERZEICHNIS 149


63. Søgaard-Andersen, L., F. J. Slack, H. Kimsey & D. Kaiser, (1996) Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev 10: 740-754.


64. Spratt, B. G., P. J. Hedge, S. te Heesen, A. Edelman & J. K. Broome-Smith, (1986) Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene 41: 337-342.


65. Ogata, H., S. Goto, K. Sato, W. Fujibuchi, H. Bono & M. Kanehisa, (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27: 29-34.


66. Newell, P. D., R. D. Monds & G. A. O'Toole, (2009) LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci U S A 106: 3461-3466.


67. Subramanian, G., R. Mural, S. L. Hoffman, J. C. Venter & S. Broder, (2001) Microbial disease in humans: A genomic perspective. Mol Diagn 6: 243-252.


68. Sambrook, J. & D. W. Russell, (2001) Molecular Cloning -A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.


69. Sun, M., M. Wartel, E. Cascales, J. W. Shaevitz & T. Mignot, (2011) Motor-driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci U S A 108: 7559-7564.


70. Müller, F.-D. & J. S. Jakobsen, (2008) Myxococcus xanthus: Expression Analysis. In: Myxobacteria. Multicellularity and Differentiation. D. E. Whitworth (ed). pp. 479-489.


71. Galperin, M. Y., A. N. Nikolskaya & E. V. Koonin, (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203: 11-21.


72. Magnusson, L. U., A. Farewell & T. Nystrom, (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13: 236-242.


73. Münch, R., K. Hiller, H. Barg, D. Heldt, S. Linz, E. Wingender & D. Jahn, (2003) PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res 31: 266-269.


74. Studier, F. W., (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41: 207- 234.


75. Ross, P., H. Weinhouse, Y. Aloni, D. Michaeli, P. Weinberger-Ohana, R. Mayer, S. Braun, E. de Vroom, G. A. van der Marel, J. H. van Boom & M. Benziman, (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325: 279-281.


76. Sudarsan, N., E. R. Lee, Z. Weinberg, R. H. Moy, J. N. Kim, K. H. Link & R. R. Breaker, (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321: 411-413.


77. Sansinenea, E. & A. Ortiz, (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33: 1523-1538.


78. Habazettl, J., M. G. Allan, U. Jenal & S. Grzesiek, (2011) Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies charge clustering as molecular readout. J Biol Chem 286: 14304-14314.


79. Mullis, K., F. Faloona, S. Scharf, R. Saiki, G. Horn & H. Erlich, (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51 Pt 1: 263-273.


80. Scott, K. A., S. L. Porter, E. A. Bagg, R. Hamer, J. L. Hill, D. A. Wilkinson & J. P. Armitage, (2010) Specificity of localization and phosphotransfer in the CheA proteins of Rhodobacter sphaeroides. Mol Microbiol 76: 318- 330.


81. Moore, J. O. & W. A. Hendrickson, (2009) Structural analysis of sensor domains from the TMAO-responsive histidine kinase receptor TorS. Structure 17: 1195-1204.


82. Hagen, D. C., A. P. Bretscher & D. Kaiser, (1978) Synergism between morphogenetic mutants of Myxococcus xanthus. Dev Biol 64: 284-296.


83. Mills, E., I. S. Pultz, H. D. Kulasekara & S. I. Miller, (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13: 1122-1129.


84. Paul, K., V. Nieto, W. C. Carlquist, D. F. Blair & R. M. Harshey, (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell 38: 128- 139.


85. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882.


86. Spröer, C., H. Reichenbach & E. Stackebrandt, (1999) The correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol 49 Pt 3: 1255-1262.


87. Missiakas, D. & S. Raina, (1998) The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28: 1059-1066.


88. Grebe, T. W. & J. B. Stock, (1999) The histidine protein kinase superfamily. Adv Microb Physiol 41: 139-227.


89. Ulrich, L. E. & I. B. Zhulin, (2010) The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 38: D401-407.


90. Zogaj, X., M. Nimtz, M. Rohde, W. Bokranz & U. Romling, (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39: 1452-1463.


91. Guo, D., M. G. Bowden, R. Pershad & H. B. Kaplan, (1996) The Myxococcus xanthus rfbABC operon encodes an ATP- binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development. J Bacteriol 178: 1631-1639.


92. Ostell, J. M. & J. A. Kans, (1998) The NCBI data model. Methods Biochem Anal 39: 121-144.


93. Overgaard, M., S. Wegener-Feldbrügge & L. Søgaard-Andersen, (2006) The orphan response regulator DigR is required for synthesis of extracellular matrix fibrils in Myxococcus xanthus. J Bacteriol 188: 4384-4394.


94. Ryjenkov, D. A., R. Simm, U. Romling & M. Gomelsky, (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281: 30310-30314.


95. Merighi, M., V. T. Lee, M. Hyodo, Y. Hayakawa & S. Lory, (2007) The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65: 876-895.


96. Malone, J. G., R. Williams, M. Christen, U. Jenal, A. J. Spiers & P. B. Rainey, (2007) The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. Microbiology 153: 980-994.


97. Meiser, P., H. B. Bode & R. Muller, (2006) The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc Natl Acad Sci U S A 103: 19128-19133.


98. Vos, M. H., L. Bouzhir-Sima, J. C. Lambry, H. Luo, J. J. Eaton-Rye, A. Ioanoviciu, P. R. Ortiz de Montellano & U. Liebl, (2012) Ultrafast Ligand Dynamics in the Heme-Based GAF Sensor Domains of the Histidine Kinases DosS and DosT from Mycobacterium tuberculosis. Biochemistry 51: 159-166.


99. Nesper, J., A. Reinders, T. Glatter, A. Schmidt & U. Jenal, (Manuskript eingereicht) Use of a Novel Capture Compound for the Identification and Analysis of Cyclic di-GMP Binding Proteins. J Proteomics.


100. MacLean, L., M. B. Perry, L. Nossova, H. Kaplan & E. Vinogradov, (2007) The structure of the carbohydrate backbone of the LPS from Myxococcus xanthus strain DK1622. Carbohydr Res 342: 2474-2480.


101. Gronewold, T. M. & D. Kaiser, (2001) The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol Microbiol 40: 744-756.


102. Nariya, H. & S. Inouye, (2006) A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol Microbiol 60: 1205- 1217.


103. Guzzo, C. R., R. K. Salinas, M. O. Andrade & C. S. Farah, (2009) PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis. J Mol Biol 393: 848-866.


104. Wireman, J. W. & M. Dworkin, (1975) Morphogenesis and developmental interactions in myxobacteria. Science 189: 516-523.


105. Mignot, T., J. P. Merlie, Jr. & D. R. Zusman, (2005) Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310: 855-857.


106. Tucker, N. P., B. D'Autreaux, F. K. Yousafzai, S. A. Fairhurst, S. Spiro & R. Dixon, (2008) Analysis of the nitric oxide- sensing non-heme iron center in the NorR regulatory protein. J Biol Chem 283: 908-918.


107. Stock, A. M., V. L. Robinson & P. N. Goudreau, (2000) Two-component signal transduction. Annu Rev Biochem 69: 183-215.


108. Jenal, U. & J. Malone, (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40: 385-407.


109. Pareja, E., P. Pareja-Tobes, M. Manrique, E. Pareja-Tobes, J. Bonal & R. Tobes, (2006) ExtraTrain: a database of Extragenic regions and Transcriptional information in prokaryotic organisms. BMC Microbiol 6: 29.


110. Hengge, R., (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7: 263-273.


111. Mauriello, E. M., B. Nan & D. R. Zusman, (2009) AglZ regulates adventurous (A-) motility in Myxococcus xanthus through its interaction with the cytoplasmic receptor, FrzCD. Mol Microbiol 72: 964-977.


112. Garza, A. G., J. S. Pollack, B. Z. Harris, A. Lee, I. M. Keseler, E. F. Licking & M. Singer, (1998) SdeK is required for early fruiting body development in Myxococcus xanthus. J Bacteriol 180: 4628-4637.


113. Tischler, A. D. & A. Camilli, (2005) Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73: 5873-5882.


114. Hickman, J. W., D. F. Tifrea & C. S. Harwood, (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102: 14422-14427.


115. Higgs, P. I., K. Cho, D. E. Whitworth, L. S. Evans & D. R. Zusman, (2005) Four unusual two-component signal transduction homologs, RedC to RedF, are necessary for timely development in Myxococcus xanthus. J Bacteriol 187: 8191-8195.


116. Kearns, D. B., P. J. Bonner, D. R. Smith & L. J. Shimkets, (2002) An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J Bacteriol 184: 1678-1684.


117. Youderian, P. & P. L. Hartzell, (2006) Transposon insertions of magellan-4 that impair social gliding motility in Myxococcus xanthus. Genetics 172: 1397-1410.


118. Robinson, V. L., T. Wu & A. M. Stock, (2003) Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J Bacteriol 185: 4186-4194.


119. Julien, B., A. D. Kaiser & A. Garza, (2000) Spatial control of cell differentiation in Myxococcus xanthus. Proc Natl Acad Sci U S A 97: 9098-9103.


120. Hecht, G. B. & A. Newton, (1995) Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J Bacteriol 177: 6223-6229.


121. Wu, S. S. & D. Kaiser, (1997) Regulation of expression of the pilA gene in Myxococcus xanthus. J Bacteriol 179: 7748- 7758.


122. Rasmussen, A. A. & L. Søgaard-Andersen, (2003) TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus. J Bacteriol 185: 5452-5464.


123. Plamann, L., A. Kuspa & D. Kaiser, (1992) Proteins that rescue A-signal-defective mutants of Myxococcus xanthus. J Bacteriol 174: 3311-3318.


124. Kuspa, A., L. Plamann & D. Kaiser, (1992) Identification of heat-stable A-factor from Myxococcus xanthus. J Bacteriol 174: 3319-3326.


125. McCleary, W. R., B. Esmon & D. R. Zusman, (1991) Myxococcus xanthus protein C is a major spore surface protein. J Bacteriol 173: 2141-2145.


126. Igo, M. M. & T. J. Silhavy, (1988) EnvZ, a transmembrane environmental sensor of Escherichia coli K-12, is phosphorylated in vitro. J Bacteriol 170: 5971-5973.


127. Kuner, J. M. & D. Kaiser, (1982) Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J Bacteriol 151: 458-461.


128. Jakovljevic, V., S. Leonardy, M. Hoppert & L. Søgaard-Andersen, (2008) PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 190: 2411-2421.


129. Juncker, A. S., H. Willenbrock, G. Von Heijne, S. Brunak, H. Nielsen & A. Krogh, (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12: 1652-1662.


130. van Hijum, S. A., M. H. Medema & O. P. Kuipers, (2009) Mechanisms and evolution of control logic in prokaryotic transcriptional regulation. Microbiol Mol Biol Rev 73: 481-509, Table of Contents.


131. Heikaus, C. C., J. Pandit & R. E. Klevit, (2009) Cyclic nucleotide binding GAF domains from phosphodiesterases: structural and mechanistic insights. Structure 17: 1551-1557.


132. Kühn, J., A. Briegel, E. Morschel, J. Kahnt, K. Leser, S. Wick, G. J. Jensen & M. Thanbichler, (2010) Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J 29: 327-339.


133. Müller, F. D., A. Treuner-Lange, J. Heider, S. M. Huntley & P. I. Higgs, (2010) Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC Genomics 11: 264.


134. Tchigvintsev, A., X. Xu, A. Singer, C. Chang, G. Brown, M. Proudfoot, H. Cui, R. Flick, W. F. Anderson, A. Joachimiak, M. Y. Galperin, A. Savchenko & A. F. Yakunin, (2010) Structural insight into the mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases. J Mol Biol 402: 524-538.


135. Nan, B., J. Chen, J. C. Neu, R. M. Berry, G. Oster & D. R. Zusman, (2011) Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proc Natl Acad Sci U S A 108: 2498-2503.


136. Shin, J. S., K. S. Ryu, J. Ko, A. Lee & B. S. Choi, (2010) Structural characterization reveals that a PilZ domain protein undergoes substantial conformational change upon binding to cyclic dimeric guanosine monophosphate. Protein Sci.


137. Tsokos, C. G., B. S. Perchuk & M. T. Laub, (2011) A dynamic complex of signaling proteins uses polar localization to regulate cell-fate asymmetry in Caulobacter crescentus. Dev Cell 20: 329-341.


138. Koch, M. K., C. A. McHugh & E. Hoiczyk, (2011) BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape. Mol Microbiol 80: 1031-1051.


139. Stauff, D. L. & B. L. Bassler, (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor. J Bacteriol 193: 3871-3878.


140. Kolb, A., A. Spassky, C. Chapon, B. Blazy & H. Buc, (1983) On the different binding affinities of CRP at the lac, gal and malT promoter regions. Nucleic Acids Res 11: 7833-7852.


141. Garner, M. M. & A. Revzin, (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9: 3047-3060.


142. Henry, J. T. & S. Crosson, (2011) Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu Rev Microbiol 65: 261-286.


143. Tusher, V. G., R. Tibshirani & G. Chu, (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116-5121.


144. Schultz, J., F. Milpetz, P. Bork & C. P. Ponting, (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95: 5857-5864.


145. Hu, W., Z. Yang, R. Lux, M. Zhao, J. Wang, X. He & W. Shi, (2012) Direct visualization of the interaction between pilin and exopolysaccharides of Myxococcus xanthus with eGFP-fused PilA protein. FEMS Microbiol Lett 326: 23- 30.


146. Hoekema, A., R. A. Kastelein, M. Vasser & H. A. de Boer, (1987) Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol Cell Biol 7: 2914-2924.


147. Towbin, H., T. Staehelin & J. Gordon, (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76: 4350-4354.


148. Kaiser, D., (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A 76: 5952-5956.


149. Hodgkin, J. & D. Kaiser, (1977) Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci U S A 74: 2938-2942.


150. Rosenberg, E., B. Vaks & A. Zuckerberg, (1973) Bactericidal action of an antibiotic produced by Myxococcus xanthus. Antimicrob Agents Chemother 4: 507-513.


151. Yang, R., S. Bartle, R. Otto, A. Stassinopoulos, M. Rogers, L. Plamann & P. Hartzell, (2004) AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J Bacteriol 186: 6168- 6178.


152. Kearns, D. B., A. Venot, P. J. Bonner, B. Stevens, G. J. Boons & L. J. Shimkets, (2001) Identification of a developmental chemoattractant in Myxococcus xanthus through metabolic engineering. Proc Natl Acad Sci U S A 98: 13990- 13994.


153. Yang, Z., X. Ma, L. Tong, H. B. Kaplan, L. J. Shimkets & W. Shi, (2000) Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol 182: 5793-5798.


154. Sanger, F., S. Nicklen & A. R. Coulson, (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463-5467.


155. Hanahan, D., (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557-580.


156. Reading, N. C. & V. Sperandio, (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254: 1- 11.