Publikationsserver der Universitätsbibliothek Marburg

Titel:Cardiopulmonale Reanimation mit einem Kompressions-Ventilations-Verhältnis von 100:5 und 30:5: Einfluss auf den Gasaustausch im Tiermodell
Autor:Massmann, Martin
Weitere Beteiligte: Kill, Clemens (Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0425
DOI: https://doi.org/10.17192/z2012.0425
URN: urn:nbn:de:hebis:04-z2012-04259
DDC: Medizin
Titel (trans.):Cardiopulmonary Resuscitation with a compression-ventilation ratio of 100:5 and 30:5: Effects on gas exchange in an animal model
Publikationsdatum:2012-07-11
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Wiederbelebung, Gasaustausch, Cardiac arrest, CPR, Kammerflimmern, Porcine, Basic life support, Gas exchange, Tiermodell

Zusammenfassung:
Hintergrund Primäres Ziel der Basismaßnahmen der Reanimation (Basic Life Support: BLS) ist die Aufrechterhaltung der Sauerstoffversorgung lebenswichtiger Organe. In den aktuellen Guidelines des European Resusciation Council (ERC) wird eine Kombination von 30 Thoraxkompressionen mit zwei Beatmungen empfohlen. Das Verhältnis von Kompression zu Ventilation ist aktuell Gegenstand weltweiter Diskussionen. Das vorliegende Experiment untersucht den Einfluss von zwei verschiedenen Kompressions-/Ventilations-Verhältnissen auf den Gasaustausch sowie die Wiederkehr eines Spontankreislaufs (Return of spontaneous circulation: ROSC) im Tiermodell. Methode Nach Genehmigung durch die zuständige Tierschutzkommission wurden 16 Schweine in Allgemeinanästhesie, orotracheal intubiert und mit arteriellen und venösen Gefäßzugängen instrumentiert. Nach drei Minuten unbehandeltem Kreislaufstillstand (Kammerflimmern) wurden die Versuchstiere mit einem Kompressions-/Ventilations-Verhältnis von leitliniengetreu 30:2 oder alternativ 100:5 über zehn Minuten reanimiert. Die Ventilation erfolgte mit 17 Prozent O2 und vier Prozent CO2. Nach 10 min BLS erfolgte Advanced Life Support (ALS) mit 100 Prozent O2 –Beatmung, bis zu drei Defibrillationen und 1mg Adrenalin intravenös. Die Datenanalyse erfolgte mittels ANOVA. Ergebnisse Während der BLS-Phase stieg der PaCO2 auf 55mmHg (30:2) bzw. 68mmHg (100:5, p=0,0001). Der PaO2 fiel auf 58mmHg (30:2) bzw. 40mmHg (100:5, p=0,15). ROSC wurde bei 4/8 (30:2) bzw. 5/8 (100:5) Tieren erzielt. Schlussfolgerung Im vorliegenden Tiermodell kann ein Kompressions-/Ventilations-Verhältnis von 100:5 als gleichwertig zu 30:2 angesehen werden. Die Methode könnte einen Nutzen in Bezug auf die Praktikabilität der Reanimation sowie die Ausbildung von Laien erbringen.

Bibliographie / References

  1. Yannopoulos D, Tang W, Roussos C, Aufderheide TP, Idris AH, Lurie KG. Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respiratory care 2005 May;50(5):628-35.
  2. Yu T, Weil MH, Tang W, Sun S, Klouche K, Povoas H, Bisera J. Adverse outcomes of interrupted precordial compression during automated defibrillation. Circulation 2002
  3. Sans S, Kesteloot H, Kromhout D. The burden of cardiovascular diseases mortality in Europe. Task Force of the European Society of Cardiology on Cardiovascular Mortality and Morbidity Statistics in Europe. European heart journal 1997 Dec;18(12):1231-48.
  4. Yannopoulos D, Aufderheide T. Acute management of sudden cardiac death in adults based upon the new CPR guidelines. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology 2007
  5. Williams JG, Brice JH, De Maio VJ, Jalbuena T. A simulation trial of traditional dispatch- er-assisted CPR versus compressions--only dispatcher-assisted CPR. Prehospital emergency care : official journal of the National Association of EMS Physicians and the National Association of State EMS Directors 2004;10(2):247-53.
  6. Waalewijn RA, Tijssen JG, Koster RW. Bystander initiated actions in out-of-hospital car- diopulmonary resuscitation: results from the Amsterdam Resuscitation Study (ARRE- SUST). Resuscitation 2001 Sep;50(3):273-9.
  7. Vaillancourt C, Stiell IG. Cardiac arrest care and emergency medical services in Canada. The Canadian journal of cardiology 2004 Sep;20(11):1081-90.
  8. Samson R a, Berg MD, Berg R a. Cardiopulmonary resuscitation algorithms, defibrilla- tion and optimized ventilation during resuscitation. Current opinion in anaesthesiology 2006 Apr;19(2):146-56.
  9. SOS-KANTO. Cardiopulmonary resuscitation by bystanders with chest compression only (SOS-KANTO): an observational study. Lancet 2007 Mar;369(9565):920-6.
  10. Yannopoulos D, Aufderheide TP, Gabrielli A, Beiser DG, McKnite SH, Pirrallo RG, Wig- ginton J, Becker L, Vanden Hoek T, Tang W, Nadkarni VM, Klein JP, Idris AH, Lurie KG. Clinical and hemodynamic comparison of 15:2 and 30:2 compression-to-ventilation ratios for cardiopulmonary resuscitation. Critical care medicine 2006 May;34(5):1444-9.
  11. Svensson L, Bohm K, Castrèn M, Pettersson H, Engerström L, Herlitz J, Rosenqvist M. Compression-only CPR or standard CPR in out-of-hospital cardiac arrest. The New Eng- land journal of medicine 2010 Jul;363(5):434-42.
  12. Swor R, Khan I, Domeier R, Honeycutt L, Chu K, Compton S. CPR training and CPR performance: do CPR-trained bystanders perform CPR? Academic emergency medi- cine : official journal of the Society for Academic Emergency Medicine 2006
  13. Steen PA. Does active rescuer ventilation have a place during basic cardiopulmonary resuscitation? Circulation 2007 Nov;116(22):2514-6.
  14. Turner I, Turner S, Armstrong V. Does the compression to ventilation ratio affect the quality of CPR: a simulation study. Resuscitation 2002 Jan;52(1):55-62.
  15. Safar P, Brown TC, Holtey WJ. Failure of Closed Chest Cardiac Massage to Produce Pulmonary Ventilation. Chest 1962 Jan;41(1):1-8.
  16. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 3: adult basic life support. The American Heart Association in collaboration with the International Liaison Committee on Resuscitation. Circulation 2000 Aug;102(8
  17. Sayre MR, Berg RA, Cave DM, Page RL, Potts J, White RD. Hands-only (compression- only) cardiopulmonary resuscitation: a call to action for bystander response to adults who experience out-of-hospital sudden cardiac arrest: a science advisory for the public from the American Heart Association Emergency Cardiovasc. Circulation 2008
  18. Wenzel V, Idris AH, Banner MJ, Kubilis PS, Williams JL. Influence of tidal volume on the distribution of gas between the lungs and stomach in the nonintubated patient receiving positive-pressure ventilation. Critical care medicine 1998 Feb;26(2):364-8.
  19. Yannopoulos D, Nadkarni VM, McKnite SH, Rao A, Kruger K, Metzger A, Benditt DG, Lurie KG. Intrathoracic pressure regulator during continuous-chest-compression ad- vanced cardiac resuscitation improves vital organ perfusion pressures in a porcine mod- el of cardiac arrest. Circulation 2005 Aug;112(6):803-11.
  20. Turner I, Turner S. Optimum cardiopulmonary resuscitation for basic and advanced life support: a simulation study. Resuscitation 2004 Aug;62(2):209-17.
  21. Sasson C, Rogers M a M, Dahl J, Kellermann AL. Predictors of survival from out-of- hospital cardiac arrest: a systematic review and meta-analysis. Circulation. Cardiovascu- lar quality and outcomes 2010 Jan;3(1):63-81.
  22. Van Hoeyweghen RJ, Bossaert LL, Mullie A, Calle P, Martens P, Buylaert WA, Delooz H. Quality and efficiency of bystander CPR. Belgian Cerebral Resuscitation Study Group. Resuscitation 1993 Aug;26(1):47-52.
  23. Wik L, Kramer-Johansen J, Myklebust H, Sørebø H, Svensson L, Fellows B, Steen PA. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA : the journal of the American Medical Association 2005 Jan;293(3):299-304.
  24. Safar P, Bircher N, Pretto E, Berkebile P, Tisherman SA, Marion D, Klain M, Kochanek PM. Reappraisal of mouth-to-mouth ventilation during bystander-initiated CPR. Circula- tion 1998 Aug;98(6):608-10.
  25. Yannopoulos D, Sigurdsson G, McKnite S, Benditt D, Lurie KG. Reducing ventilation frequency combined with an inspiratory impedance device improves CPR efficiency in swine model of cardiac arrest. Resuscitation 2004 Apr;61(1):75-82.
  26. Xanthos T, Tsirikos-Karapanos N, Papadimitriou D, Vlachos IS, Tsiftsi K, Ekmektzoglou K a, Papadimitriou L. Resuscitation outcomes comparing year 2000 with year 2005 ALS guidelines in a pig model of cardiac arrest. Resuscitation 2007 Jun;73(3):459-66.
  27. Sanders a. Survival and neurologic outcome after cardiopulmonary resuscitation with four different chest compression-ventilation ratios. Annals of Emergency Medicine 2002 Dec;40(6):553-562.
  28. Wik L, Steen PA. The ventilation/compression ratio influences the effectiveness of two rescuer advanced cardiac life support on a manikin. Resuscitation 1996 Apr;31(2):113-9.
  29. 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Car- diovascular Care Science with Treatment Recommendations. Part 4: Advanced life sup- port. Resuscitation 2005;67(2-3):213-47.
  30. Zuercher M, Ewy GA, Otto CW, Hilwig RW, Bobrow BJ, Clark L, Chikani V, Sanders AB, Berg RA, Kern KB. Gasping in response to basic resuscitation efforts: observation in a Swine model of cardiac arrest. Critical care research and practice 2010 Jan;2010
  31. Steen-Hansen JE. Favourable outcome after 26 minutes of " Compression only " resusci- tation: a case report. Scandinavian journal of trauma, resuscitation and emergency med- icine 2010 Jan;18(1):19.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten