Publikationsserver der Universitätsbibliothek Marburg

Titel:Structural characterization of the siderophore rhodochelin from Rhodococcus jostii RHA1 and elucidation of its biosynthetic machinery
Autor:Bosello, Mattia
Weitere Beteiligte: Marahiel, Mohamed A. (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0767
DOI: https://doi.org/10.17192/z2012.0767
URN: urn:nbn:de:hebis:04-z2012-07672
DDC:540 Chemie
Titel (trans.):Strukturelle Charakterisierung des Siderophors Rhodochelin aus Rhodococcus jostii RHA1 und Untersuchung seiner biosynthetischen Maschinerie
Publikationsdatum:2012-09-17
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
siderophore, formyltransferase, rhodochelin, cross-talk, Siderophore, NRPS

Summary:
Rhodococci represent an important genus of industrial interest, both because of their role in bioremediation and biocatalysis, as well as for their potential as producers of natural products. In this context, the genome sequencing of the biphenyl-degrading soil bacterium Rhodococcus jostii RHA1 represents the first attempt to harness the biosynthetic metabolic potential of the genus Rhodococcus, by enabling the systematic exploration of its natural product-producing capabilities. The genome of R. jostii RHA1 contains 23 secondary metabolite gene clusters, all considered to be orphan with respect to their product, including two clusters putatively involved in siderophore biosynthesis. In this study, the isolation, structural characterization and genetic analysis of the biosynthetic origin of rhodochelin, a unique mixed-type catecholate-hydroxamate siderophore isolated from R. jostii RHA1, which represents the first characterized NRPS-derived natural product of the strain, is reported. Structure elucidation of rhodochelin was accomplished via MSn- and NMR-analysis and revealed the tetrapeptide to contain an unusual ester bond between an L-δ-N-formyl-δ-N-hydroxyornithine (L-fhOrn)moiety and the side chain of a threonine residue. Bioinformatic analysis of the R. jostii RHA1 genome revealed the enzymes responsible for siderophore biosynthesis to be encoded in three distant NRPS gene clusters. Single gene deletions within the three putative biosynthetic gene clusters abolished rhodochelin production, proving that the ORFs responsible for rhodochelin biosynthesis are located in different chromosomal loci. Biochemical characterization of the monooxygenase Rmo and the formyltransferase Rft established a route for the biosynthesis of the nonproteinogenic amino acid L-fhOrn, prior to its incorporation into the peptide scaffold by the NRPS-assembly line. The insights gained from the structural and functional characterization of rhodochelin, together with the genetic and biochemical characterization of the respective biosynthetic gene clusters, allowed the proposal of a biosynthetic model for rhodochelin assembly. Finally, the efficient and, in this work, first reported cross-talk between three distantly located secondary metabolite gene clusters provides deep insights into natural product biosynthesis that may facilitate future attempts to isolate new natural products.

Bibliographie / References

  1. Bergmann, S. et al. Activation of a silent fungal polyketide biosynthesis pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase gene cluster. Applied and … 76, 8143–8149 (2010).
  2. Helmetag, V. Biochemische und strukturelle Untersuchungen der Biosynthese unnatürlicher Aminosäuren als Bausteine nicht-ribosomaler Peptide. (Philipps-Universität Marburg: Marburg an der Lahn, 2009).
  3. Tanovic, A., Samel, S. A., Essen, L.-O. & Marahiel, M. A. Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321, 659–663 (2008).
  4. Inokoshi, J., Matsuhama, M., Miyake, M., Ikeda, H. & Tomoda, H. Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171. Applied microbiology … (2012).doi:10.1007/s00253-012-3973-8
  5. Porter, C. M. & Miller, B. G. Cooperativity in monomeric enzymes with single ligand-binding sites. Bioorg. Chem. (2011).doi:10.1016/j.bioorg.2011.11.001
  6. Olucha, J., Meneely, K. M., Chilton, A. S. & Lamb, A. L. Two structures of an N-hydroxylating flavoprotein monooxgenase: the ornithine hydroxylase from Pseudomonas aeruginosa. J Biol Chem (2011).doi:10.1074/jbc.M111.265876
  7. Medema, M. H. et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic acids research (2011).doi:10.1093/nar/gkr466 158.
  8. Pettit, R. K. Small-molecule elicitation of microbial secondary metabolites. Microbial Biotechnology (2010).doi:10.1111/j.1751-7915.2010.00196.x 255.
  9. McMahon, M. D., Rush, J. S. & Thomas, M. G. Analyses of MbtB, MbtE, and MbtF Suggest Revisions to the Mycobactin Biosynthesis Pathway in Mycobacterium tuberculosis. J Bacteriol (2012).doi:10.1128/JB.00088-12
  10. Yeh, E., Kohli, R. M., Bruner, S. D. & Walsh, C. T. Type II thioesterase restores activity of a NRPS module stalled with an aminoacyl-S-enzyme that cannot be elongated. Chembiochem 5, 1290–1293 (2004).
  11. Stein, D. B., Linne, U., Hahn, M. & Marahiel, M. A. Impact of epimerization domains on the intermodular transfer of enzyme-bound intermediates in nonribosomal peptide synthesis. Chembiochem 7, 1807–1814 (2006).
  12. Nolan, E. M. & Walsh, C. T. How nature morphs peptide scaffolds into antibiotics. Chembiochem 10, 34–53 (2009).
  13. Huang, Y.-T. et al. In vitro characterization of enzymes involved in the synthesis of nonproteinogenic residue (2S,3S)-beta-methylphenylalanine in glycopeptide antibiotic mannopeptimycin. Chembiochem 10, 2480–2487 (2009).
  14. Hegg, E. L. Unraveling the structure and mechanism of acetyl-coenzyme A synthase. Acc Chem Res 37, 775–783 (2004).
  15. Kopp, F. & Marahiel, M. A. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat Prod Rep 24, 735–749 (2007).
  16. Hammes, G. G. & Wu, C. W. Kinetics of allosteric enzymes. Annu. Rev. Biophys. Bioeng. 3, 1–33 (1974).
  17. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J Mol Biol 215, 403–410 (1990).
  18. Datta, N., Hedges, R., Shaw, E. J., Sykes, R. & Richmond, M. Properties of an R factor from Pseudomonas aeruginosa. J Bacteriol 108, 1244–1249 (1971).
  19. Buchenau, B. & Thauer, R. K. Tetrahydrofolate-specific enzymes in Methanosarcina barkeri and growth dependence of this methanogenic archaeon on folic acid or p-aminobenzoic acid. Arch Microbiol 182, 313–325 (2004).
  20. Chakraborty, R., Storey, E. & van der Helm, D. Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli. Biometals 20, 263– 274 (2007).
  21. Günter-Seeboth, K. & Schupp, T. Cloning and sequence analysis of the Corynebacterium diphtheriae dtxR homologue from Streptomyces lividans and S. pilosus encoding a putative iron repressor protein. Gene 166, 117–119 (1995).
  22. Watanabe, K., Oguri, H. & Oikawa, H. Diversification of echinomycin molecular structure by way of chemoenzymatic synthesis and heterologous expression of the engineered echinomycin biosynthetic pathway. Current Opinion in Chemical Biology 13, 189–196 (2009).
  23. Juguet, M. et al. An iterative nonribosomal peptide synthetase assembles the pyrrole-amide antibiotic congocidine in Streptomyces ambofaciens. Chem Biol 16, 421–431 (2009).
  24. Brakhage, A. A. & Schroeckh, V. Fungal secondary metabolites -strategies to activate silent gene clusters. Fungal Genetics and Biology 48, 15–22 (2011).
  25. Samel, S. A., Wagner, B., Marahiel, M. A. & Essen, L.-O. The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non-ribosomal lipopeptide. J Mol Biol 359, 876–889 (2006).
  26. van der Geize, R. & Dijkhuizen, L. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7, 255–261 (2004).
  27. Linne, U. & Marahiel, M. A. Reactions catalyzed by mature and recombinant nonribosomal peptide synthetases. Meth Enzymol 388, 293–315 (2004).
  28. Klatte, S., Kroppenstedt, R. M. & Rainey, F. A. Rhodococcus opacus sp.nov., An Unusual Nutritionally Versatile Rhodococcus-species. Systematic and Applied Microbiology 17, 355–360 (1994).
  29. Chocklett, S. W. & Sobrado, P. Aspergillus fumigatus SidA is a highly specific ornithine hydroxylase with bound flavin cofactor. Biochemistry 49, 6777–6783 (2010).
  30. Khalil, S. & Pawelek, P. D. Enzymatic adenylation of 2,3-dihydroxybenzoate is enhanced by a protein-protein interaction between Escherichia coli 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase (EntA) and 2,3-dihydroxybenzoate-AMP Ligase (EntE). Biochemistry 50, 533– 545 (2011).
  31. Robbel, L., Helmetag, V., Knappe, T. A. & Marahiel, M. A. Consecutive enzymatic modification of ornithine generates the hydroxamate moieties of the siderophore erythrochelin. Biochemistry 50, 6073–6080 (2011).
  32. Bosello, M., Mielcarek, A., Giessen, T. W. & Marahiel, M. A. An Enzymatic Pathway for the Biosynthesis of the Formylhydroxyornithine Required for Rhodochelin Iron Coordination. Biochemistry 51, 3059–3066 (2012).
  33. Gehring, A. M., Mori, I., Perry, R. D. & Walsh, C. T. The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of Yersinia pestis. Biochemistry 37, 11637–11650 (1998).
  34. Song, L. et al. Type III polyketide synthase beta-ketoacyl-ACP starter unit and ethylmalonyl- CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Am Chem Soc 128, 14754–14755 (2006).
  35. Walsh, C. T. & Fischbach, M. A. Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 132, 2469–2493 (2010).
  36. Lin, Y. & Miller, M. Practical Synthesis of Hydroxamate-Derived Siderophore Components by an Indirect Oxidation Method and Syntheses of a DIG− Siderophore Conjugate and a Biotin …. J. Org. Chem (1999).
  37. Bruijnincx, P. C. A., van Koten, G. & Klein Gebbink, R. J. M. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies. Chem Soc Rev 37, 2716–2744 (2008).
  38. Nett, M., Ikeda, H. & Moore, B. S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26, 1362–1384 (2009).
  39. Tao, X., Zeng, H. Y. & Murphy, J. R. Transition metal ion activation of DNA binding by the diphtheria tox repressor requires the formation of stable homodimers. Proc Natl Acad Sci USA 92, 6803–6807 (1995).
  40. Mayfield, J. A. et al. Comprehensive spectroscopic, steady state, and transient kinetic studies of a representative siderophore-associated flavin monooxygenase. J Biol Chem 285, 30375– 30388 (2010).
  41. McMorran, B. J., Shanta Kumara, H. M., Sullivan, K. & Lamont, I. L. Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa. Microbiology 147, 1517–1524 (2001).
  42. Bauchop, T. & Elsden, S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol 23, 457–469 (1960).
  43. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
  44. Miethke, M. et al. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol References 102
  45. Kidarsa, T. A., Goebel, N. C., Zabriskie, T. M. & Loper, J. E. Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 81, 395–414 (2011).
  46. Linne, U., Schwarzer, D., Schroeder, G. N. & Marahiel, M. A. Mutational analysis of a type II thioesterase associated with nonribosomal peptide synthesis. Eur J Biochem 271, 1536–1545 (2004).
  47. Boland, C. A. & Meijer, W. G. The iron dependent regulatory protein IdeR (DtxR) of Rhodococcus equi. FEMS Microbiol Rev 191, 1–5 (2000).
  48. Miethke, M. et al. Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis. FEBS J 273, 409–419 (2006).
  49. Martín, J. F. et al. Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microbial Biotechnology 4, 165–174 (2011).
  50. Raynal, A., Karray, F., Tuphile, K., Darbon-Rongère, E. & Pernodet, J.-L. Excisable cassettes: new tools for functional analysis of Streptomyces genomes. Applied and … 72, 4839–4844 (2006).
  51. Patzer, S. I. & Braun, V. Gene cluster involved in the biosynthesis of griseobactin, a catechol- peptide siderophore of Streptomyces sp. ATCC 700974. J Bacteriol 192, 426–435 (2010).
  52. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).
  53. Bruner, S. D. et al. Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. Structure 10, 301–310 (2002).
  54. Yonus, H. et al. Crystal structure of DltA. Implications for the reaction mechanism of non- ribosomal peptide synthetase adenylation domains. Journal of Biological Chemistry 283, 32484– 32491 (2008).
  55. Umezawa, H. et al. Foroxymithine, a new inhibitor of angiotensin-converting enzyme, produced by actinomycetes. J Antibiot 38, 1813–1815 (1985).
  56. Santi, D. V., Webster, R. W. & Cleland, W. W. Kinetics of aminoacyl-tRNA synthetases catalyzed ATP-PPi exchange. Meth Enzymol 29, 620–627 (1974).
  57. Gürtler, V., Mayall, B. C. & Seviour, R. Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 28, 377–403 (2004).
  58. Gross, H. et al. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14, 53–63 (2007).
  59. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
  60. Pierre, J. L., Fontecave, M. & Crichton, R. R. Chemistry for an essential biological process: the reduction of ferric iron. Biometals 15, 341–346 (2002).
  61. Boyd, J. & Murphy, J. R. Analysis of the diphtheria tox promoter by site-directed mutagenesis. J Bacteriol 170, 5949–5952 (1988).
  62. Wyckoff, E. E., Valle, A. M., Smith, S. L. & Payne, S. M. A multifunctional ATP-binding cassette transporter system from Vibrio cholerae transports vibriobactin and enterobactin. J Bacteriol 181, 7588–7596 (1999).
  63. Butterton, J. R., Choi, M. H., Watnick, P. I., Carroll, P. A. & Calderwood, S. B. Vibrio cholerae VibF is required for vibriobactin synthesis and is a member of the family of nonribosomal peptide synthetases. J Bacteriol 182, 1731–1738 (2000).
  64. Wyckoff, E. E., Smith, S. L. & Payne, S. M. VibD and VibH are required for late steps in vibriobactin biosynthesis in Vibrio cholerae. J Bacteriol 183, 1830–1834 (2001).
  65. Debono, M. et al. Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). J Antibiot 41, 1093–1105 (1988).
  66. Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Laboratory Press: 2001).
  67. Persmark, M. & Neilands, J. B. Iron(III) complexes of chrysobactin, the siderophore of Erwinia chrysanthemi. Biometals 5, 29–36 (1992).
  68. Simon, R., Priefer, U. & Pühler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nature Biotechnology (1983).
  69. Breazeale, S. D., Ribeiro, A. A., McClerren, A. L. & Raetz, C. R. H. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4- Amino-4-deoxy-L-arabinose. Identification and function oF UDP-4-deoxy-4-formamido-L- arabinose. Journal of Biological Chemistry 280, 14154–14167 (2005).
  70. Lambalot, R. H. et al. A new enzyme superfamily -the phosphopantetheinyl transferases. Chem Biol 3, 923–936 (1996).
  71. Hu, J. & Miller, M. J. A New Method for the Synthesis of N-ε-Acetyl-N-ε-hydroxy-L-lysine, the Iron-Binding Constituent of Several Important Siderophores. The Journal of Organic Chemistry 59, 4858–4861 (1994).
  72. Seto, M. et al. A Novel Transformation of Polychlorinated Biphenyls by Rhodococcus sp. Strain RHA1. Applied and … 61, 3353–3358 (1995).
  73. Su, Y. et al. A pH-dependent stabilization of an active site loop observed from low and high pH crystal structures of mutant monomeric glycinamide ribonucleotide transformylase at 1.8 to 1.9 A. J Mol Biol 281, 485–499 (1998).
  74. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254 (1976).
  75. Warren, M. S., Marolewski, A. E. & Benkovic, S. J. A rapid screen of active site mutants in glycinamide ribonucleotide transformylase. Biochemistry 35, 8855–8862 (1996).
  76. Rutherford, K. et al. Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945 (2000).
  77. Shaw-Reid, C. A. et al. Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization. Chem Biol 6, 385–400 (1999).
  78. Fortin, P. D., Walsh, C. T. & Magarvey, N. A. A transglutaminase homologue as a condensation catalyst in antibiotic assembly lines. Nature 448, 824–827 (2007).
  79. Andrews, S. C., Robinson, A. K. & Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215–237 (2003).
  80. Wandersman, C. & Delepelaire, P. Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58, 611–647 (2004).
  81. Smith, D. J. et al. Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J 9, 741–747 (1990).
  82. Bode, H., Bethe, B., Höfs, R. & Zeeck, A. Big effects from small changes: possible ways to explore nature's chemical diversity. Chembiochem (2002).
  83. Meneely, K. M. & Lamb, A. L. Biochemical characterization of a flavin adenine dinucleotide- dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism. Biochemistry 46, 11930–11937 (2007).
  84. Stachelhaus, T., Hüser, A. & Marahiel, M. A. Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases. Chem Biol 3, 913– 921 (1996).
  85. Bosello, M., Robbel, L., Linne, U., Xie, X. & Marahiel, M. A. Biosynthesis of the siderophore rhodochelin requires the coordinated expression of three independent gene clusters in Rhodococcus jostii RHA1. J Am Chem Soc 133, 4587–4595 (2011).
  86. Schmitt, M. P., Predich, M., Doukhan, L., Smith, I. & Holmes, R. K. Characterization of an iron-dependent regulatory protein (IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae. Infect. Immun. 63, 4284–4289 (1995).
  87. Pazirandeh, M., Chirala, S. S., Huang, W. Y. & Wakil, S. J. Characterization of recombinant thioesterase and acyl carrier protein domains of chicken fatty acid synthase expressed in Escherichia coli. Journal of Biological Chemistry 264, 18195–18201 (1989).
  88. Tseng, C. C. et al. Characterization of the surfactin synthetase C-terminal thioesterase domain as a cyclic depsipeptide synthase. Biochemistry 41, 13350–13359 (2002).
  89. Shen, B. et al. Cloning and Characterization of the Bleomycin Biosynthetic Gene Cluster from StreptomycesverticillusATCC15003 1. J Nat Prod 65, 422–431 (2002).
  90. Wyckoff, E. E., Stoebner, J. A., Reed, K. E. & Payne, S. M. Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis. J Bacteriol 179, 7055–7062 (1997).
  91. Butterton, J. R., Stoebner, J. A., Payne, S. M. & Calderwood, S. B. Cloning, sequencing, and transcriptional regulation of viuA, the gene encoding the ferric vibriobactin receptor of Vibrio cholerae. J Bacteriol 174, 3729–3738 (1992).
  92. Weber, T. et al. CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. Journal of Biotechnology 140, 13–17 (2009).
  93. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22, 4673–4680 (1994).
  94. Oliynyk, M. et al. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nature Biotechnology 25, 447–453 (2007).
  95. Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).
  96. Koglin, A. et al. Conformational switches modulate protein interactions in peptide antibiotic synthetases. Science 312, 273–276 (2006).
  97. Linne, U. & Marahiel, M. A. Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry 39, 10439–10447 (2000).
  98. Conti, E., Lloyd, L. F., Akins, J., Franks, N. P. & Brick, P. Crystallization and preliminary diffraction studies of firefly luciferase from Photinus pyralis. Acta Crystallogr. D Biol. Crystallogr. 52, 876–878 (1996).
  99. Gatzeva-Topalova, P. Z., May, A. P. & Sousa, M. C. Crystal structure and mechanism of the Escherichia coli ArnA (PmrI) transformylase domain. An enzyme for lipid A modification with 4-amino-4-deoxy-L-arabinose and polymyxin resistance. Biochemistry 44, 5328–5338 (2005).
  100. May, J. J., Kessler, N., Marahiel, M. A. & Stubbs, M. T. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci USA 99, 12120–12125 (2002).
  101. Chen, P. et al. Crystal structure of glycinamide ribonucleotide transformylase from Escherichia coli at 3.0 A resolution. A target enzyme for chemotherapy. J Mol Biol 227, 283–292 (1992).
  102. Schmitt, E., Panvert, M., Blanquet, S. & Mechulam, Y. Crystal structure of methionyl- tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet. EMBO J 17, 6819–6826 (1998).
  103. Reuter, K., Mofid, M. R., Marahiel, M. A. & Ficner, R. Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily. EMBO J 18, 6823–6831 (1999).
  104. Tao, X. & Murphy, J. R. Cysteine-102 is positioned in the metal binding activation site of the Corynebacterium diphtheriae regulatory element DtxR. Proc Natl Acad Sci USA 90, 8524–8528 (1993).
  105. Miao, V. et al. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151, 1507–1523 (2005).
  106. Pohlmann, V. & Marahiel, M. A. Delta-amino group hydroxylation of L-ornithine during coelichelin biosynthesis. Org Biomol Chem 6, 1843–1848 (2008).
  107. Costas, M., Mehn, M. P., Jensen, M. P. & Que, L. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev 104, 939–986 (2004).
  108. McClerren, A. L. et al. Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci USA 103, 17243–17248 (2006).
  109. Reimmann, C. et al. Essential PchG-Dependent Reduction in Pyochelin Biosynthesis of Pseudomonas aeruginosa. (2001).
  110. Fourel, G., Phalipon, A. & Kaczorek, M. Evidence for direct regulation of diphtheria toxin gene transcription by an Fe2+-dependent DNA-binding repressor, DtoxR, in Corynebacterium diphtheriae. Infect. Immun. 57, 3221–3225 (1989).
  111. Jäger, W., Schäfer, A., Pühler, A., Labes, G. & Wohlleben, W. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol 174, 5462–5465 (1992).
  112. Franke, K. Klonierung, Expression und biochemische Charakterisierung von Siderophor‐ Bindungsproteinen grampositiver Bakterien Philipps-Universität Marburg: Marburg an der Lahn, 2011.
  113. Macheroux, P., Plattner, H. J., Romaguera, A. & Diekmann, H. FAD and substrate analogs as probes for lysine N6-hydroxylase from Escherichia coli EN 222. Eur J Biochem 213, 995–1002 (1993).
  114. Schoenafinger, G., Schracke, N., Linne, U. & Marahiel, M. A. Formylation Domain: An Essential Modifying Enzyme for the Nonribosomal Biosynthesis of Linear Gramicidin. J Am Chem Soc 128, 7406–7407 (2006). References 104
  115. Schmoock, G. et al. Functional cross-talk between fatty acid synthesis and nonribosomal peptide synthesis in quinoxaline antibiotic-producing streptomycetes. Journal of Biological Chemistry 280, 4339–4349 (2005).
  116. Horton, R. M., Cai, Z. L., Ho, S. N. & Pease, L. R. Gene splicing by overlap extension: tailor- made genes using the polymerase chain reaction. BioTechniques 8, 528–535 (1990). 143. van der Geize, R., Hessels, G., van Gerwen, R., van der Meijden, P. & Dijkhuizen, L. Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Delta1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiol Rev 205, 197–202 (2001).
  117. Steinmetz, M., Le Coq, D., Djemia, H. B. & Gay, P. Genetic analysis of sacB, the structural gene of a secreted enzyme, levansucrase of Bacillus subtilis Marburg. Mol. Gen. Genet. 191, 138–144 (1983).
  118. Schneider, A. & Marahiel, M. A. Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbiol 169, 404–410 (1998).
  119. Crosa, J. H. & Walsh, C. T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66, 223–249 (2002).
  120. Challis, G. L. Genome mining for novel natural product discovery. J Med Chem 51, 2618–2628 (2008).
  121. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).
  122. Doukhan, L. et al. Genomic organization of the mycobacterial sigma gene cluster. Gene 165, 67–70 (1995).
  123. Kopp, F., Linne, U., Oberthür, M. & Marahiel, M. A. Harnessing the chemical activation inherent to carrier protein-bound thioesters for the characterization of lipopeptide fatty acid tailoring enzymes. J Am Chem Soc 130, 2656–2666 (2008).
  124. Carrano, C. J., Jordan, M., Drechsel, H., Schmid, D. G. & Winkelmann, G. Heterobactins: A new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxamate and catecholate donor groups. Biometals 14, 119–125 (2001).
  125. Schäfer, A., Kalinowski, J., Simon, R., Seep-Feldhaus, A. H. & Pühler, A. High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol 172, 1663–1666 (1990).
  126. Konz, D. & Marahiel, M. A. How do peptide synthetases generate structural diversity? Chem Biol 6, R39–48 (1999).
  127. Butterton, J. R. & Calderwood, S. B. Identification, cloning, and sequencing of a gene required for ferric vibriobactin utilization by Vibrio cholerae. J Bacteriol 176, 5631–5638 (1994). References 109
  128. Quadri, L. E., Sello, J., Keating, T. A., Weinreb, P. H. & Walsh, C. T. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5, 631–645 (1998).
  129. Fiss, E. H., Yu, S. & Jacobs, W. R. Identification of genes involved in the sequestration of iron in mycobacteria: the ferric exochelin biosynthetic and uptake pathways. Mol Microbiol 14, 557– 569 (1994).
  130. Hsieh, Y. J. & Kolattukudy, P. E. Inhibition of erythromycin synthesis by disruption of malonyl-coenzyme A decarboxylase gene eryM in Saccharopolyspora erythraea. J Bacteriol 176, 714–724 (1994).
  131. Ansari, M. Z., Sharma, J., Gokhale, R. S. & Mohanty, D. In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites. BMC Bioinformatics 9, 454 (2008).
  132. Mazodier, P., Petter, R. & Thompson, C. Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171, 3583–3585 (1989).
  133. Nakashima, N. & Tamura, T. Isolation and characterization of a rolling-circle-type plasmid from Rhodococcus erythropolis and application of the plasmid to multiple-recombinant- protein expression. Applied and … 70, 5557–5568 (2004).
  134. Iwatsuki, M. et al. Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01- B0171, have a lasso structure. J Am Chem Soc 128, 7486–7491 (2006).
  135. La Clair, J. J., Foley, T. L., Schegg, T. R., Regan, C. M. & Burkart, M. D. Manipulation of carrier proteins in antibiotic biosynthesis. Chem Biol 11, 195–201 (2004).
  136. He, H. et al. Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J Am Chem Soc 124, 9729–9736 (2002). 86. van Berkel, W. J. H., Kamerbeek, N. M. & Fraaije, M. W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. Journal of Biotechnology 124, 670–689 (2006).
  137. Schubert, H. L., Blumenthal, R. M. & Cheng, X. Many paths to methyltransfer: a chronicle of convergence. Trends in Biochemical Sciences 28, 329–335 (2003).
  138. Bhushan, R. & Brückner, H. Marfey's reagent for chiral amino acid analysis: a review. Amino Acids 27, 231–247 (2004).
  139. Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004).
  140. Felnagle, E. A. et al. MbtH-Like Proteins as Integral Components of Bacterial Nonribosomal Peptide Synthetases. Biochemistry 49, 8815–8817 (2010).
  141. Strieker, M., Kopp, F., Mahlert, C., Essen, L.-O. & Marahiel, M. A. Mechanistic and Structural Basis of Stereospecific Cβ-Hydroxylation in Calcium-Dependent Antibiotic, a Daptomycin- Type Lipopeptide. ACS Chem Biol 2, 187–196 (2007).
  142. Biggins, J. B., Liu, X., Feng, Z. & Brady, S. F. Metabolites from the Induced Expression of Cryptic Single Operons Found in the Genome of Burkholderia pseudomallei. J Am Chem Soc 133, 1638–1641 (2011).
  143. Bachmann, B. O. & Ravel, J. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Meth Enzymol 458, 181–217 (2009).
  144. Phelan, V. V., Liu, W.-T., Pogliano, K. & Dorrestein, P. C. Microbial metabolic exchange-the chemotype-to-phenotype link. Nat Chem Biol 8, 26–35 (2011).
  145. Schobert, R., Stangl, A. & Hannemann, K. Mixed catechol-hydroxamate and catechol-(o- hydroxy) phenacyl siderophores: synthesis and uptake studies with receptor-deficient Escherichia coli mutants. Tetrahedron 64, 1711–1720 (2008). 210. Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106, 3468–3496 (2006).
  146. Boyd, J., Oza, M. N. & Murphy, J. R. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae. Proc Natl Acad Sci USA 87, 5968–5972 (1990).
  147. Caperelli, C. A. N10-substituted 5,8-dideazafolate inhibitors of glycinamide ribonucleotide transformylase. J Med Chem 30, 1254–1256 (1987).
  148. Pridmore, R. D. New and versatile cloning vectors with kanamycin-resistance marker. Gene 56, 309–312 (1987).
  149. Ansari, M. Z., Yadav, G., Gokhale, R. S. & Mohanty, D. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic acids research 32, W405–13 (2004).
  150. Röttig, M. et al. NRPSpredictor2--a web server for predicting NRPS adenylation domain specificity. Nucleic acids research 39, W362–7 (2011).
  151. Breazeale, S. D., Ribeiro, A. A. & Raetz, C. R. H. Oxidative decarboxylation of UDP- glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid a species modified with 4-amino-4-deoxy-L-arabinose. Journal of Biological Chemistry 277, 2886–2896 (2002).
  152. Gust, B., Challis, G. L., Fowler, K., Kieser, T. & Chater, K. F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100, 1541–1546 (2003).
  153. Kopp, F., Mahlert, C., Grünewald, J. & Marahiel, M. A. Peptide macrocyclization: the reductase of the nostocyclopeptide synthetase triggers the self-assembly of a macrocyclic imine. J Am Chem Soc 128, 16478–16479 (2006).
  154. Trieu-Cuot, P., Carlier, C., Martin, P. & Courvalin, P. Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiol Rev 48, 289–294 (1987).
  155. Donadio, S., Monciardini, P. & Sosio, M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24, 1073–1109 (2007).
  156. Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).
  157. Münch, R. et al. PRODORIC: prokaryotic database of gene regulation. Nucleic acids research 31, 266–269 (2003).
  158. Blanquet, S., Dessen, P. & Kahn, D. Properties and specificity of methionyl-tRNAfMet formyltransferase from Escherichia coli. Meth Enzymol 106, 141–152 (1984).
  159. Dhungana, S. et al. Purification and characterization of rhodobactin: a mixed ligand siderophore from Rhodococcus rhodochrous strain OFS. Biometals 20, 853–867 (2007).
  160. Gehring, A. M., Mori, I. & Walsh, C. T. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37, 2648–2659 (1998).
  161. Wesener, S. R., Potharla, V. Y. & Cheng, Y.-Q. Reconstitution of the FK228 biosynthetic pathway reveals cross talk between modular polyketide synthases and fatty acid synthase. Applied and … 77, 1501–1507 (2011).
  162. Leslie, A. G. Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 A resolution. J Mol Biol 213, 167–186 (1990).
  163. Schäfer, A. et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73 (1994).
  164. Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D. H. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic acids research 33, 5799–5808 (2005).
  165. Samel, S. A., Schoenafinger, G., Knappe, T. A., Marahiel, M. A. & Essen, L.-O. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure 15, 781–792 (2007).
  166. Conti, E., Stachelhaus, T., Marahiel, M. A. & Brick, P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16, 4174–4183 (1997).
  167. Helmetag, V., Samel, S. A., Thomas, M. G., Marahiel, M. A. & Essen, L.-O. Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis. FEBS J 276, 3669–3682 (2009).
  168. Jones, R. G. Studies on imidazoles. II. The Synthesis of 5-imidazolecarboxylates from glycine and substituted glycine esters. J Am Chem Soc 71, 644–647 (1949).
  169. Konz, D., Klens, A., Schörgendorfer, K. & Marahiel, M. A. The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem Biol 4, 927–937 (1997).
  170. McLeod, M. P. et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103, 15582–15587 (2006).
  171. Cerdeño-Tárraga, A.-M. et al. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic acids research 31, 6516–6523 (2003).
  172. Letek, M. et al. The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 6, (2010).
  173. Newman, D. J., Cragg, G. M. & Snader, K. M. The influence of natural products upon drug discovery. Nat Prod Rep 17, 215–234 (2000).
  174. Kessler, N., Schuhmann, H., Morneweg, S., Linne, U. & Marahiel, M. A. The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. Journal of Biological Chemistry 279, 7413–7419 (2004).
  175. A, B., R, S. & U, B. The nitrile-degrading enzymes: current status and future prospects. Applied microbiology … 60, 33–44 (2002).
  176. Luo, L. et al. Timing of epimerization and condensation reactions in nonribosomal peptide assembly lines: kinetic analysis of phenylalanine activating elongation modules of tyrocidine synthetase B. Biochemistry 41, 9184–9196 (2002).
  177. Klein, C. et al. Towards structure-based drug design: crystal structure of a multisubstrate adduct complex of glycinamide ribonucleotide transformylase at 1.96 A resolution. J Mol Biol 249, 153–175 (1995).
  178. Oram, D. M., Jacobson, A. D. & Holmes, R. K. Transcription of the contiguous sigB, dtxR, and galE genes in Corynebacterium diphtheriae: evidence for multiple transcripts and regulation by environmental factors. J Bacteriol 188, 2959–2973 (2006).
  179. Schwyn, B. & Neilands, J. B. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47–56 (1987).
  180. Studier, F. W. & Moffatt, B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113–130 (1986).
  181. Hubbard, B. K. & Walsh, C. T. Vancomycin assembly: nature's way. Angew Chem Int Ed Engl 42, 730–765 (2003).
  182. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32, 1792–1797 (2004).
  183. Wenzel, S. C. et al. Structure and biosynthesis of myxochromides S1-3 in Stigmatella aurantiaca: evidence for an iterative bacterial type I polyketide synthase and for module skipping in nonribosomal peptide biosynthesis. Chembiochem 6, 375–385 (2005). References 105
  184. Cosmina, P. et al. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8, 821–831 (1993).
  185. Schmitt, M. P. & Holmes, R. K. Analysis of diphtheria toxin repressor-operator interactions and characterization of a mutant repressor with decreased binding activity for divalent metals. Mol Microbiol 9, 173–181 (1993).
  186. Hopwood, D. A. Streptomyces in Nature And Medicine. 250 (Oxford University Press, USA: 2007).
  187. Schneider, T. L., Shen, B. & Walsh, C. T. Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. Biochemistry 42, 9722– 9730 (2003).
  188. Du, L., Chen, M., Zhang, Y. & Shen, B. BlmIII and BlmIV nonribosomal peptide synthetase- catalyzed biosynthesis of the bleomycin bithiazole moiety involving both in cis and in trans aminoacylation. Biochemistry 42, 9731–9740 (2003).
  189. Meneely, K. M., Barr, E. W., Bollinger, J. M. & Lamb, A. L. Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction. Biochemistry 48, 4371–4376 (2009).
  190. Gehring, A. M., Bradley, K. A. & Walsh, C. T. Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochemistry 36, 8495–8503 (1997).
  191. Mahlert, C., Kopp, F., Thirlway, J., Micklefield, J. & Marahiel, M. A. Stereospecific enzymatic transformation of alpha-ketoglutarate to (2S,3R)-3-methyl glutamate during acidic lipopeptide biosynthesis. J Am Chem Soc 129, 12011–12018 (2007).
  192. Seyedsayamdost, M. R., Traxler, M. F., Zheng, S.-L., Kolter, R. & Clardy, J. Structure and Biosynthesis of Amychelin, an Unusual Mixed-Ligand Siderophore from Amycolatopsis sp. AA4. J Am Chem Soc 133, 11434–11437 (2011).
  193. Watanabe, K. et al. Escherichia coli allows efficient modular incorporation of newly isolated quinomycin biosynthetic enzyme into echinomycin biosynthetic pathway for rational design and synthesis of potent antibiotic unnatural natural product. J Am Chem Soc 131, 9347–9353 (2009).
  194. Strieker, M., Nolan, E. M., Walsh, C. T. & Marahiel, M. A. Stereospecific Synthesis of threo- and erythro-β-Hydroxyglutamic Acid During Kutzneride Biosynthesis. J Am Chem Soc 131, 13523–13530 (2009).
  195. Heemstra, J. R., Walsh, C. T. & Sattely, E. S. Enzymatic tailoring of ornithine in the biosynthesis of the Rhizobium cyclic trihydroxamate siderophore vicibactin. J Am Chem Soc 131, 15317–15329 (2009).
  196. Koenig, T. et al. Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J Proteome Res 7, 3708–3717 (2008).
  197. Flatt, P. M. & Mahmud, T. Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat Prod Rep 24, 358–392 (2007).
  198. Belshaw, P. J., Walsh, C. T. & Stachelhaus, T. Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 284, 486–489 (1999).
  199. Zerikly, M. & Challis, G. L. Strategies for the discovery of new natural products by genome mining. Chembiochem 10, 625–633 (2009).
  200. Challis, G. L. Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154, 1555–1569 (2008).
  201. Lazos, O. et al. Biosynthesis of the putative siderophore erythrochelin requires unprecedented crosstalk between separate nonribosomal peptide gene clusters. Chem Biol 17, 160–173 (2010).
  202. Finking, R. & Marahiel, M. A. Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58, 453–488 (2004).
  203. Flores, F. J. & Martín, J.-F. Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. Biochem J 380, 497–503 (2004).
  204. Tao, X. & Murphy, J. R. Binding of the metalloregulatory protein DtxR to the diphtheria tox operator requires a divalent heavy metal ion and protects the palindromic sequence from DNase I digestion. Journal of Biological Chemistry 267, 21761–21764 (1992).
  205. Stachelhaus, T., Mootz, H. D., Bergendahl, V. & Marahiel, M. A. Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. Journal of Biological Chemistry 273, 22773–22781 (1998).
  206. Mootz, H. D., Finking, R. & Marahiel, M. A. 4'-phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. Journal of Biological Chemistry 276, 37289–37298 (2001).
  207. Yamanaka, K., Maruyama, C., Takagi, H. & Hamano, Y. Epsilon-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nat Chem Biol 4, 766–772 (2008).
  208. Schaible, U. E. & Kaufmann, S. H. E. Iron and microbial infection. Nat Rev Microbiol 2, 946–953 (2004).
  209. Keating, T. A., Marshall, C. G., Walsh, C. T. & Keating, A. E. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat. Struct. Biol. 9, 522–526 (2002).
  210. Schwarzer, D., Mootz, H. D., Linne, U. & Marahiel, M. A. Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. Proc Natl Acad Sci USA 99, 14083– 14088 (2002).
  211. Magarvey, N. A., Haltli, B., He, M., Greenstein, M. & Hucul, J. A. Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant gram-positive pathogens. Antimicrobial Agents and Chemotherapy 50, 2167–2177 (2006).
  212. Mootz, H. D. & Marahiel, M. A. The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol 179, 6843–6850 (1997).
  213. Udwary, D. W. et al. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104, 10376–10381 (2007).
  214. Gay, P., Le Coq, D., Steinmetz, M., Berkelman, T. & Kado, C. I. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 164, 918– 921 (1985).
  215. Miethke, M. & Marahiel, M. A. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71, 413–451 (2007).
  216. Fischbach, M. A., Walsh, C. T. & Clardy, J. The evolution of gene collectives: How natural selection drives chemical innovation. Proc Natl Acad Sci USA 105, 4601–4608 (2008).
  217. Dimise, E. J., Widboom, P. F. & Bruner, S. D. Structure elucidation and biosynthesis of fuscachelins, peptide siderophores from the moderate thermophile Thermobifida fusca. Proc Natl Acad Sci USA 105, 15311–15316 (2008).
  218. Francklyn, C. S. DNA polymerases and aminoacyl-tRNA synthetases: shared mechanisms for ensuring the fidelity of gene expression. Biochemistry 47, 11695–11703 (2008).
  219. Laureti, L. et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci USA 108, 6258– 6263 (2011).
  220. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95, 5857–5864 (1998).
  221. Chiu, H. T. et al. Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster. Proc Natl Acad Sci USA 98, 8548–8553 (2001).
  222. Schmitt, E., Blanquet, S. & Mechulam, Y. Structure of crystalline Escherichia coli methionyl- tRNA(f)Met formyltransferase: comparison with glycinamide ribonucleotide formyltransferase. EMBO J 15, 4749–4758 (1996).
  223. Corre, C., Song, L., O'Rourke, S., Chater, K. F. & Challis, G. L. 2-Alkyl-4-hydroxymethylfuran- 3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci USA 105, 17510–17515 (2008).
  224. Plowman, J. E., Loehr, T. M., Goldman, S. J. & Sanders-Loehr, J. Structure and siderophore activity of ferric schizokinen. J Inorg Biochem 20, 183–197 (1984).
  225. Rowland, B. M., Grossman, T. H., Osburne, M. S. & Taber, H. W. Sequence and genetic organization of a Bacillus subtilis operon encoding 2,3-dihydroxybenzoate biosynthetic enzymes. Gene 178, 119–123 (1996).
  226. Krewulak, K. D. & Vogel, H. J. Structural biology of bacterial iron uptake. Biochim. Biophys. Acta 1778, 1781–1804 (2008).
  227. Braun, V. & Braun, M. Iron transport and signaling in Escherichia coli. FEBS Lett 529, 78–85 (2002).
  228. Kopp, F. & Marahiel, M. A. Where chemistry meets biology: the chemoenzymatic synthesis of nonribosomal peptides and polyketides. Curr. Opin. Biotechnol. 18, 513–520 (2007).
  229. Hojati, Z. et al. Structure, biosynthetic origin, and engineered biosynthesis of calcium- dependent antibiotics from Streptomyces coelicolor. Chem Biol 9, 1175–1187 (2002).
  230. Ghosh, A. et al. Iron transport-mediated drug delivery using mixed-ligand siderophore-beta- lactam conjugates. Chem Biol 3, 1011–1019 (1996).
  231. Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6, 493–505 (1999).
  232. Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat Prod Rep 27, 637–657 (2010).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten