Publikationsserver der Universitätsbibliothek Marburg

Titel:Neue Signalwege in Myxococcus xanthus : Die Entdeckung des SgmT/DigR-Regulons und die Untersuchung der zellulären Rolle von c-di-GMP
Autor:Petters, Tobias
Weitere Beteiligte: Søgaard-Andersen, Lotte (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0902
DOI: https://doi.org/10.17192/z2012.0902
URN: urn:nbn:de:hebis:04-z2012-09027
DDC: Biowissenschaften, Biologie
Titel (trans.):New signalling pathways in Myxococcus xanthus : the discovery of the SgmT/DigR regulon and the investigation of the cellular role of c-di-GMP
Publikationsdatum:2012-10-05
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Zwei-Komponenten-System, c-di-GMP, Gleitende Bewegung, Two-component system, GGDEF, Gliding motility, c-di-GMP, Myxococcus xanthus, Myxococcus xanthus, GGDEF
Referenziert von:

Zusammenfassung:
Die extrazelluläre Matrix von Myxococcus xanthus ist ein essentieller Bestandteil für ein funktionelles Typ-IV-Pili-abhängiges Bewegungssystem sowie für den kontrollierten Ablauf des charakteristischen Entwicklungs-programms in nährstoffarmer Umgebung. Die korrekte Zusammensetzung der extrazellulären Matrix wird über Proteine von Zwei-Komponenten-Systemen einschließlich des verwaisten Antwortregulators DigR reguliert. Im Rahmen dieser Dissertation wurde die verwaiste Hybrid-Histidinkinase SgmT charakterisiert und als korrespondierender Partner von DigR identifiziert. Neben einer Kinase- und einer Empfängerdomäne besitzt SgmT eine N-terminale GAF-Domäne und eine C-terminale GGDEF-Domäne. Mit Hilfe genetischer und biochemischer Analysen wurde die Funktion der einzelnen Domänen von SgmT untersucht, wobei die GAF-Domäne als sensorische Haupteinheit fungiert und die Kinaseaktivität von SgmT steuert. Die GGDEF-Domäne ist ein Rezeptor für den sekundären Botenstoffs c-di-GMP, der SgmT abhängig von dessen Bindung zellulär lokalisiert. Desweiteren wurde eine DigR-Bindestelle im Promoter von fibA identifiziert, einem Gen, das für eine extrazelluläre Matrixprotease kodiert. Die Identifikation weiterer DigR-Bindestellen in den Promotorregionen von signifikant-regulierten Genen aus vergleichenden Transkriptomstudien lässt vermuten, dass das SgmT/DigR-Regulon aus Genen besteht, die für sekretierte Proteine sowie für Enzyme des Sekundärmetabolismus kodieren. Diese Beobachtungen geben Grund zur Annahme, dass SgmT und DigR die Zusammensetzung der extrazellulären Matrix direkt regulieren, und dass die Funktion von SgmT über zwei sensorische Domänen gesteuert wird, wobei die Kinaseaktivität durch Ligandenbindung an die GAF-Domäne und die zelluläre Lokalisierung von SgmT über die Bindung von c-di-GMP an die GGDEF-Domäne reguliert wird. Desweiteren wurden konservierte c-di-GMP-abhängige Proteine in M. xanthus identifiziert und damit begonnen deren Einfluss auf wichtige zelluläre Prozesse hin zu untersuchen. Darüber hinaus wurden erste Erkenntnisse gewonnen, dass c-di-GMP möglicherweise an der Koordination des Entwicklungsprogramms beteiligt sein könnte.

Bibliographie / References

  1. Weis, S., (2007) Identifizierung und Charakterisierung zweier für die Entwicklung essentieller Serin/Threonin- Proteinkinasen in Myxococcus xanthus. In: Dissertation. Philipps-Universität Marburg, pp. 130.
  2. Krogh, A., B. Larsson, G. von Heijne & E. L. Sonnhammer, (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567-580.
  3. Gronewold, T. M. & D. Kaiser, (2007) Mutations of the act promoter in Myxococcus xanthus. J Bacteriol 189: 1836-1844.
  4. Madan Babu, M. & S. A. Teichmann, (2003) Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res 31: 1234-1244.
  5. Magrini, V., C. Creighton & P. Youderian, (1999) Site-specific recombination of temperate Myxococcus xanthus phage Mx8: genetic elements required for integration. J Bacteriol 181: 4050-4061.
  6. Huitema, E., S. Pritchard, D. Matteson, S. K. Radhakrishnan & P. H. Viollier, (2006) Bacterial birth scar proteins mark future flagellum assembly site. Cell 124: 1025-1037.
  7. Nariya, H. & M. Inouye, (2008) MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132: 55-66.
  8. Zusman, D. R., A. E. Scott, Z. Yang & J. R. Kirby, (2007) Chemosensory pathways, motility and development in Myxococcus xanthus. Nat Rev Microbiol 5: 862-872.
  9. Wu, S. S., J. Wu & D. Kaiser, (1997) The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 23: 109-121.
  10. Ward, M. J., H. Lew & D. R. Zusman, (2000) Social motility in Myxococcus xanthus requires FrzS, a protein with an extensive coiled-coil domain. Mol Microbiol 37: 1357-1371.
  11. Youderian, P., N. Burke, D. J. White & P. L. Hartzell, (2003) Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 49: 555-570.
  12. Huntley, S., N. Hamann, S. Wegener-Feldbrügge, A. Treuner-Lange, M. Kube, R. Reinhardt, S. Klages, R. Müller, C. M. Ronning, W. C. Nierman & L. Søgaard-Andersen, (2011) Comparative genomic analysis of fruiting body formation in Myxococcales. Mol Biol Evol 28: 1083-1097.
  13. Weinberg, Z., J. E. Barrick, Z. Yao, A. Roth, J. N. Kim, J. Gore, J. X. Wang, E. R. Lee, K. F. Block, N. Sudarsan, S. Neph, M. Tompa, W. L. Ruzzo & R. R. Breaker, (2007) Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res 35: 4809-4819.
  14. Ulrich, L. E. & I. B. Zhulin, (2010) The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 38: D401-407.
  15. Singer, M. & D. Kaiser, (1995) Ectopic production of guanosine penta-and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev 9: 1633-1644.
  16. Wu, S. S. & D. Kaiser, (1995) Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 18: 547-558.
  17. Lu, A., K. Cho, W. P. Black, X. Y. Duan, R. Lux, Z. Yang, H. B. Kaplan, D. R. Zusman & W. Shi, (2005) Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol Microbiol 55: 206-220.
  18. Rasmussen, A. A., S. Wegener-Feldbrügge, S. L. Porter, J. P. Armitage & L. Søgaard-Andersen, (2006) Four signalling domains in the hybrid histidine protein kinase RodK of Myxococcus xanthus are required for activity. Mol Microbiol 60: 525-534.
  19. Mignot, T., J. P. Merlie, Jr. & D. R. Zusman, (2007) Two localization motifs mediate polar residence of FrzS during cell movement and reversals of Myxococcus xanthus. Mol Microbiol 65: 363-372.
  20. Yoder-Himes, D. R. & L. Kroos, (2006) Regulation of the Myxococcus xanthus C-signal-dependent Omega4400 promoter by the essential developmental protein FruA. J Bacteriol 188: 5167-5176.
  21. Wegener-Feldbrügge, S. & L. Søgaard-Andersen, (2009) The atypical hybrid histidine protein kinase RodK in Myxococcus xanthus: spatial proximity supersedes kinetic preference in phosphotransfer reactions. J Bacteriol 191: 1765-1776.
  22. Kroos, L., (2007) The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annu Rev Genet 41: 13-39.
  23. Paul, R., S. Abel, P. Wassmann, A. Beck, H. Heerklotz & U. Jenal, (2007) Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem 282: 29170-29177.
  24. Paul, R., S. Weiser, N. C. Amiot, C. Chan, T. Schirmer, B. Giese & U. Jenal, (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18: 715-727.
  25. Spangler, C., A. Böhm, U. Jenal, R. Seifert & V. Kaever, (2010) A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Methods 81: 226- 231.
  26. Aizawa, M. Gomelsky & R. E. Sockett, (2012) Discrete Cyclic di-GMP-Dependent Control of Bacterial Predation versus Axenic Growth in Bdellovibrio bacteriovorus. PLoS Pathog 8: e1002493.
  27. Konovalova, A., T. Petters & L. Søgaard-Andersen, (2010) Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 34: 89-106.
  28. Hsu, J. L., H. C. Chen, H. L. Peng & H. Y. Chang, (2008) Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J Biol Chem 283: 9933-9944.
  29. Kyriakidis, D. A. & E. Tiligada, (2009) Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm. Amino Acids 37: 443-458.
  30. Shi, X., S. Wegener-Feldbrügge, S. Huntley, N. Hamann, R. Hedderich & L. Søgaard-Andersen, (2008) Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 190: 613-624.
  31. Römling, U., M. Rohde, A. Olsen, S. Normark & J. Reinköster, (2000) AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36: 10-23.
  32. Kroos, L., P. Hartzell, K. Stephens & D. Kaiser, (1988) A link between cell movement and gene expression argues that motility is required for cell-cell signaling during fruiting body development. Genes Dev 2: 1677-1685.
  33. Nan, B., E. M. Mauriello, I. H. Sun, A. Wong & D. R. Zusman, (2010) A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol Microbiol 76: 1539-1554.
  34. Petters, T., (2008) Analyse von Proteinen im FruA-Signal-Transduktionsweg in Myxococcus xanthus. In: Diplomarbeit. Philipps-Universität Marburg, pp. 112.
  35. Yang, Z., Y. Geng, D. Xu, H. B. Kaplan & W. Shi, (1998) A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30: 1123-1130.
  36. Takeda, S., Y. Fujisawa, M. Matsubara, H. Aiba & T. Mizuno, (2001) A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC --> YojN --> RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 40: 440-450.
  37. Slater, H., A. Alvarez-Morales, C. E. Barber, M. J. Daniels & J. M. Dow, (2000) A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38: 986-1003.
  38. Pesavento, C. & R. Hengge, (2009) Bacterial nucleotide-based second messengers. Curr Opin Microbiol 12: 170-176.
  39. Zhang, C. C., (1996) Bacterial signalling involving eukaryotic-type protein kinases. Mol Microbiol 20: 9-15.
  40. Mandel, M. & A. Higa, (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53: 159-162.
  41. Römling, U., M. Gomelsky & M. Y. Galperin, (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57: 629-639.
  42. Ross, P., R. Mayer & M. Benziman, (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55: 35-58.
  43. Zhang, X., (2005) Characterization of DigR, a novel response regulator protein in Myxococcus xanthus. In: Masterarbeit. University of Southern Denmark, Odense, pp.
  44. Hinderberger, I., (2011) Charakterisierung der Funktion des kleinen G-Proteins SofG und der Antwortregulatoren MXAN_4463 und MXAN_5791 in M. xanthus. In: Bachelorarbeit. Marburg: Philipps-Universität, pp. 80.
  45. Kearns, D. B. & L. J. Shimkets, (1998) Chemotaxis in a gliding bacterium. Proc Natl Acad Sci U S A 95: 11957-11962.
  46. Valla, S., D. H. Coucheron, E. Fjaervik, J. Kjosbakken, H. Weinhouse, P. Ross, D. Amikam & M. Benziman, (1989) Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: complementation of cellulose- negative mutants by the UDPG pyrophosphorylase structural gene. Mol Gen Genet 217: 26-30.
  47. Yang, Z., X.-y. Duan, M. Esmaeiliyan & H. B. Kaplan, (2008) Composition, Structure, and Function of the Myxococcus xanthus Cell Envelope. In: Myxobacteria. Multicellularity and Differentiation. D. E. Whitworth (ed). pp. 229- 240.
  48. Thormann, K. M., S. Duttler, R. M. Saville, M. Hyodo, S. Shukla, Y. Hayakawa & A. M. Spormann, (2006) Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 188: 2681-2691.
  49. Hengge, R., (2010) Cyclic-di-GMP reaches out into the bacterial RNA world. Sci Signal 3: pe44.
  50. Wheeler, R. T. & L. Shapiro, (1999) Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol Cell 4: 683-694.
  51. Grant, C. E., T. L. Bailey & W. S. Noble, (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27: 1017-1018.
  52. Wenzel, S. C. & R. Müller, (2005) Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic. Curr Opin Chem Biol 9: 447-458.
  53. McBride, M. J., R. A. Weinberg & D. R. Zusman, (1989) "Frizzy" aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc Natl Acad Sci U S A 86: 424-428.
  54. Nicholas, K. B., H. B. Nicholas Jr. & D. W. Deerfield II., (1997) GeneDoc: Analysis and Visualization of Genetic Variation. EMBNEW.NEWS 14.
  55. Hodgkin, J. & D. Kaiser, (1979) Genetics of Gliding Motility in Myxococcus xanthus (Myxobacterales) -2 Gene Systems Control Movement. Mol Gen Genet 171: 177-191.
  56. Kashefi, K. & P. L. Hartzell, (1995) Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF-defect.
  57. Simm, R., M. Morr, A. Kader, M. Nimtz & U. Romling, (2004) GGDEF and EAL domains inversely regulate cyclic di- GMP levels and transition from sessility to motility. Mol Microbiol 53: 1123-1134.
  58. Mauriello, E. M., T. Mignot, Z. Yang & D. R. Zusman, (2010) Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol Mol Biol Rev 74: 229-249.
  59. Manoil, C. & D. Kaiser, (1980) Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcus xanthus fruiting body development. J Bacteriol 141: 305-315.
  60. Ramaswamy, S., M. Dworkin & J. Downard, (1997) Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J Bacteriol 179: 2863-2871.
  61. Hickman, J. W. & C. S. Harwood, (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP- responsive transcription factor. Mol Microbiol 69: 376-389.
  62. Rashid, M. H., C. Rajanna, A. Ali & D. K. Karaolis, (2003) Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol Lett 227: 113-119.
  63. Wood, P. J. & R. G. Fulcher, (1978) Interaction of Some Dyes with Cereal Beta-Glucans. Cereal Chemistry 55: 952-966. LITERATURVERZEICHNIS 149
  64. Søgaard-Andersen, L., F. J. Slack, H. Kimsey & D. Kaiser, (1996) Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev 10: 740-754.
  65. Spratt, B. G., P. J. Hedge, S. te Heesen, A. Edelman & J. K. Broome-Smith, (1986) Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene 41: 337-342.
  66. Ogata, H., S. Goto, K. Sato, W. Fujibuchi, H. Bono & M. Kanehisa, (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27: 29-34.
  67. Newell, P. D., R. D. Monds & G. A. O'Toole, (2009) LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci U S A 106: 3461-3466.
  68. Subramanian, G., R. Mural, S. L. Hoffman, J. C. Venter & S. Broder, (2001) Microbial disease in humans: A genomic perspective. Mol Diagn 6: 243-252.
  69. Sambrook, J. & D. W. Russell, (2001) Molecular Cloning -A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  70. Sun, M., M. Wartel, E. Cascales, J. W. Shaevitz & T. Mignot, (2011) Motor-driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci U S A 108: 7559-7564.
  71. Müller, F.-D. & J. S. Jakobsen, (2008) Myxococcus xanthus: Expression Analysis. In: Myxobacteria. Multicellularity and Differentiation. D. E. Whitworth (ed). pp. 479-489.
  72. Galperin, M. Y., A. N. Nikolskaya & E. V. Koonin, (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203: 11-21.
  73. Magnusson, L. U., A. Farewell & T. Nystrom, (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13: 236-242.
  74. Münch, R., K. Hiller, H. Barg, D. Heldt, S. Linz, E. Wingender & D. Jahn, (2003) PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res 31: 266-269.
  75. Studier, F. W., (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41: 207- 234.
  76. Ross, P., H. Weinhouse, Y. Aloni, D. Michaeli, P. Weinberger-Ohana, R. Mayer, S. Braun, E. de Vroom, G. A. van der Marel, J. H. van Boom & M. Benziman, (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325: 279-281.
  77. Sudarsan, N., E. R. Lee, Z. Weinberg, R. H. Moy, J. N. Kim, K. H. Link & R. R. Breaker, (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321: 411-413.
  78. Sansinenea, E. & A. Ortiz, (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33: 1523-1538.
  79. Habazettl, J., M. G. Allan, U. Jenal & S. Grzesiek, (2011) Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies charge clustering as molecular readout. J Biol Chem 286: 14304-14314.
  80. Mullis, K., F. Faloona, S. Scharf, R. Saiki, G. Horn & H. Erlich, (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51 Pt 1: 263-273.
  81. Scott, K. A., S. L. Porter, E. A. Bagg, R. Hamer, J. L. Hill, D. A. Wilkinson & J. P. Armitage, (2010) Specificity of localization and phosphotransfer in the CheA proteins of Rhodobacter sphaeroides. Mol Microbiol 76: 318- 330.
  82. Moore, J. O. & W. A. Hendrickson, (2009) Structural analysis of sensor domains from the TMAO-responsive histidine kinase receptor TorS. Structure 17: 1195-1204.
  83. Hagen, D. C., A. P. Bretscher & D. Kaiser, (1978) Synergism between morphogenetic mutants of Myxococcus xanthus. Dev Biol 64: 284-296.
  84. Mills, E., I. S. Pultz, H. D. Kulasekara & S. I. Miller, (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13: 1122-1129.
  85. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882.
  86. Spröer, C., H. Reichenbach & E. Stackebrandt, (1999) The correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol 49 Pt 3: 1255-1262.
  87. Grebe, T. W. & J. B. Stock, (1999) The histidine protein kinase superfamily. Adv Microb Physiol 41: 139-227.
  88. Zogaj, X., M. Nimtz, M. Rohde, W. Bokranz & U. Romling, (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39: 1452-1463.
  89. Ostell, J. M. & J. A. Kans, (1998) The NCBI data model. Methods Biochem Anal 39: 121-144.
  90. Overgaard, M., S. Wegener-Feldbrügge & L. Søgaard-Andersen, (2006) The orphan response regulator DigR is required for synthesis of extracellular matrix fibrils in Myxococcus xanthus. J Bacteriol 188: 4384-4394.
  91. Ryjenkov, D. A., R. Simm, U. Romling & M. Gomelsky, (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281: 30310-30314.
  92. Merighi, M., V. T. Lee, M. Hyodo, Y. Hayakawa & S. Lory, (2007) The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65: 876-895.
  93. Malone, J. G., R. Williams, M. Christen, U. Jenal, A. J. Spiers & P. B. Rainey, (2007) The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. Microbiology 153: 980-994.
  94. Nesper, J., A. Reinders, T. Glatter, A. Schmidt & U. Jenal, (Manuskript eingereicht) Use of a Novel Capture Compound for the Identification and Analysis of Cyclic di-GMP Binding Proteins. J Proteomics.
  95. MacLean, L., M. B. Perry, L. Nossova, H. Kaplan & E. Vinogradov, (2007) The structure of the carbohydrate backbone of the LPS from Myxococcus xanthus strain DK1622. Carbohydr Res 342: 2474-2480.
  96. Gronewold, T. M. & D. Kaiser, (2001) The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol Microbiol 40: 744-756.
  97. Nariya, H. & S. Inouye, (2006) A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol Microbiol 60: 1205- 1217.
  98. Guzzo, C. R., R. K. Salinas, M. O. Andrade & C. S. Farah, (2009) PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis. J Mol Biol 393: 848-866.
  99. Missiakas, D. & S. Raina, (1998) The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28: 1059-1066.
  100. Wireman, J. W. & M. Dworkin, (1975) Morphogenesis and developmental interactions in myxobacteria. Science 189: 516-523.
  101. Mignot, T., J. P. Merlie, Jr. & D. R. Zusman, (2005) Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310: 855-857.
  102. Tucker, N. P., B. D'Autreaux, F. K. Yousafzai, S. A. Fairhurst, S. Spiro & R. Dixon, (2008) Analysis of the nitric oxide- sensing non-heme iron center in the NorR regulatory protein. J Biol Chem 283: 908-918.
  103. Stock, A. M., V. L. Robinson & P. N. Goudreau, (2000) Two-component signal transduction. Annu Rev Biochem 69: 183-215.
  104. Jenal, U. & J. Malone, (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40: 385-407.
  105. Pareja, E., P. Pareja-Tobes, M. Manrique, E. Pareja-Tobes, J. Bonal & R. Tobes, (2006) ExtraTrain: a database of Extragenic regions and Transcriptional information in prokaryotic organisms. BMC Microbiol 6: 29.
  106. Hengge, R., (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7: 263-273.
  107. Mauriello, E. M., B. Nan & D. R. Zusman, (2009) AglZ regulates adventurous (A-) motility in Myxococcus xanthus through its interaction with the cytoplasmic receptor, FrzCD. Mol Microbiol 72: 964-977.
  108. Garza, A. G., J. S. Pollack, B. Z. Harris, A. Lee, I. M. Keseler, E. F. Licking & M. Singer, (1998) SdeK is required for early fruiting body development in Myxococcus xanthus. J Bacteriol 180: 4628-4637.
  109. Tischler, A. D. & A. Camilli, (2005) Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73: 5873-5882.
  110. Hickman, J. W., D. F. Tifrea & C. S. Harwood, (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102: 14422-14427.
  111. Higgs, P. I., K. Cho, D. E. Whitworth, L. S. Evans & D. R. Zusman, (2005) Four unusual two-component signal transduction homologs, RedC to RedF, are necessary for timely development in Myxococcus xanthus. J Bacteriol 187: 8191-8195.
  112. Kearns, D. B., P. J. Bonner, D. R. Smith & L. J. Shimkets, (2002) An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J Bacteriol 184: 1678-1684.
  113. Youderian, P. & P. L. Hartzell, (2006) Transposon insertions of magellan-4 that impair social gliding motility in Myxococcus xanthus. Genetics 172: 1397-1410.
  114. Robinson, V. L., T. Wu & A. M. Stock, (2003) Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J Bacteriol 185: 4186-4194.
  115. Julien, B., A. D. Kaiser & A. Garza, (2000) Spatial control of cell differentiation in Myxococcus xanthus. Proc Natl Acad Sci U S A 97: 9098-9103.
  116. Meiser, P., H. B. Bode & R. Muller, (2006) The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc Natl Acad Sci U S A 103: 19128-19133.
  117. Hecht, G. B. & A. Newton, (1995) Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J Bacteriol 177: 6223-6229.
  118. Guo, D., M. G. Bowden, R. Pershad & H. B. Kaplan, (1996) The Myxococcus xanthus rfbABC operon encodes an ATP- binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development. J Bacteriol 178: 1631-1639.
  119. Wu, S. S. & D. Kaiser, (1997) Regulation of expression of the pilA gene in Myxococcus xanthus. J Bacteriol 179: 7748- 7758.
  120. Rasmussen, A. A. & L. Søgaard-Andersen, (2003) TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus. J Bacteriol 185: 5452-5464.
  121. Plamann, L., A. Kuspa & D. Kaiser, (1992) Proteins that rescue A-signal-defective mutants of Myxococcus xanthus. J Bacteriol 174: 3311-3318.
  122. Kuspa, A., L. Plamann & D. Kaiser, (1992) Identification of heat-stable A-factor from Myxococcus xanthus. J Bacteriol 174: 3319-3326.
  123. McCleary, W. R., B. Esmon & D. R. Zusman, (1991) Myxococcus xanthus protein C is a major spore surface protein. J Bacteriol 173: 2141-2145.
  124. Igo, M. M. & T. J. Silhavy, (1988) EnvZ, a transmembrane environmental sensor of Escherichia coli K-12, is phosphorylated in vitro. J Bacteriol 170: 5971-5973.
  125. Kuner, J. M. & D. Kaiser, (1982) Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J Bacteriol 151: 458-461.
  126. Jakovljevic, V., S. Leonardy, M. Hoppert & L. Søgaard-Andersen, (2008) PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 190: 2411-2421.
  127. Juncker, A. S., H. Willenbrock, G. Von Heijne, S. Brunak, H. Nielsen & A. Krogh, (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12: 1652-1662.
  128. van Hijum, S. A., M. H. Medema & O. P. Kuipers, (2009) Mechanisms and evolution of control logic in prokaryotic transcriptional regulation. Microbiol Mol Biol Rev 73: 481-509, Table of Contents.
  129. Heikaus, C. C., J. Pandit & R. E. Klevit, (2009) Cyclic nucleotide binding GAF domains from phosphodiesterases: structural and mechanistic insights. Structure 17: 1551-1557.
  130. Kühn, J., A. Briegel, E. Morschel, J. Kahnt, K. Leser, S. Wick, G. J. Jensen & M. Thanbichler, (2010) Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J 29: 327-339.
  131. Müller, F. D., A. Treuner-Lange, J. Heider, S. M. Huntley & P. I. Higgs, (2010) Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC Genomics 11: 264.
  132. Paul, K., V. Nieto, W. C. Carlquist, D. F. Blair & R. M. Harshey, (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell 38: 128- 139.
  133. Tchigvintsev, A., X. Xu, A. Singer, C. Chang, G. Brown, M. Proudfoot, H. Cui, R. Flick, W. F. Anderson, A. Joachimiak, M. Y. Galperin, A. Savchenko & A. F. Yakunin, (2010) Structural insight into the mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases. J Mol Biol 402: 524-538.
  134. Nan, B., J. Chen, J. C. Neu, R. M. Berry, G. Oster & D. R. Zusman, (2011) Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proc Natl Acad Sci U S A 108: 2498-2503.
  135. Shin, J. S., K. S. Ryu, J. Ko, A. Lee & B. S. Choi, (2010) Structural characterization reveals that a PilZ domain protein undergoes substantial conformational change upon binding to cyclic dimeric guanosine monophosphate. Protein Sci.
  136. Tsokos, C. G., B. S. Perchuk & M. T. Laub, (2011) A dynamic complex of signaling proteins uses polar localization to regulate cell-fate asymmetry in Caulobacter crescentus. Dev Cell 20: 329-341.
  137. Koch, M. K., C. A. McHugh & E. Hoiczyk, (2011) BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape. Mol Microbiol 80: 1031-1051.
  138. Stauff, D. L. & B. L. Bassler, (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor. J Bacteriol 193: 3871-3878.
  139. Vos, M. H., L. Bouzhir-Sima, J. C. Lambry, H. Luo, J. J. Eaton-Rye, A. Ioanoviciu, P. R. Ortiz de Montellano & U. Liebl, (2012) Ultrafast Ligand Dynamics in the Heme-Based GAF Sensor Domains of the Histidine Kinases DosS and DosT from Mycobacterium tuberculosis. Biochemistry 51: 159-166.
  140. Kolb, A., A. Spassky, C. Chapon, B. Blazy & H. Buc, (1983) On the different binding affinities of CRP at the lac, gal and malT promoter regions. Nucleic Acids Res 11: 7833-7852.
  141. Garner, M. M. & A. Revzin, (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9: 3047-3060.
  142. Henry, J. T. & S. Crosson, (2011) Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu Rev Microbiol 65: 261-286.
  143. Tusher, V. G., R. Tibshirani & G. Chu, (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116-5121.
  144. Schultz, J., F. Milpetz, P. Bork & C. P. Ponting, (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95: 5857-5864.
  145. Hu, W., Z. Yang, R. Lux, M. Zhao, J. Wang, X. He & W. Shi, (2012) Direct visualization of the interaction between pilin and exopolysaccharides of Myxococcus xanthus with eGFP-fused PilA protein. FEMS Microbiol Lett 326: 23- 30.
  146. Hoekema, A., R. A. Kastelein, M. Vasser & H. A. de Boer, (1987) Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol Cell Biol 7: 2914-2924.
  147. Towbin, H., T. Staehelin & J. Gordon, (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76: 4350-4354.
  148. Kaiser, D., (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A 76: 5952-5956.
  149. Hodgkin, J. & D. Kaiser, (1977) Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci U S A 74: 2938-2942.
  150. Rosenberg, E., B. Vaks & A. Zuckerberg, (1973) Bactericidal action of an antibiotic produced by Myxococcus xanthus. Antimicrob Agents Chemother 4: 507-513.
  151. Yang, R., S. Bartle, R. Otto, A. Stassinopoulos, M. Rogers, L. Plamann & P. Hartzell, (2004) AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J Bacteriol 186: 6168- 6178.
  152. Kearns, D. B., A. Venot, P. J. Bonner, B. Stevens, G. J. Boons & L. J. Shimkets, (2001) Identification of a developmental chemoattractant in Myxococcus xanthus through metabolic engineering. Proc Natl Acad Sci U S A 98: 13990- 13994.
  153. Yang, Z., X. Ma, L. Tong, H. B. Kaplan, L. J. Shimkets & W. Shi, (2000) Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol 182: 5793-5798.
  154. Sanger, F., S. Nicklen & A. R. Coulson, (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463-5467.
  155. Hanahan, D., (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557-580.
  156. Reading, N. C. & V. Sperandio, (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254: 1- 11.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten