Publikationsserver der Universitätsbibliothek Marburg

Titel:Molekulare Mechanismen der allergieprotektiven Wirkung durch Lactococcus lactis im Mausmodell des akuten allergischen Asthma
Autor:Niesel, Stefan Christian
Weitere Beteiligte: Garn, Holger (Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0431
DOI: https://doi.org/10.17192/z2012.0431
URN: urn:nbn:de:hebis:04-z2012-04312
DDC: Medizin
Titel (trans.):Molecular mechanisms of the allergy protective effect of Lactococcus lactis in a mouse model of acute allergic asthma
Publikationsdatum:2012-07-11
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Bronchialasthma, BALB/c Mouse, Allergie, Epigenetik, Epigenetics, BALB/c Maus, Allergy, Asthma, Lactococcus lactis, Lactococcus lactis

Zusammenfassung:
Als ursächlich für in den letzten Jahrzehnten stetig steigenden Prävalenzen von Asthma bronchiale in industrialisierten Ländern werden neben einer genetischen Prädisposition vor allem Umweltfaktoren verantwortlich gemacht. Die Hygiene-Hypothese bestätigend konnten epidemiologische Studien eine Reduktion allergischer Erkrankungen durch Exposition gegenüber mikrobiellen Komponenten im bäuerlichen Umfeld belegen. In Folge wurde das apathogene, Gram-positive Bakterium Lactococcus lactis (L. lactis) aus dem Stallstaub traditioneller Kuhställe isoliert. Im Tiermodell führte die intranasale Applikation von L. lactis an Ovalbumin (OVA)-sensibilisierte und -provozierte BALB/c-Mäuse zur signifikanten Reduktion des asthmatischen Phänotyps. In der vorliegenden Arbeit konnte dieser Effekt bestätigt werden. Des Weiteren wurden die zugrunde liegenden molekularen Mechanismen untersucht. Aus immunologischer Sicht geht Asthma mit einer Dominanz T-Helfer (Th)2-spezifischer Zytokine einher, bei Reduktion Th1- und Treg-spezifischer Zytokine. Daher wurden die Zytokinsekretionsmuster in mononukleären Zellen (MNCs), isoliert aus bronchialen Lymphknoten (lokale Reaktion) und der Milz (systemische Reaktion), untersucht. Dabei führte die L. lactis-Applikation lokal zu einer signifikante Reduktion der Th2-Antwort (Interleukin (IL)-5, IL-13). In der Milz waren die Th2-Zytokine tendenziell reduziert. Bei bestehenden immunologischen Konzepten einer Th1/Th2-Dysbalance oder einer Treg-Suppression als kausale Faktoren der Asthmaentstehung, konnte die protektive L. lactis-Wirkung mit keinem der beiden Modelle erklärt werden, da sich neben der reduzierten Th2-Antwort auch eine tendenzielle Reduktion Th1- (Interferon gamma (IFNy)) und Treg-spezifischer Zytokine (IL-10) fand. Im Rahmen der Pathogenese von Asthma bronchiale werden epigenetische Veränderungen als klärendes Bindeglied zwischen Gen-Umweltinteraktionen und der Fehlfunktion des Immunsystems vermutet. Für den epigenetischen Mechanismus der DNA-Methylierung konnte eine Assoziation mit der T-Zell-Differenzierung gezeigt werden. Daher wurde in der vorliegenden Arbeit bei nachgewiesenen Differenzen der Zytokinkonzentration durch L. lactis-Behandlung in weiteren Experimenten die DNA-Methylierung von CpGs CD4+CD25+- und CD4+CD25--T-Zellen in Promotorregionen Th1-, Th2- und Treg-typischer Zytokine analysiert. Hier konnten in den untersuchten DNA-Abschnitten für IL-5, IL-10 und IFNy keine signifikanten Unterschiede gefunden werden. Weitere Untersuchungen könnten klären, ob stattdessen Methylierungsunterschiede in weiter distal des Transkriptionsstarts gelegenen regulativen DNA-Regionen oder der epigenetische Mechanismus der Histonmodifikation mit dem Asthma-protektiven L. lactis-Effekt assoziiert sind. Schließlich deuten in der vorliegenden Arbeit gefundene signifikante Unterschiede der Methylierung des IFNγ-Promotors zwischen OVA-sensibilisierten Tieren und PBS (Phosphate Buffered Saline)-pseudosensibilisierten Tieren darauf hin, dass der epigenetische Mechanismus der DNA-Methylierung im Rahmen von Immunisierungsprozessen ein Rolle spielt. Signifikante Differenzen der Grund-Methylierung des IFNγ-Promotors zwischen T-Zellen bronchialer Lymphknoten und der Milz zeigen, dass eine separate Analyse lokaler und systemischer Effekte in diesem Modell erforderlich ist.

Bibliographie / References

  1. Padrid, 1999, TRFK-5 reverses established airway eosinophilia but not established hyperresponsiveness in a murine model of chronic asthma: Am.J.Respir.Crit Care Med., v. 159, no. 2, p. 580-587.
  2. Lee, C. G., A. Sahoo, and S. H. Im, 2009, Epigenetic regulation of cytokine gene expression in T lymphocytes: Yonsei Med.J., v. 50, no. 3, p. 322-330.
  3. Waterland, R. A., and R. L. Jirtle, 2003, Transposable elements: targets for early nutritional effects on epigenetic gene regulation: Mol.Cell Biol., v. 23, no. 15, p. 5293- 5300.
  4. Nials, A. T., and S. Uddin, 2008, Mouse models of allergic asthma: acute and chronic allergen challenge: Dis.Model.Mech., v. 1, no. 4-5, p. 213-220.
  5. Radon, K., V. Ehrenstein, G. Praml, and D. Nowak, 2004, Childhood visits to animal buildings and atopic diseases in adulthood: an age-dependent relationship: Am.J.Ind.Med., v. 46, no. 4, p. 349-356.
  6. Fischer, K., K. Stein, A. J. Ulmer, B. Lindner, H. Heine, and O. Holst, 2011, Cytokine- inducing lipoteichoic acids of the allergy-protective bacterium Lactococcus lactis G121 do not activate via Toll-like receptor 2: Glycobiology.
  7. Renz, 2005, Involvement of distal airways in a chronic model of experimental asthma: Clin.Exp.Allergy, v. 35, no. 10, p. 1263-1271.
  8. von Mutius E., C. Fritzsch, S. K. Weiland, G. Roll, and H. Magnussen, 1992, Prevalence of asthma and allergic disorders among children in united Germany: a descriptive comparison: BMJ, v. 305, no. 6866, p. 1395-1399.
  9. Peters, M. et al., 2006, Inhalation of stable dust extract prevents allergen induced airway inflammation and hyperresponsiveness: Thorax, v. 61, no. 2, p. 134-139.
  10. Ege, M. J. et al., 2008, Prenatal exposure to a farm environment modifies atopic sensitization at birth: J.Allergy Clin.Immunol., v. 122, no. 2, p. 407-12, 412.
  11. Holgate, S. T., and R. Polosa, 2008, Treatment strategies for allergy and asthma: Nat.Rev.Immunol., v. 8, no. 3, p. 218-230.
  12. Schroder, K., P. J. Hertzog, T. Ravasi, and D. A. Hume, 2004, Interferon-gamma: an overview of signals, mechanisms and functions: J.Leukoc.Biol., v. 75, no. 2, p. 163-189.
  13. Schaub, B., J. Liu, S. Hoppler, I. Schleich, J. Huehn, S. Olek, G. Wieczorek, S. Illi, and M. E. von, 2009, Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells: J.Allergy Clin.Immunol., v. 123, no. 4, p. 774-782.
  14. Hopfenspirger, M. T., and D. K. Agrawal, 2002, Airway hyperresponsiveness, late allergic response, and eosinophilia are reversed with mycobacterial antigens in ovalbumin-presensitized mice: J.Immunol., v. 168, no. 5, p. 2516-2522.
  15. Lander, E. S. et al., 2001, Initial sequencing and analysis of the human genome: Nature, v. 409, no. 6822, p. 860-921.
  16. Jones, B., and J. Chen, 2006, Inhibition of IFN-gamma transcription by site-specific methylation during T helper cell development: EMBO J., v. 25, no. 11, p. 2443-2452.
  17. Mehra, A., K. H. Lee, and V. Hatzimanikatis, 2003, Insights into the relation between mRNA and protein expression patterns: I. Theoretical considerations: Biotechnol.Bioeng., v. 84, no. 7, p. 822-833.
  18. Hawrylowicz, C. M., and A. O'Garra, 2005, Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma: Nat.Rev.Immunol., v. 5, no. 4, p. 271-283.
  19. Cortes-Perez, N. G., S. Ah-Leung, L. G. Bermudez-Humaran, G. Corthier, P. Langella, J. M. Wal, and K. del-Patient, 2009, Allergy therapy by intranasal administration with recombinant Lactococcus lactis Producing bovine beta-lactoglobulin: Int.Arch.Allergy Immunol., v. 150, no. 1, p. 25-31.
  20. Keil, 2003, Are asthma and allergies in children and adolescents increasing? Results from ISAAC phase I and phase III surveys in Munster, Germany: Allergy, v. 58, no. 7, p. 572-579.
  21. Ober, C., and S. Hoffjan, 2006, Asthma genetics 2006: the long and winding road to gene discovery: Genes Immun., v. 7, no. 2, p. 95-100.
  22. Nakanishi, 2009, Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells: Nat.Immunol., v. 10, no. 7, p. 706-712.
  23. Lambrecht, B. N., and H. Hammad, 2009, Biology of lung dendritic cells at the origin of asthma: Immunity., v. 31, no. 3, p. 412-424.
  24. Young, H. W. et al., 2007, Central role of Muc5ac expression in mucous metaplasia and its regulation by conserved 5' elements: Am.J.Respir.Cell Mol.Biol., v. 37, no. 3, p. 273-290.
  25. Yssel, H., and H. Groux, 2000, Characterization of T cell subpopulations involved in the pathogenesis of asthma and allergic diseases: Int.Arch.Allergy Immunol., v. 121, no. 1, p. 10-18.
  26. Im, S. H., A. Hueber, S. Monticelli, K. H. Kang, and A. Rao, 2004, Chromatin-level regulation of the IL10 gene in T cells: J.Biol.Chem., v. 279, no. 45, p. 46818-46825.
  27. Fitzpatrick, J. A. Stamatoyannopoulos, and C. B. Wilson, 2007, Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma: Nat.Immunol., v. 8, no. 7, p. 732-742.
  28. Wahl, 2003, Conversion of peripheral CD4+: J.Exp.Med., v. 198, no. 12, p. 1875-1886.
  29. Gutierrez, M. I., A. K. Siraj, H. Khaled, N. Koon, W. El-Rifai, and K. Bhatia, 2004, CpG island methylation in Schistosoma-and non-Schistosoma-associated bladder cancer: Mod.Pathol., v. 17, no. 10, p. 1268-1274.
  30. Kusel, P. D. Sly, and P. G. Holt, 2006, CpG methylation patterns in the IFNgamma promoter in naive T cells: variations during Th1 and Th2 differentiation and between atopics and non-atopics: Pediatr.Allergy Immunol., v. 17, no. 8, p. 557-564.
  31. Tilghman, 2000, CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus: Nature, v. 405, no. 6785, p. 486-489.
  32. Borish, L. C., and J. W. Steinke, 2003, 2. Cytokines and chemokines: J.Allergy Clin.Immunol., v. 111, no. 2 Suppl, p. S460-S475.
  33. Yoder, J. A., C. P. Walsh, and T. H. Bestor, 1997, Cytosine methylation and the ecology of intragenomic parasites: Trends Genet., v. 13, no. 8, p. 335-340.
  34. Georas, S. N., F. Rezaee, L. Lerner, and L. Beck, 2010, Dangerous allergens: why some allergens are bad actors: Curr.Allergy Asthma Rep., v. 10, no. 2, p. 92-98.
  35. Danish twin pairs]: Ugeskr.Laeger, v. 162, no. 26, p. 3726-3729.
  36. Salminen, S. et al., 1998, Demonstration of safety of probiotics --a review: Int.J.Food Microbiol., v. 44, no. 1-2, p. 93-106.
  37. Fitch, F. W., M. D. McKisic, D. W. Lancki, and T. F. Gajewski, 1993, Differential regulation of murine T lymphocyte subsets: Annu.Rev.Immunol., v. 11, p. 29-48.
  38. Elias, D. Sheppard, and D. J. Erle, 2002, Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma: Nat.Med., v. 8, no. 8, p. 885-889.
  39. Vercelli, D., 2008, Discovering susceptibility genes for asthma and allergy: Nat.Rev.Immunol., v. 8, no. 3, p. 169-182.
  40. Gehring, M., W. Reik, and S. Henikoff, 2009, DNA demethylation by DNA repair: Trends Genet., v. 25, no. 2, p. 82-90.
  41. Tost, J., 2010, DNA methylation: an introduction to the biology and the disease- associated changes of a promising biomarker: Mol.Biotechnol., v. 44, no. 1, p. 71-81.
  42. Heard, E., and C. M. Disteche, 2006, Dosage compensation in mammals: fine-tuning the expression of the X chromosome: Genes Dev., v. 20, no. 14, p. 1848-1867.
  43. B. Kay, and C. J. Corrigan, 1997, Elevated expression of messenger ribonucleic acid encoding IL-13 in the bronchial mucosa of atopic and nonatopic subjects with asthma: J.Allergy Clin.Immunol., v. 99, no. 5, p. 657-665.
  44. Miller, R. L., and S. M. Ho, 2008, Environmental epigenetics and asthma: current concepts and call for studies: Am.J.Respir.Crit Care Med., v. 177, no. 6, p. 567-573.
  45. Wilson, C. B., E. Rowell, and M. Sekimata, 2009, Epigenetic control of T-helper-cell differentiation: Nat.Rev.Immunol., v. 9, no. 2, p. 91-105.
  46. Epigenetic Mechanisms of Gene Regulation: Cold Spring Harbor Labaratory Press, Woodbury.
  47. Reik, W., W. Dean, and J. Walter, 2001, Epigenetic reprogramming in mammalian development: Science, v. 293, no. 5532, p. 1089-1093.
  48. Riedler, J. et al., 2001, Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey: Lancet, v. 358, no. 9288, p. 1129-1133.
  49. Pohlers, D., A. Siegling, E. Buchner, C. B. Schmidt-Weber, E. Palombo-Kinne, F. Emmrich, R. Brauer, and R. W. Kinne, 2005, Expression of cytokine mRNA and protein in joints and lymphoid organs during the course of rat antigen-induced arthritis: Arthritis Res.Ther., v. 7, no. 3, p. R445-R457.
  50. Skapenko, A., G. U. Niedobitek, J. R. Kalden, P. E. Lipsky, and H. Schulze-Koops, 2004, Generation and regulation of human Th1-biased immune responses in vivo: a critical role for IL-4 and IL-10: J.Immunol., v. 172, no. 10, p. 6427-6434.
  51. Moffatt, M. F. et al., 2007, Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma: Nature, v. 448, no. 7152, p. 470-473.
  52. Klose, R. J., and A. P. Bird, 2006, Genomic DNA methylation: the mark and its mediators: Trends Biochem.Sci., v. 31, no. 2, p. 89-97.
  53. Strachan, D. P., 1989, Hay fever, hygiene, and household size: BMJ, v. 299, no. 6710, p. 1259-1260.
  54. Zhu, J., and W. E. Paul, 2010, Heterogeneity and plasticity of T helper cells: Cell Res., v. 20, no. 1, p. 4-12.
  55. Kass, S. U., D. Pruss, and A. P. Wolffe, 1997, How does DNA methylation repress transcription?: Trends Genet., v. 13, no. 11, p. 444-449.
  56. Jankovic, D., and G. Trinchieri, 2007, IL-10 or not IL-10: that is the question: Nat.Immunol., v. 8, no. 12, p. 1281-1283.
  57. Couper, K. N., D. G. Blount, and E. M. Riley, 2008, IL-10: the master regulator of immunity to infection: J.Immunol., v. 180, no. 9, p. 5771-5777.
  58. Kotsimbos, A. T., and Q. Hamid, 1997, IL-5 and IL-5 receptor in asthma: Mem.Inst.Oswaldo Cruz, v. 92 Suppl 2, p. 75-91.
  59. Romagnani, S., 2004, Immunologic influences on allergy and the TH1/TH2 balance: J.Allergy Clin.Immunol., v. 113, no. 3, p. 395-400.
  60. Sanchez-Abarca, L. I. et al., 2010, Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting: Blood, v. 115, no. 1, p. 107-121.
  61. Wu, C., G. Yang, L. G. Bermudez-Humaran, Q. Pang, Y. Zeng, J. Wang, and X. Gao, 2006, Immunomodulatory effects of IL-12 secreted by Lactococcus lactis on Th1/Th2 balance in ovalbumin (OVA)-induced asthma model mice: Int.Immunopharmacol., v. 6, no. 4, p. 610-615.
  62. Umlauf, D., Y. Goto, R. Cao, F. Cerqueira, A. Wagschal, Y. Zhang, and R. Feil, 2004, Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes: Nat.Genet., v. 36, no. 12, p. 1296-1300.
  63. Mikovits, J. A. et al., 1998, Infection with human immunodeficiency virus type 1
  64. Donaldson, 1998, Interleukin-13: central mediator of allergic asthma: Science, v. 282, no. 5397, p. 2258-2261.
  65. Braat, H., B. J. van den, T. E. van, D. Hommes, M. Peppelenbosch, and D. S. van, 2004, Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function: Am.J.Clin.Nutr., v. 80, no. 6, p. 1618- 1625.
  66. Horsthemke, B., and J. Wagstaff, 2008, Mechanisms of imprinting of the Prader-
  67. Strouboulis, and A. P. Wolffe, 1998, Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription: Nat.Genet., v. 19, no. 2, p. 187-191.
  68. Fu, L. H., B. Cong, Y. F. Zhen, S. J. Li, C. L. Ma, Z. Y. Ni, G. Z. Zhang, M. Zuo, and Y. X. Yao, 2007, [Methylation status of the IL-10 gene promoter in the peripheral blood mononuclear cells of rheumatoid arthritis patients]: Yi.Chuan, v. 29, no. 11, p. 1357- 1361.
  69. Holt, 2009, Microbial exposure, interferon gamma gene demethylation in naive T-cells, and the risk of allergic disease: Allergy, v. 64, no. 3, p. 348-353.
  70. Zuhdi, A. M., F. M. Piazza, D. M. Selby, N. Letwin, L. Huang, and M. C. Rose, 2000, Muc-5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways: Am.J.Respir.Cell Mol.Biol., v. 22, no. 3, p. 253-260.
  71. Repa, A. et al., 2003, Mucosal co-application of lactic acid bacteria and allergen induces counter-regulatory immune responses in a murine model of birch pollen allergy: Vaccine, v. 22, no. 1, p. 87-95.
  72. Herz, U., U. Lumpp, A. Daser, E. W. Gelfand, and H. Renz, 1996b, Murine animal models to study the central role of T cells in immediate-type hypersensitivity responses: Adv.Exp.Med.Biol., v. 409, p. 25-32.
  73. W. Gelfand, 1994, Nebulized but not parenteral IFN-gamma decreases IgE production and normalizes airways function in a murine model of allergen sensitization: J.Immunol., v. 152, no. 5, p. 2546-2554.
  74. Ohno, H., S. Tsunemine, Y. Isa, M. Shimakawa, and H. Yamamura, 2005, Oral administration of Bifidobacterium bifidum G9-1 suppresses total and antigen specific immunoglobulin E production in mice: Biol.Pharm.Bull., v. 28, no. 8, p. 1462-1466.
  75. Abbildung 20: OVA-spezifische Immunglobulin-Konzentrationen im Serum .. 61
  76. Doganci, A., K. Sauer, R. Karwot, and S. Finotto, 2005, Pathological role of IL-6 in the experimental allergic bronchial asthma in mice: Clin.Rev.Allergy Immunol., v. 28, no. 3, p. 257-270.
  77. Bird, A., 2007, Perceptions of epigenetics: Nature, v. 447, no. 7143, p. 396-398.
  78. Garn, 2007, Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring: Clin.Exp.Allergy, v. 37, no. 3, p. 348- 357.
  79. Feinberg, A. P., 2007, Phenotypic plasticity and the epigenetics of human disease: Nature, v. 447, no. 7143, p. 433-440.
  80. Ege, M. J. et al., 2006, Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children: J.Allergy Clin.Immunol., v. 117, no. 4, p. 817-823.
  81. Braun-Fahrlander, C., M. Gassner, L. Grize, U. Neu, F. H. Sennhauser, H. S. Varonier, J. C. Vuille, and B. Wuthrich, 1999, Prevalence of hay fever and allergic sensitization in farmer's children and their peers living in the same rural community. SCARPOL team.
  82. Romagnani, S., 2006, Regulation of the T cell response: Clin.Exp.Allergy, v. 36, no. 11, p. 1357-1366.
  83. Sakaguchi, S., 2011, Regulatory T cells: history and perspective: Methods Mol.Biol., v. 707, p. 3-17.
  84. Lloyd, C. M., and C. M. Hawrylowicz, 2009, Regulatory T cells in asthma: Immunity., v. 31, no. 3, p. 438-449.
  85. upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-gamma) promoter and subsequent downregulation of IFN-gamma production: Mol.Cell Biol., v. 18, no. 9, p. 5166-5177.
  86. Nakajima, H., and K. Takatsu, 2007, Role of cytokines in allergic airway inflammation: Int.Arch.Allergy Immunol., v. 142, no. 4, p. 265-273.
  87. Skadhauge, L. R., K. Christensen, K. O. Kyvik, and T. I. Sigsgaard, 2000, [Significance of genetic and environmental factors for asthma. A population-based study of 11.688
  88. Reik, W., 2007, Stability and flexibility of epigenetic gene regulation in mammalian development: Nature, v. 447, no. 7143, p. 425-432.
  89. Swiss Study on Childhood Allergy and Respiratory Symptoms with Respect to Air Pollution: Clin.Exp.Allergy, v. 29, no. 1, p. 28-34.
  90. Mosmann, T. R., and R. L. Coffman, 1989, TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties: Annu.Rev.Immunol., v. 7, p. 145-173.
  91. Robinson, D. S., 2000, Th-2 cytokines in allergic disease: Br.Med.Bull., v. 56, no. 4, p. 956-968.
  92. Soroosh, P., and T. A. Doherty, 2009, Th9 and allergic disease: Immunology, v. 127, no. 4, p. 450-458.
  93. Galli, S. J., M. Tsai, and A. M. Piliponsky, 2008, The development of allergic inflammation: Nature, v. 454, no. 7203, p. 445-454.
  94. Waddington, C. H., 1942, The epigenotype: Endeavour, p. 18-20.
  95. Masoli, M., D. Fabian, S. Holt, and R. Beasley, 2004, The global burden of asthma: executive summary of the GINA Dissemination Committee report: Allergy, v. 59, no. 5, p. 469-478.
  96. World Health Organization, 2008, The Global Burden of Disease: 2004 Update.
  97. Hermann, A., S. Schmitt, and A. Jeltsch, 2003, The human Dnmt2 has residual DNA- (cytosine-C5) methyltransferase activity: J.Biol.Chem., v. 278, no. 34, p. 31717-31721.
  98. Trinchieri, G., S. Pflanz, and R. A. Kastelein, 2003, The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses: Immunity., v. 19, no. 5, p. 641-644.
  99. Ulrey, C. L., L. Liu, L. G. Andrews, and T. O. Tollefsbol, 2005, The impact of metabolism on DNA methylation: Hum.Mol.Genet., v. 14 Spec No 1, p. R139-R147.
  100. Saraiva, M., and A. O'Garra, 2010, The regulation of IL-10 production by immune cells: Nat.Rev.Immunol., v. 10, no. 3, p. 170-181.
  101. Herz, U. et al., 1996a, The relevance of murine animal models to study the development of allergic bronchial asthma: Immunol.Cell Biol., v. 74, no. 2, p. 209-217.
  102. Korthals, M., M. J. Ege, C. C. Tebbe, M. E. von, and J. Bauer, 2008, Application of PCR-SSCP for molecular epidemiological studies on the exposure of farm children to bacteria in environmental dust: J.Microbiol.Methods, v. 73, no. 1, p. 49-56.
  103. Conrad, M. L. et al., 2009, Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78: J.Exp.Med., v. 206, no. 13, p. 2869-2877.
  104. Wen, H. J., Y. C. Lin, Y. L. Lee, and Y. L. Guo, 2006, Association between cord blood IgE and genetic polymorphisms of interleukin-4, the beta-subunit of the high-affinity receptor for IgE, lymphotoxin-alpha, and tumor necrosis factor-alpha: Pediatr.Allergy Immunol., v. 17, no. 7, p. 489-494.
  105. Casalta, E., and M. C. Montel, 2008, Safety assessment of dairy microorganisms: the Lactococcus genus: Int.J.Food Microbiol., v. 126, no. 3, p. 271-273.
  106. Heinrich, J., B. Hoelscher, B. Jacob, M. Wjst, and H. E. Wichmann, 1999, Trends in allergies among children in a region of former East Germany between 1992-1993 and 1995-1996: Eur.J.Med.Res., v. 4, no. 3, p. 107-113.
  107. Greenfeder, S., S. P. Umland, F. M. Cuss, R. W. Chapman, and R. W. Egan, 2001, Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease: Respir.Res., v. 2, no. 2, p. 71-79.
  108. Imboden, M., A. Nieters, A. J. Bircher, M. Brutsche, N. Becker, M. Wjst, U. ckermann- Liebrich, W. Berger, and N. M. Probst-Hensch, 2006, Cytokine gene polymorphisms and atopic disease in two European cohorts. (ECRHS-Basel and SAPALDIA): Clin.Mol.Allergy, v. 4, p. 9.
  109. Nardone, G., D. Compare, C. P. de, N. G. de, and A. Rocco, 2007, Helicobacter pylori and epigenetic mechanisms underlying gastric carcinogenesis: Dig.Dis., v. 25, no. 3, p. 225-229.
  110. Schubeler, D., M. C. Lorincz, D. M. Cimbora, A. Telling, Y. Q. Feng, E. E. Bouhassira, and M. Groudine, 2000, Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation: Mol.Cell Biol., v. 20, no. 24, p. 9103-9112.
  111. Fraga, M. F. et al., 2005, Epigenetic differences arise during the lifetime of monozygotic twins: Proc.Natl.Acad.Sci.U.S.A, v. 102, no. 30, p. 10604-10609.
  112. Takai, D., and P. A. Jones, 2002, Comprehensive analysis of CpG islands in human chromosomes 21 and 22: Proc.Natl.Acad.Sci.U.S.A, v. 99, no. 6, p. 3740-3745.
  113. Chu, H. W., J. M. Honour, C. A. Rawlinson, R. J. Harbeck, and R. J. Martin, 2003, Effects of respiratory Mycoplasma pneumoniae infection on allergen-induced bronchial hyperresponsiveness and lung inflammation in mice: Infect.Immun., v. 71, no. 3, p. 1520-1526.
  114. Nie, L., G. Wu, and W. Zhang, 2006, Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: a quantitative analysis: Genetics, v. 174, no. 4, p. 2229-2243.
  115. Renz, H., K. Bradley, J. Saloga, J. Loader, G. L. Larsen, and E. W. Gelfand, 1993, T cells expressing specific V beta elements regulate immunoglobulin E production and airways responsiveness in vivo: J.Exp.Med., v. 177, no. 4, p. 1175-1180.
  116. Boyce, J. A., and K. F. Austen, 2005, No audible wheezing: nuggets and conundrums from mouse asthma models: J.Exp.Med., v. 201, no. 12, p. 1869-1873.
  117. Erb, K. J., J. W. Holloway, A. Sobeck, H. Moll, and G. G. Le, 1998, Infection of mice with Mycobacterium bovis-Bacillus Calmette-Guerin (BCG) suppresses allergen- induced airway eosinophilia: J.Exp.Med., v. 187, no. 4, p. 561-569.
  118. Illingworth, R. et al., 2008, A novel CpG island set identifies tissue-specific methylation at developmental gene loci: PLoS.Biol., v. 6, no. 1, p. e22.
  119. Floess, S. et al., 2007, Epigenetic control of the foxp3 locus in regulatory T cells: PLoS.Biol., v. 5, no. 2, p. e38.
  120. Debarry, J. et al., 2007, Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties: J.Allergy Clin.Immunol., v. 119, no. 6, p. 1514-1521.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten