Publikationsserver der Universitätsbibliothek Marburg

Titel:Atemwegsmuzine bei Mukoviszidose im Verlauf einer bronchopulmonalen Exazerbation
Autor:Germann, Michele
Weitere Beteiligte: Vogelmeier, Claus (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0866
URN: urn:nbn:de:hebis:04-z2012-08662
DOI: https://doi.org/10.17192/z2012.0866
DDC:610 Medizin
Titel (trans.):Breath way muzine case of cystic fibrosis in the course of a bronchopulmonary exacerbation
Publikationsdatum:2012-11-16
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Mucine

Zusammenfassung:
Bis heute vermutet man, dass bei chronisch-entzündlichen, pulmonalen Erkrankungen wie bei der Mukoviszidose, die Masse an Sputum, durch eine exzessive Biosynthese von makromolekularen Muzinen (vornehmlich MUC5AC und MUC5B) verursacht wird. Erstmals haben sich Henke et al. mit einem signifikanten CF-Patientenkollektiv auseinandergesetzt, um den quantitativen Nachweis von Muzinen im Sputum Erkrankter mit dem von Gesunden zu vergleichen. Dabei konnte gezeigt werden, dass die Muzine MUC5AC und MUC5B im Sputum von CF-Patienten vermindert nachzuweisen waren. Hier möchten wir an diese Ergebnisse anknüpfen und zeigen, wie in 11 gepaarten CF-Sputaproben die Muzine MUC5AC und MUC5B sich semiquantitativ während einer pulmonalen Exazerbation nachweisen lassen und wie hoch deren absolute DNS-Konzentration in diesen Krankheitsverläufen nachweisbar ist. Die Ergebnisse werden mit 11 Sputaproben einer gesunden Kontrollgruppe ETT verglichen.

Bibliographie / References

  1. Tizzano EF, Buchwald M. CFTR expression and organ damage in cystic fibrosis. Ann Intern Med 1995;123(4):305-308.
  2. Yin BW, Lloyd KO. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J Biol Chem 2001;276(29):27371- 27375.
  3. Ratjen F, Paul K, van Koningsbruggen S, Breitenstein S, Rietschel E, Nikolaizik W. DNA concentrations in BAL fluid of cystic fibrosis patients with early lung disease: Influence of treatment with dornase alpha. Pediatr Pulmonol 2005;39(1):1-4.
  4. Urquhart DS, Allen J, Elrayess M, Fidler K, Klein N, Jaffe A. Modifier effect of the Toll-like receptor 4 D299G polymorphism in children with cystic fibrosis. Arch Immunol Ther Exp (Warsz ) 2006;54(4):271-276.
  5. Thornton DJ, Sheehan JK, Lindgren H, Carlstedt I. Mucus glycoproteins from cystic fibrotic sputum. Macromolecular properties and structural 'architecture'. Biochem J 1991;276 (Pt 3):667-675.
  6. Thornton DJ, Carlstedt I, Howard M, Devine PL, Price MR, Sheehan JK. Respiratory mucins: identification of core proteins and glycoforms. Biochem J 1996;316 (Pt 3):967-975.
  7. Sheehan JK, Howard M, Richardson PS, Longwill T, Thornton DJ. Physical characterization of a low-charge glycoform of the MUC5B mucin comprising the gel-phase of an asthmatic respiratory mucous plug. Biochem J 1999;338 (Pt 2):507-513.
  8. Wang B, Lim DJ, Han J, Kim YS, Basbaum CB, Li JD. Novel cytoplasmic proteins of nontypeable Haemophilus influenzae up-regulate human MUC5AC mucin transcription via a positive p38 mitogen-activated protein kinase pathway and a negative phosphoinositide 3-kinase-Akt pathway. J Biol Chem 2002;277(2):949-957.
  9. Riordan JR. Cystic fibrosis as a disease of misprocessing of the cystic fibrosis transmembrane conductance regulator glycoprotein. Am J Hum Genet 1999;64(6):1499-1504.
  10. Millar-Jones L, Goodchild MC. Cystic fibrosis, pancreatic sufficiency and distal intestinal obstruction syndrome: a report of four cases. Acta Paediatr 1995;84(5):577-578.
  11. Thornton DJ, Devine PL, Hanski C, Howard M, Sheehan JK. Identification of two major populations of mucins in respiratory secretions. Am J Respir Crit Care Med 1994;150(3):823-832.
  12. Rubin BK, Ramirez O, Zayas JG, Finegan B, King M. Collection and analysis of respiratory mucus from subjects without lung disease. Am Rev Respir Dis 1990;141(4 Pt 1):1040-1043.
  13. Ramphal R, Arora SK, Ritchings BW. Recognition of mucin by the adhesin- flagellar system of Pseudomonas aeruginosa. Am J Respir Crit Care Med 1996;154(4 Pt 2):S170-S174.
  14. Voynow JA, Gendler SJ, Rose MC. Regulation of mucin genes in chronic inflammatory airway diseases. Am J Respir Cell Mol Biol 2006;34(6):661-665.
  15. Rubin BK, Finegan B, Ramirez O, King M. General anesthesia does not alter the viscoelastic or transport properties of human respiratory mucus. Chest 1990;98(1):101-104.
  16. Thornton DJ, Davies JR, Carlstedt I, Sheehan JK. Structure and Biochemistry of human respiratory mucins. In: Rogers DF, Lethem MI, editors. Airway mucus: basic mechanisms and clinical perspectives. Basel, Switzerland: Birkhaeuser Publishing Limited; 1997:19-40.
  17. Thiagarajah JR, Song Y, Haggie PM, Verkman AS. A small molecule CFTR inhibitor produces cystic fibrosis-like submucosal gland fluid secretions in normal airways. FASEB J 2004;18(7):875-877.
  18. Rosenstein BJ, Zeitlin PL. Cystic fibrosis. Lancet 1998;351(9098):277-282.
  19. Rosenfeld M, Emerson J, Williams-Warren J et al. Defining a pulmonary exacerbation in cystic fibrosis. J Pediatr 2001;139(3):359-365.
  20. Zielenski J, Corey M, Rozmahel R et al. Detection of a cystic fibrosis modifier locus for meconium ileus on human chromosome 19q13. Nat Genet 1999;22(2):128-129.
  21. Vanscoy LL, Blackman SM, Collaco JM et al. Heritability of lung disease severity in cystic fibrosis. Am J Respir Crit Care Med 2007;175(10):1036-1043.
  22. Riordan JR, Rommens JM, Kerem B et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989;245(4922):1066-1073.
  23. Wickstrom C, Davies JR, Eriksen GV, Veerman EC, Carlstedt I. MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem J 1998;334 (Pt 3):685-693.
  24. Schulz BL, Sloane AJ, Robinson LJ et al. Mucin glycosylation changes in cystic fibrosis lung disease are not manifest in submucosal gland secretions. Biochem J 2005;387(Pt 3):911-919.
  25. Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest 2009;135(2):505- 512.
  26. Rose MC. Mucins: structure, function, and role in pulmonary diseases [see comments]. Am J Physiol 1992;263(4 Pt 1):L413-L429.
  27. Sheehan JK, Thornton DJ, Somerville M, Carlstedt I. Mucin structure. The structure and heterogeneity of respiratory mucus glycoproteins. Am Rev Respir Dis 1991;144(3 Pt 2):S4-S9.
  28. Rubin BK, King M. Mucus physiology and pathophysiology: Therapeutic aspects. In: Derenne JP, Similowski T, Whitelaw WA, editors. Acute Respiratory Failure in Chronic Obstructive Lung Disease. New York: Marcel Dekker; 1996:391-411.
  29. Voynow JA, Young LR, Wang Y, Horger T, Rose MC, Fischer BM. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am J Physiol 1999;276(5 Pt 1):L835-L843.
  30. Stocks J, Godfrey S, Beardsmore C, Bar-Yishay E, Castile R. Plethysmographic measurements of lung volume and airway resistance. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. European Respiratory Society/ American Thoracic Society. Eur Respir J 2001;17(2):302-312.
  31. Picot R, Das I, Reid L. Pus, deoxyribonucleic acid, and sputum viscosity. Thorax 1978;33(2):235-242.
  32. Ramphal R, Arora SK. Recognition of mucin components by Pseudomonas aeruginosa. Glycoconj J 2001;18(9):709-713.
  33. Shak S, Capon DJ, Hellmiss R, Marsters SA, Baker CL. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci U S A 1990;87(23):9188-9192.
  34. Rose MC, Lynn WS, Kaufman B. Resolution of the major components of human lung mucosal gel and their capabilities for reaggregation and gel formation. Biochemistry 1979;18(18):4030-4037.
  35. Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 2006;86(1):245-278.
  36. Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel. Physiol Rev 1999;79(1 Suppl):S23-S45.
  37. Rowntree RK, Harris A. The phenotypic consequences of CFTR mutations. Ann Hum Genet 2003;67(Pt 5):471-485.
  38. Wood RE, Leigh MW. What is a "pulmonary exacerbation" in cystic fibrosis? J Pediatr 1987;111(6 Pt 1):841-842.
  39. Schultz J, Copley RR, Doerks T, Ponting CP, Bork P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 2000;28(1):231-234.
  40. Stutts MJ, Canessa CM, Olsen JC et al. CFTR as a cAMP-dependent regulator of sodium channels. Science 1995;269(5225):847-850.
  41. Riordan JR. The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol 1993;55:609-630.
  42. Potter JL, Spector S, Matthews LW, Lemm J. Studies on pulmonary secretions. 3. The nucleic acids in whole pulmonary secretions from patients with cystic fibrosis, bronchiectasis, and laryngectomy. Am Rev Respir Dis 1969;99(6):909- 916.
  43. Tsui LC. The spectrum of cystic fibrosis mutations. Trends Genet 1992;8(11):392-398.
  44. Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 1996;85(2):229-236.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten