Publikationsserver der Universitätsbibliothek Marburg

Titel:Neurophysiologische Charakterisierung von adulten vulnerablen und resistenten Motoneuronen in einem Mausmodell der Amyotrophen Lateralsklerose
Autor:Fuchs, Andrea
Weitere Beteiligte: Schütz, Burkhard (Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0174
URN: urn:nbn:de:hebis:04-z2012-01743
DOI: https://doi.org/10.17192/z2012.0174
DDC:610 Medizin
Titel (trans.):Neurophysiological characterization of adult vulnerable and resistant motoneurons in a mouse model of amyotrophic lateral sclerosis
Publikationsdatum:2012-02-16
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Calcium, SOD-1, Amyotrophic lateral sclerosis, Patch clamp, Amyotrophe Lateralsklerose, SOD-1, Motoneuron, Motoneuron, Patch-Clamp-Methode, Calcium

Zusammenfassung:
Die Amyotrophe Lateralsklerose (ALS) ist eine neurodegenerative Erkrankung, die Motoneurone (MN) von Kortex, Hirnstamm und Spinalmark betrifft. Folgen sind Lähmung der Muskulatur und der Tod des Patienten meist innerhalb von drei bis fünf Jahren nach Auftritt der ersten Symptome. Eine wirksame Therapie fehlt. Als gemeinsame finale Ursache der MN-Degeneration bei dieser multifaktoriellen Krankheit werden Übererregbarkeit der Neurone, Calciumüberladung und mitochondriale Schädigung diskutiert. Erregbarkeitseigenschaften und Calciumhomöostase der MN konnten in Mausmodellen der ALS auf Einzelzellebene aus technischen Gründen bisher nur in früh postnatalen (<Postnataltag 10), symptomfreien Tieren untersucht werden. Eine Analyse zu einem Zeitpunkt der Neurodegeneration ist jedoch für eine Ursachenforschung und Therapieentwicklung essentiell. In der vorliegenden Arbeit wurde erstmals im SOD1-G93A ALS-Mausmodell eine umfassende Charakterisierung von adulten MN mittels Whole-Cell Patch-Clamp-Messung und fluorometrischer Analysen des Calciumsignals im akuten Hirnschnitt durchgeführt. Verglichen wurden die Eigenschaften von bei ALS hochvulnerablen MN des Ncl. Hypoglossus (hMN) in Wildtypmäusen und in SOD1-G93A Mäusen im Endstadium der Krankheit. Die höhere Erregbarkeit der SOD1-G93A MN im Vergleich zum Wildtyp in Verbindung mit einem größeren persistierenden Natriumeinwärtsstrom, die in früh postnatalen Tieren beschrieben wurden, konnten in adulten Mäusen nicht beobachtet werden. Bei einer weitestgehend unauffälligen Elektrophysiologie wurde jedoch eine signifikant langsamere Erholung des Calciumsignals im Endstadium der Krankheit aufgedeckt, wenn die Neurone durch elektrische Stimulation mit hohen Calciumkonzentrationen belastet wurden. Bei einer Stimulationsstärke im unteren physiologischen Bereich waren keine Unterschiede zum Wildtyp sichtbar. Ein Vergleich mit den bei ALS resistenten MN des Ncl. Oculomotorius zeigte, dass diese Calciumhomöostasestörung spezifisch für die vulnerablen hMN ist und somit eine Erklärung für die differentielle Vulnerabilität der Neurone liefert. Ursächlich für die Störung war eine Verringerung der mitochondrialen Calciumaufnahme durch Calciumuniporter bei primär konstanter Triebkraft. Dies konnte mittels mitochondrialer Entkopplung, spezifischer pharmakologischer Blockade von Calciumtransportern und fluorometrischer Messung von Calcium- und Rhodamine123-Signalen gezeigt werden. Bei Blockade der Calciumaufnahme in Mitochondrien und in das Endoplasmatische Retikulum konnte außerdem indirekt eine Steigerung der Transportkapazität von Calciumtransportern der Plasmamembran in hMN von SOD1-G93A Mäusen im Endstadium der Krankheit beobachtet werden. Aus den Ergebnissen lässt sich schließen, dass vulnerable MN in dem ALS-Mausmodell eine mitochondriale Störung der Calciumaufnahme durch eine Steigerung des Plasmamembran-Calciumtransportes auszugleichen versuchen. Bei hoher Calciumbelastung jedoch versagt im Endstadium der Krankheit diese Kompensation und eine Calciumüberladung als finale Degenerationsursache von MN bei ALS ist wahrscheinlich.

Bibliographie / References

  1. Solomon, J. A., Tarnopolsky, M. A., and Hamadeh, M. J. (2011). One Universal Common Endpoint in Mouse Models of Amyotrophic Lateral Sclerosis. PloS One, 6(6):e20582.
  2. Pozzo-Miller, L. D., Pivovarova, N. B., Leapman, R. D., Buchanan, R. A., Reese, T. S., and Andrews, S. B. (1997). Activity-dependent calcium sequestration in dendrites of hippocampal neurons in brain slices. The Journal of Neuroscience, 17(22):8729–8738.
  3. Xiong, J., Verkhratsky, A., and Toescu, E. C. (2002). Changes in mitochondrial status associated with altered Ca2+ homeostasis in aged cerebellar granule neurons in brain slices. The Journal of Neuroscience, 22(24):10761–10771.
  4. Rothstein, J. D. (2009). Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Annals of Neurology, 65 Suppl 1:S3–9.
  5. Mogyoros, I., Kiernan, M. C., Burke, D., and Bostock, H. (1998). Strength-duration proper- ties of sensory and motor axons in amyotrophic lateral sclerosis. Brain, 121(5):851–859.
  6. Sukiasyan, N., Hultborn, H., and Zhang, M. (2009). Distribution of calcium chan- nel Ca(V)1.3 immunoreactivity in the rat spinal cord and brain stem. Neuroscience, 159(1):217–235.
  7. Vucic, S. and Kiernan, M. C. (2006b). Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain, 129(9):2436– 2446.
  8. Mancuso, R., Santos-Nogueira, E., Osta, R., and Navarro, X. (2011b). Electrophysiological analysis of a murine model of motoneuron disease. Clinical Neurophysiology, 122(8):1660– 1670.
  9. Klingauf, J. and Neher, E. (1997). Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophysical Journal, 72(2 Pt 1):674– 690.
  10. Kole, M. H. P. (2011). First Node of Ranvier Facilitates High-Frequency Burst Encoding. Neuron, 71(4):671–682.
  11. Smets, I., Caplanusi, A., Despa, S., Molnar, Z., Radu, M., VandeVen, M., Ameloot, M., and Steels, P. (2004). Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. American Journal of Physiology. Renal Physiology, 286(4):F784–794.
  12. Kim, B. and Matsuoka, S. (2008). Cytoplasmic Na+-dependent modulation of mitochondri- al Ca2+ via electrogenic mitochondrial Na+-Ca2+ exchange. The Journal of Physiology, 586(6):1683–1697.
  13. Milanese, M., Zappettini, S., Onofri, F., Musazzi, L., Tardito, D., Bonifacino, T., Messa, M., Racagni, G., Usai, C., Benfenati, F., Popoli, M., and Bonanno, G. (2010). Abnormal exocytotic release of glutamate in a mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 116(6):1028–1042.
  14. Perrier, J.-F. and Hounsgaard, J. (2003). 5-HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an L-type calcium current. Journal of Neuro- physiology, 89(2):954–959.
  15. Rothstein, J. D., Tsai, G., Kuncl, R. W., Clawson, L., Cornblath, D. R., Drachman, D. B., Pestronk, A., Stauch, B. L., and Coyle, J. T. (1990). Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Annals of Neurology, 28(1):18–25.
  16. Pottorf, W. J., Duckles, S. P., and Buchholz, J. N. (2000). Adrenergic nerves compensate for a decline in calcium buffering during ageing. Journal of Autonomic Pharmacology, 20(1):1–13.
  17. Pieri, M., Albo, F., Gaetti, C., Spalloni, A., Bengtson, C. P., Longone, P., Cavalcanti, S., and Zona, C. (2003). Altered excitability of motor neurons in a transgenic mouse model of familial amyotrophic lateral sclerosis. Neuroscience Letters, 351(3):153–156.
  18. Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., Burrell, J. R., and Zoing, M. C. (2011). Amyotrophic lateral sclerosis. Lancet, 377(9769):942–955.
  19. Vanacore, N., Binazzi, A., Bottazzi, M., and Belli, S. (2006). Amyotrophic lateral sclerosis in an Italian professional soccer player. Parkinsonism & Related Disorders, 12(5):327– 329.
  20. Wong, P. C., Pardo, C. A., Borchelt, D. R., Lee, M. K., Copeland, N. G., Jenkins, N. A., Sisodia, S. S., Cleveland, D. W., and Price, D. L. (1995). An adverse property of a fami- lial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron, 14(6):1105–1116.
  21. Storm, J. F. (1989). An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. The Journal of Physiology, 409:171–190.
  22. Mitra, P. and Brownstone, R. M. (2011). An In Vitro Spinal Cord Slice Preparation for Recording from Lumbar Motoneurons of the Adult Mouse. Journal of Neurophysiology, [Epub ahead of print].
  23. Vucic, S. and Kiernan, M. C. (2006a). Axonal excitability properties in amyotrophic lateral sclerosis. Clinical Neurophysiology, 117(7):1458–1466.
  24. Volz, L. M., Mann, L. B., Russell, J. A., Jackson, M. A., Leverson, G. E., and Connor, N. P. (2007). Biochemistry of anterior, medial, and posterior genioglossus muscle in the rat. Dysphagia, 22(3):210–214.
  25. Moreau, B., Nelson, C., and Parekh, A. B. (2006). Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration. Current Biology, 16(16):1672–1677.
  26. Blockade des mitochondrialen Calciumuniporters in Motoneuronen des Ncl.
  27. von Lewinski, F. and Keller, B. U. (2005). Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends in Neurosciences, 28(9):494–500.
  28. Viana, F., Bayliss, D. A., and Berger, A. J. (1993a). Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons. Journal of Neurophysiology, 69(6):2137–2149.
  29. Vanselow, B. K. and Keller, B. U. (2000). Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)-related motoneurone disease. The Journal of Physiology, 525(2):433–445.
  30. Santo-Domingo, J. and Demaurex, N. (2010). Calcium uptake mechanisms of mitochondria. Biochimica et Biophysica Acta, 1797(6-7):907–912.
  31. Nyquist, H. (2002). Certain topics in telegraph transmission theory (nachdruck von 1928). Proceedings of the IEEE, 90(2 (Nachdruck von 1928)):617–644.
  32. Jaiswal, M. K. and Keller, B. U. (2009). Cu/Zn superoxide dismutase typical for familial amyotrophic lateral sclerosis increases the vulnerability of mitochondria and perturbs Ca2+ homeostasis in SOD1G93A mice. Molecular Pharmacology, 75(3):478–489.
  33. Zang, D. W. and Cheema, S. S. (2002). Degeneration of corticospinal and bulbospinal systems in the superoxide dismutase 1(G93A G1H) transgenic mouse model of familial amyotrophic lateral sclerosis. Neuroscience Letters, 332(2):99–102.
  34. Perrier, J.-F. and Hounsgaard, J. (2000). Development and regulation of response proper- ties in spinal cord motoneurons. Brain Research Bulletin, 53(5):529–535.
  35. Song, J. H., Huang, C. S., Nagata, K., Yeh, J. Z., and Narahashi, T. (1997). Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. The Journal of Pharmacology and Experimental Therapeutics, 282(2):707–714.
  36. Nimchinsky, E. A., Young, W. G., Yeung, G., Shah, R. A., Gordon, J. W., Bloom, F. E., Morrison, J. H., and Hof, P. R. (2000). Differential vulnerability of oculomotor, facial, and hypoglossal nuclei in G86R superoxide dismutase transgenic mice. The Journal of Comparative Neurology, 416(1):112–125.
  37. Sattler, R., Charlton, M. P., Hafner, M., and Tymianski, M. (1998). Distinct influx pa- thways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. Journal of Neurochemistry, 71(6):2349–2364.
  38. Salnikov, V., Lukyanenko, Y. O., Lederer, W. J., and Lukyanenko, V. (2009). Distribution of ryanodine receptors in rat ventricular myocytes. Journal of Muscle Research and Cell Motility, 30(3-4):161–170.
  39. Nakanishi, S. T. and Whelan, P. J. (2010). Diversification of intrinsic motoneuron electrical properties during normal development and botulinum toxin-induced muscle paralysis in early postnatal mice. Journal of Neurophysiology, 103(5):2833–2845.
  40. Pambo-Pambo, A., Durand, J., and Gueritaud, J.-P. (2009). Early excitability changes in lumbar motoneurons of transgenic SOD1G85R and SOD1G(93A-Low) mice. Journal of Neurophysiology, 102(6):3627–3642.
  41. Zaidi, A. and Michaelis, M. L. (1999). Effects of reactive oxygen species on brain synaptic plasma membrane Ca(2+)-ATPase. Free Radical Biology & Medicine, 27(7-8):810–821.
  42. Huang, C. S., Song, J. H., Nagata, K., Yeh, J. Z., and Narahashi, T. (1997). Effects of the neuroprotective agent riluzole on the high voltage-activated calcium channels of rat dorsal root ganglion neurons. The Journal of Pharmacology and Experimental Therapeutics, 282(3):1280–1290.
  43. Shimomura, O., Johnson, F., and Saiga, Y. (1962). Extraction, purification and proper- ties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Journal of Cellular and Comparative Physiology, 59:223–239.
  44. Minta, A., Kao, J. P., and Tsien, R. Y. (1989). Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. The Journal of Biological Chemistry, 264(14):8171–8178.
  45. Kaplan, P., Babusikova, E., Lehotsky, J., and Dobrota, D. (2003). Free radical-induced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum. Molecular and Cellular Biochemistry, 248(1-2):41–47.
  46. Ichas, F. and Mazat, J. P. (1998). From calcium signaling to cell death: two conforma- tions for the mitochondrial permeability transition pore. Switching from low-to high- conductance state. Biochimica et Biophysica Acta, 1366(1-2):33–50.
  47. Kawahara, Y., Ito, K., Sun, H., Aizawa, H., Kanazawa, I., and Kwak, S. (2004). Glutamate receptors: RNA editing and death of motor neurons. Nature, 427(6977):801.
  48. Stout, A. K. and Reynolds, I. J. (1999). High-affinity calcium indicators underestimate increases in intracellular calcium concentrations associated with excitotoxic glutamate stimulations. Neuroscience, 89(1):91–100.
  49. Kiernan, M. C. (2009). Hyperexcitability, persistent Na+ conductances and neurodegene- ration in amyotrophic lateral sclerosis. Experimental Neurology, 218(1):1–4.
  50. Tarras-Wahlberg, S. and Rekling, J. C. (2009). Hypoglossal motoneurons in newborn mice receive respiratory drive from both sides of the medulla. Neuroscience, 161(1):259–268.
  51. Numata, M., Petrecca, K., Lake, N., and Orlowski, J. (1998). Identification of a mitochon- drial Na+/H+ exchanger. The Journal of Biological Chemistry, 273(12):6951–6959.
  52. Schütz, B. (2005). Imbalanced excitatory to inhibitory synaptic input precedes motor neuron degeneration in an animal model of amyotrophic lateral sclerosis. Neurobiology of Disease, 20(1):131–140.
  53. Jaiswal, M. K., Zech, W.-D., Goos, M., Leutbecher, C., Ferri, A., Zippelius, A., Carrì, M. T., Nau, R., and Keller, B. U. (2009). Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease. BMC Neuroscience, 10:64. LITERATURVERZEICHNIS
  54. Pieri, M., Carunchio, I., Curcio, L., Mercuri, N. B., and Zona, C. (2009). Increased per- sistent sodium current determines cortical hyperexcitability in a genetic model of amyo- trophic lateral sclerosis. Experimental Neurology, 215(2):368–379.
  55. Nicolli, A., Basso, E., Petronilli, V., Wenger, R. M., and Bernardi, P. (1996). Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permea- bility transition pore, and cyclosporin A-sensitive channel. The Journal of Biological Chemistry, 271(4):2185–2192.
  56. Stevens, J. P. (2007). Intermediate Statistics: A Modern Approach, Third Edition. Rout- ledge Academic, 3 edition.
  57. Meehan, C. F., Moldovan, M., Marklund, S. L., Graffmo, K. S., Nielsen, J. B., and Hultborn, H. (2010a). Intrinsic Properties of Lumbar Motoneurones in the Adult G127insTGGG Superoxide Dismutase-1 Mutant Mouse in Vivo: Evidence for increased persistent inward currents. Acta Physiologica, 200(4):361–376.
  58. Meehan, C. F., Sukiasyan, N., Zhang, M., Nielsen, J. B., and Hultborn, H. (2010b). Intrinsic properties of mouse lumbar motoneurons revealed by intracellular recording in vivo. Journal of Neurophysiology, 103(5):2599–2610.
  59. Purvis, L. K. and Butera, R. J. (2005). Ionic current model of a hypoglossal motoneuron. Journal of Neurophysiology, 93(2):723–733.
  60. Rudy, B. and McBain, C. J. (2001). Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends in Neurosciences, 24(9):517–526.
  61. Robertson, J., Sanelli, T., Xiao, S., Yang, W., Horne, P., Hammond, R., Pioro, E. P., and Strong, M. J. (2007). Lack of TDP-43 abnormalities in mutant SOD1 transgenic mice shows disparity with ALS. Neuroscience Letters, 420(2):128–132.
  62. Safronov, B. V. and Vogel, W. (1998). Large conductance Ca(2+)-activated K+ channels in the soma of rat motoneurones. The Journal of Membrane Biology, 162(1):9–15.
  63. LITERATURVERZEICHNIS shows hyperexcitable disturbance in a mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. The Journal of Neuroscience, 28(43):10864–10874.
  64. von Lewinski, F., Fuchs, J., Vanselow, B. K., and Keller, B. U. (2008). Low Ca2+ buffe- ring in hypoglossal motoneurons of mutant SOD1 (G93A) mice. Neuroscience Letters, 445(3):224–228.
  65. Xia, X. M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, J. E., Ishii, T., Hirschberg, B., Bond, C. T., Lutsenko, S., Maylie, J., and Adelman, J. P. (1998). Me- chanism of calcium gating in small-conductance calcium-activated potassium channels. Nature, 395(6701):503–507.
  66. Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. (1993). Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science, 262(5134):744–747.
  67. Kovacs, R. (2005). Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures. The Journal of Neuroscience, 25(17):4260–4269.
  68. Sparagna, G. C., Gunter, K. K., Sheu, S. S., and Gunter, T. E. (1995). Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. The Journal of Biological Chemistry, 270(46):27510–27515.
  69. Pasinelli, P. and Brown, R. H. (2006). Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nature Reviews Neuroscience, 7(9):710–723.
  70. Shaw, P. J. and Eggett, C. J. (2000). Molecular factors underlying selective vulnerabili- ty of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. Journal of Neurology, 247(1):I17–27.
  71. Viana, F., Bayliss, D. A., and Berger, A. J. (1993b). Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. Journal of Neurophysiology, 69(6):2150–2163.
  72. Mattiazzi, M., D'Aurelio, M., Gajewski, C. D., Martushova, K., Kiaei, M., Beal, M. F., and Manfredi, G. (2002). Mutated human SOD1 causes dysfunction of oxidative phos- phorylation in mitochondria of transgenic mice. The Journal of Biological Chemistry, 277(33):29626–29633.
  73. Philips, T. and Robberecht, W. (2011). Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. The Lancet Neurology, 10(3):253–263.
  74. Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. The Journal of Neuroscience, 21(10):3369–3374.
  75. Robinson, D. A. (1970). Oculomotor unit behavior in the monkey. Journal of Neurophy- siology, 33(3):393–403.
  76. Stokes, G. (1852). On the change of refrangibility of light. Philosophical Transactions, 142:463–562.
  77. Ross, C. A. and Poirier, M. A. (2005). Opinion: What is the role of protein aggregation in neurodegeneration? Nature Reviews. Molecular Cell Biology, 6(11):891–898.
  78. Numberger, M. and Draguhn, A. (1996). Patch-Clamp-Technik. Spektrum Akademischer Verlag, 1th edition.
  79. Verkhratsky, A. (2005). Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons. Physiological Reviews, 85(1):201–279.
  80. Viana, F., Bayliss, D. A., and Berger, A. J. (1994). Postnatal changes in rat hypoglossal motoneuron membrane properties. Neuroscience, 59(1):131–148.
  81. Rizzuto, R., Simpson, A. W., Brini, M., and Pozzan, T. (1992). Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature, 358(6384):325–327.
  82. Wakui, M., Osipchuk, Y. V., and Petersen, O. H. (1990). Receptor-activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2(+)-induced Ca2+ release. Cell, 63(5):1025–1032.
  83. Michels, G., Khan, I. F., Endres-Becker, J., Rottlaender, D., Herzig, S., Ruhparwar, A., Wahlers, T., and Hoppe, U. C. (2009). Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation, 119(18):2435– 2443.
  84. Wada, K. and Sakaguchi, Y. (2007). Repetitive firing of a model motoneuron: inhibitory effect of a Ca2+ -activated potassium conductance on the slope of the frequency-current relationship. Neuroscience Research, 57(2):259–267.
  85. McCormack, J. G., Halestrap, A. P., and Denton, R. M. (1990). Role of calcium ions in regu- lation of mammalian intramitochondrial metabolism. Physiological Reviews, 70(2):391– 425.
  86. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. An- nals of Neurology, 38(1):73–84.
  87. Pun, S., Santos, A. F., Saxena, S., Xu, L., and Caroni, P. (2006). Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nature Neuroscience, 9(3):408–419.
  88. Sandyk, R. (2006). Serotonergic mechanisms in amyotrophic lateral sclerosis. The Inter- national Journal of Neuroscience, 116(7):775–826.
  89. Neher, E. and Sakmann, B. (1976). Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 260(5554):799–802.
  90. Krammer, E. B., Rath, T., and Lischka, M. F. (1979a). Somatotopic organization of the hypoglossal nucleus: a HRP study in the rat. Brain Research, 170(3):533–537.
  91. Owen, C. S. (1991). Spectra of intracellular Fura-2. Cell Calcium, 12(6):385–393.
  92. Synaptic control of motoneuronal excitability. Physiological Reviews, 80(2):767–852.
  93. Xu, H., Ginsburg, K. S., Hall, D. D., Zimmermann, M., Stein, I. S., Zhang, M., Tandan, S., Hill, J. A., Horne, M. C., Bers, D., and Hell, J. W. (2010). Targeting of Protein Phosphatases PP2A and PP2B to the C-Terminus of the L-Type Calcium Channel Ca v1.2. Biochemistry, 49(48):10298–10307.
  94. Jahn, K., Grosskreutz, J., Haastert, K., Ziegler, E., Schlesinger, F., Grothe, C., Dengler, R., and Bufler, J. (2006). Temporospatial coupling of networked synaptic activation of AMPA-type glutamate receptor channels and calcium transients in cultured motoneu- rons. Neuroscience, 142(4):1019–1029.
  95. Sherman-Gold, R., editor (2006). The Axon CNS Guide. Molecular Devices Corporation.
  96. Waldeck-Weiermair, M., Malli, R., Naghdi, S., Trenker, M., Kahn, M. J., and Graier, W. F. (2010b). The contribution of UCP2 and UCP3 to mitochondrial Ca(2+) uptake is differentially determined by the source of supplied Ca(2+). Cell Calcium, 47(5):433–440.
  97. The diagnosis of Amyotrophic Lateral Sclerosis in 2010. Archives Italiennes de Biologie, 149(1):5–27.
  98. Kernell, D. (1965). The Limits of Firing Frequency in Cat Lumbosacral Motoneurones Possessing Different Time Course of Afterhyperpolarization. Acta Physiologica Scandi- navica, 65:87–100.
  99. Kirichok, Y., Krapivinsky, G., and Clapham, D. E. (2004). The mitochondrial calcium uniporter is a highly selective ion channel. Nature, 427(6972):360–364.
  100. The mitochondrial permeability transition pore in motor neurons: involvement in the pathobiology of ALS mice. Experimental Neurology, 218(2):333–346.
  101. Paxinos, G. and Franklin, K. B. (2007). The Mouse Brain in Stereotaxic Coordinates, Third Edition. Academic Press, 3 edition.
  102. Moschovakis, A. K. (1997). The neural integrators of the mammalian saccadic system. Frontiers in Bioscience, 2:d552–77.
  103. The Psi(m) depolarization that accompanies mitochondrial Ca2+ uptake is greater in mutant SOD1 than in wild-type mouse motor terminals. Proceedings of the National Academy of Sciences of the United States of America, 106(6):2007–2011.
  104. Smittkamp, S. E., Brown, J. W., and Stanford, J. A. (2008). Time-course and characteriza- tion of orolingual motor deficits in B6SJL-Tg(SOD1-G93A)1Gur/J mice. Neuroscience, 151(2):613–621.
  105. Quednau, B. D., Nicoll, D. A., and Philipson, K. D. (1997). Tissue specificity and alter- native splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat.
  106. Pottorf, W. J. and Thayer, S. A. (2002). Transient rise in intracellular calcium produces a long-lasting increase in plasma membrane calcium pump activity in rat sensory neurons.
  107. Kieran, D., Kalmar, B., Dick, J. R. T., Riddoch-Contreras, J., Burnstock, G., and Greens- mith, L. (2004). Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nature Medicine, 10(4):402–405.
  108. Wojcikiewicz, R. J. (1995). Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different propor- tions in different cell types. The Journal of Biological Chemistry, 270(19):11678–11683.
  109. Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C., Chou, T. T., Bruce, J., Schuck, T., Grossman, M., Clark, C. M., McCluskey, L. F., Miller, B. L., Masliah, E., Mackenzie, I. R., Feldman, H., Feiden, W., Kretzschmar, H. A., Trojanowski, J. Q., and Lee, V. M. Y. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796):130–133.
  110. Ultrastructural evidence for altered calcium in motor nerve terminals in amyotropic lateral sclerosis. Annals of Neurology, 39(2):203–216.
  111. Vergleich elektrophysiologischer Charakteristika zwischen hMN und oMN . . 75
  112. Zona, C., Pieri, M., and Carunchio, I. (2006). Voltage-dependent sodium channels in spinal cord motor neurons display rapid recovery from fast inactivation in a mouse model of amyotrophic lateral sclerosis. Journal of Neurophysiology, 96(6):3314–3322.
  113. Jackson, M. B. (2001). Whole-Cell Voltage Clamp Recording. Current Protocols in Neu- rocience, Chapter 6(Unit 6):1–30.
  114. Jaarsma, D., Holstege, J. C., Troost, D., Davis, M., Kennis, J., Haasdijk, E. D., and de Jong, V. J. (1996). Induction of c-Jun immunoreactivity in spinal cord and brainstem neurons in a transgenic mouse model for amyotrophic lateral sclerosis. Neuroscience Letters, 219(3):179–182.
  115. Shmigol, A., Kostyuk, P., and Verkhratsky, A. (1995). Dual action of thapsigargin on calcium mobilization in sensory neurons: inhibition of Ca2+ uptake by caffeine-sensitive pools and blockade of plasmalemmal Ca2+ channels. Neuroscience, 65(4):1109–1118.
  116. Inghilleri, M. and Iacovelli, E. (2011). Clinical neurophysiology in ALS. Archives Italiennes de Biologie, 149(1):57–63.
  117. Montero, M., Lobatón, C. D., Hernández-Sanmiguel, E., Santo-Domingo, J., Vay, L., More- no, A., and Alvarez, J. (2004). Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids. The Biochemical Journal, 384(1):19–24.
  118. Safronov, B. V. and Vogel, W. (1995). Single voltage-activated Na+ and K+ channels in the somata of rat motoneurones. The Journal of Physiology, 487(1):91–106.
  119. Viana, F., Bayliss, D. A., and Berger, A. J. (1995). Repetitive firing properties of developing rat brainstem motoneurones. The Journal of Physiology, 486 ( Pt 3):745–761.
  120. Thayer, S. A. and Miller, R. J. (1990). Regulation of the intracellular free calcium concen- tration in single rat dorsal root ganglion neurones in vitro. The Journal of Physiology, 425:85–115.
  121. Hounsgaard, J. and Mintz, I. (1988). Calcium conductance and firing properties of spinal motoneurones in the turtle. The Journal of Physiology, 398:591–603.
  122. Hippocampal excitability increases during the estrous cycle in the rat: a potential role for brain-derived neurotrophic factor. The Journal of Neuroscience, 23(37):11641– 11652.
  123. Miles, G. B., Dai, Y., and Brownstone, R. M. (2005). Mechanisms underlying the early phase of spike frequency adaptation in mouse spinal motoneurones. The Journal of Physiology, 566(2):519–532.
  124. Palecek, J., Lips, M. B., and Keller, B. U. (1999). Calcium dynamics and buffering in motoneurones of the mouse spinal cord. The Journal of Physiology, 520 Pt 2:485–502.
  125. Vila, L., Barrett, E. F., and Barrett, J. N. (2003). Stimulation-induced mitochondrial [Ca2+] elevations in mouse motor terminals: comparison of wild-type with SOD1-G93A.
  126. Wanaverbecq, N., Marsh, S. J., Al-Qatari, M., and Brown, D. A. (2003). The plasma membrane calcium-ATPase as a major mechanism for intracellular calcium regulation in neurones from the rat superior cervical ganglion. The Journal of Physiology, 550(1):83– 101.
  127. Saboisky, J. P., Butler, J. E., McKenzie, D. K., Gorman, R. B., Trinder, J. A., White, D. P., and Gandevia, S. C. (2007). Neural drive to human genioglossus in obstructive sleep apnoea. The Journal of Physiology, 585(1):135–146.
  128. Rizzuto, R., Marchi, S., Bonora, M., Aguiari, P., Bononi, A., De Stefani, D., Giorgi, C., Leo, S., Rimessi, A., Siviero, R., Zecchini, E., and Pinton, P. (2009). Ca2+ transfer from the ER to mitochondria: When, how and why. BBA -Bioenergetics, 1787(11):1342–1351.
  129. Fast kinetics, high-frequency oscillations, and subprimary firing range in adult mouse spinal motoneurons. The Journal of Neuroscience, 29(36):11246–11256.
  130. Palty, R., Silverman, W. F., Hershfinkel, M., Caporale, T., Sensi, S. L., Parnis, J., Nolte, C., Fishman, D., Shoshan-Barmatz, V., Herrmann, S., Khananshvili, D., and Sekler, I. (2010). NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proceedings of the National Academy of Sciences, 107(1):436–441.
  131. Kawamata, H. and Manfredi, G. (2010). Mitochondrial dysfunction and intracellular cal- cium dysregulation in ALS. Mechanisms of Ageing and Development, 131(7-8):517–526.
  132. Israelson, A., Arbel, N., Da Cruz, S., Ilieva, H., Yamanaka, K., Shoshan-Barmatz, V., and Cleveland, D. W. (2010). Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS. Neuron, 67(4):575–587.
  133. Waldeck-Weiermair, M., Duan, X., Naghdi, S., Khan, M. J., Trenker, M., Malli, R., and Graier, W. F. (2010a). Uncoupling protein 3 adjusts mitochondrial Ca(2+) uptake to high and low Ca(2+) signals. Cell Calcium, 48(5):288–301.
  134. Repetitive nerve stimulation transiently opens the mitochondrial permeability transition pore in motor nerve terminals of symptomatic mutant SOD1 mice. Neurobiology of Disease, 42(3):381–390.
  135. Rice, A. D., Fuglevand, A. J., Laine, C. M., and Fregosi, R. F. (2011). Synchronization of presynaptic input to motor units of tongue, inspiratory intercostal and diaphragm muscles. Journal of Neurophysiology, 105(5):2330–2336.
  136. Quinlan, K. A., Schuster, J. E., Fu, R., Siddique, T., and Heckman, C. J. (2011). Altered postnatal maturation of electrical properties in spinal motoneurons in a mouse model of amyotrophic lateral sclerosis. The Journal of Physiology, 589(9):2245–2260.
  137. Ryu, S.-Y., Beutner, G., Kinnally, K. W., Dirksen, R. T., and Sheu, S.-S. (2011). Single channel characterization of the mitochondrial ryanodine receptor in heart mitoplasts. The Journal of Biological Chemistry, 286(24):21324–21329.
  138. Waldeck-Weiermair, M., Jean-Quartier, C., Rost, R., Khan, M. J., Vishnu, N., Bondarenko, A. I., Imamura, H., MALLI, R., and Graier, W. F. (2011). The leucine zipper EF hand-containing transmembrane protein 1 (LETM1) and uncoupling proteins-2 and 3 (UCP2/3) contribute to two distinct mitochondrial Ca2+ uptake pathways. Journal of Biological Chemistry, 286(32):28444–28455.
  139. Wegorzewska, I. and Baloh, R. H. (2010). TDP-43-Based Animal Models of Neurodege- neration: New Insights into ALS Pathology and Pathophysiology. Neuro-Degenerative Diseases, 8(4):262–274.
  140. Martin, L. J. (2011). An approach to experimental synaptic pathology using green fluores- cent protein-transgenic mice and gene knockout mice to show mitochondrial permeability transition pore-driven excitotoxicity in interneurons and motoneurons. Toxicologic Pa- thology, 39(1):220–233.
  141. Starkov, A. A. (2010). The molecular identity of the mitochondrial Ca(2+) sequestration system. The FEBS Journal, 277(18):3652–3663.
  142. Strehler, E. E., Caride, A. J., Filoteo, A. G., Xiong, Y., Penniston, J. T., and Enyedi, A. (2007). Plasma Membrane Ca2+ ATPases as Dynamic Regulators of Cellular Calcium Handling. Annals of the New York Academy of Sciences, 1099(1):226–236.
  143. Mannen, T., Iwata, M., Toyokura, Y., and Nagashima, K. (1977). Preservation of a cer- tain motoneurone group of the sacral cord in amyotrophic lateral sclerosis: its clinical significance. Journal of Neurology, Neurosurgery, and Psychiatry, 40(5):464–469.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten