Publikationsserver der Universitätsbibliothek Marburg

Titel:Über den Einfluss von isoelektronischen Störstellen auf Bandbiegung und Unordnung in Verbindungshalbleitern
Autor:Karcher, Christian
Weitere Beteiligte: Heimbrodt, Wolfram (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0126
DOI: https://doi.org/10.17192/z2012.0126
URN: urn:nbn:de:hebis:04-z2012-01266
DDC: Physik
Titel (trans.):On the Impact of Isoelectric Impurities on Band Bowing and Disorder of Compound Semiconductors
Publikationsdatum:2012-05-18
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Donator <Halbleiterphysik>, Acceptor, Semiconductor physics, Donor, Isoelektronische Störstelle, Störstellenverteilung, Störstellenniveau, Impurity state, Bandbiegung, Akzeptor <Halbleiterphysik>, Impurity distribution, Isoelectronic impurity, Halbleiterphysik, Band gap

Zusammenfassung:
Der Einfluss von isolektronischen Störstellen auf die Eigenschaften von Verbindungshalbleitern wird anhand zweier Beispiele diskutiert: Zum einen Stickstoff in Ga(As,P) Quantenschichtstrukturen, zum anderen Schwefel bzw. Selen in ZnTe Einkristallen. Die Eigenschaften werden hierbei auf zwei durch optische Spektroskopie erfassbare Aspekte reduziert: Bandbiegung, d.h. der nicht-lineare Trend der Bandlücke des Mischmaterials auf der einen und Unordnung, d.h. insbesondere die Bildung einer stark lokalisierter Zustandsdichte unterhalb der fundamentalen Bandlücke auf der anderen Seite. Neben der rein experimentellen Betrachtung wird auch ein Einblick in die theoretische Simulation der unordnungsbedingten temperaturabhängigen Lumineszenz-Eigenschaften der Halbleiter durch Monte-Carlo-Simulationen gegeben.

Bibliographie / References

  1. F. Urbach, The Long-Wavelength Edge of Photographic Sensitivity and of the Elec- tronic Absorption of Solids, Phys. Rev. 92, 1324 (1953).
  2. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, I. Miotkowski, A. K. Ramdas, C.-H. Su, I. K. Sou, R. C. C. Perera, und J. D. Denlinger, Origin of the large band-gap bowing in highly mismatched semiconductor alloys, Phys. Rev. B 67, 035207 (2003).
  3. V. Großmann, Anwendung der Röntgenbeugung zur Analyse der strukturellen Eigenschaften von homo-und heteroepitaktischen Halbleiterschichten auf ZnSe- Basis, Dissertation, Universität Bremen (2000).
  4. O. Rubel, S. D. Baranovskii, K. Hantke, B. Kunert, W. W. Rühle, P. Tho- mas, K. Volz, und W. Stolz, Model of temperature quenching of pho- toluminescence in disordered semiconductors and comparison to experiment, Phys. Rev. B 73, 233201 (2006).
  5. A. R. Goni, K. Strössner, K. Syassen, und M. Cardona, Pressure dependence of direct and indirect optical absorption in GaAs, Phys. Rev. B 36, 1581 (1987).
  6. [191] J. I. Pankove, Absorption Edge of Impure Gallium Arsenide, Phys. Rev. 140, A2059 (1965).
  7. W. Czaja, in Festkörperprobleme 11 , Advances in Solid State Physics, Vol. 11, edited by O. Madelung (Springer Berlin / Heidelberg, 1971) pp. 65–85.
  8. H. Mathieu, P. Merle, und E. L. Ameziane, No-phonon and phonon-assisted tran- sitions in indirect GaAs 1−x P x modulation spectra, Phys. Rev. B 15, 2048 (1977).
  9. C. Alibert, A. Joullié, A. M. Joullié, und C. Ance, Modulation-spectroscopy study of the Ga 1−x Al x Sb band structure, Phys. Rev. B 27, 4946 (1983).
  10. [81] S. Larach, R. E. Shrader, und C. F. Stocker, Anomalous Variati- on of Band Gap with Composition in Zinc Sulfo-and Seleno-Tellurides, Phys. Rev. 108, 587 (1957).
  11. S. T. Davey, E. G. Scott, B. Wakefield, und G. J. Davies, A photolu- minescence study of Ga 1−x In x As/Al 1−y In y As quantum wells grown by MBE, Semicond. Sci. Technol. 3, 365 (1988).
  12. D. E. Aspnes und J. E. Rowe, Asymptotic convolution inte- gral for electric field effects on the interband dielectric function, Solid State Communications 8, 1145 (1970).
  13. J. C. Mikkelsen und J. B. Boyce, Atomic-Scale Structure of Random Solid Solutions: Extended X-Ray-Absorption Fine-Structure Study of Ga1 − xInxAs, Phys. Rev. Lett. 49, 1412 (1982).
  14. J. Chamings, S. Ahmed, A. R. Adams, S. J. Sweeney, V. A. Odnoblyudov, C. W. Tu, B. Kunert, und W. Stolz, Band anti-crossing and carrier re- combination in dilute nitride phosphide based lasers and light emitting diodes, physica status solidi (b) 246, 527 (2009).
  15. D. D. Nolte, W. Walukiewicz, und E. E. Haller, Band-edge hydrostatic deformation potentials in III-V semiconductors, Phys. Rev. Lett. 59, 501 (1987).
  16. S. Sakai, Y. Ueta, und Y. Terauchi, Band Gap Energy and Band Li- neup of III-V Alloy Semiconductors Incorporating Nitrogen and Boron, Japanese Journal of Applied Physics 32, 4413 (1993).
  17. C. G. Van de Walle, Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B 39, 1871 (1989).
  18. I. Vurgaftman, J. R. Meyer, und L. R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys. 89, 5815 (2001).
  19. W. Sritrakool, V. Sa-yakanit, und H. R. Glyde, Band tails in disordered systems, Phys. Rev. B 33, 1199 (1986).
  20. L. V. Keldysh, Behaviour of Non-Metallic Crystals in Strong Electric Fields., So- viet Physics: J. Exptl. Theoret. Phys. 33, 994 (1957).
  21. W. G. Bi und C. W. Tu, Bowing parameter of the band-gap energy of GaN x As 1−x , Appl. Phys. Lett. 70, 1608 (1997).
  22. C. J. Hwang, Calculation of Fermi Energy and Bandtail Parameters in Heavily Doped and Degenerate n-Type GaAs, J. Appl. Phys. 41, 2668 (1970).
  23. H. Heinke, Charakterisierung von epitaktischen Schichten auf Basis von II-VI- Halbleitern mit Hilfe der hochauflösenden Röntgendiffraktometrie, Dissertation, Würzburg (1994).
  24. J. P. Estrera, W. M. Duncan, und R. Glosser, Complex Airy analysis of photore- flectance spectra for III-V semiconductors, Phys. Rev. B 49, 7281 (1994).
  25. H. C. Casey, D. D. Sell, und K. W. Wecht, Concentration dependence of the absorption coefficient for n-and p-GaAs between 1.3 and 1.6 eV, J. Appl. Phys. 46, 250 (1975).
  26. G. E. Moore, Cramming more components onto integrated circuits, Reprin- ted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff., Solid-State Circuits Newsletter, IEEE 20, 33 (2006).
  27. N. Grandjean, J. Massies, und F. Raymond, Critical Thickness for Islanded Growth of Highly Strained In x Ga 1−x As on GaAs(001), Japanese Journal of Applied Physics 33, L1427 (1994).
  28. J. M. Dishman, D. F. Daly, und W. P. Knox, Deep hole traps in liquid encapsulated Czochralski GaP, J. Appl. Phys. 43, 4693 (1972).
  29. J. Bardeen und W. Shockley, Deformation Potentials and Mobilities in Non-Polar Crystals, Phys. Rev. 80, 72 (1950).
  30. H. Mathieu, P. Merle, E. L. Ameziane, B. Archilla, J. Camassel, und G. Poiblaud, Deformation potentials of the direct and indirect absorption edges of GaP, Phys. Rev. B 19, 2209 (1979).
  31. J. Hornstra und W. J. Bartels, Determination of the lattice constant of epitaxial layers of III-V compounds, J. Cryst. Growth 44, 513 (1978).
  32. A. D. Prins, J. L. Sly, und D. J. Dunstan, Determination of the Linear Pressure Coefficients of Semiconductor Bandgaps, physica status solidi (b) 198, 57 (1996).
  33. L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome, Zeitschrift für Physik A Hadrons and Nuclei 5, 17 (1921), 10.1007/BF01349680.
  34. J. C. Phillips und J. A. Van Vechten, Dielectric Classification of Crystal Structures, Ionization Potentials, and Band Structures, Phys. Rev. Lett. 22, 705 (1969).
  35. N. E. Christensen, Dipole effects and band offsets at semiconductor interfaces, Phys. Rev. B 37, 4528 (1988).
  36. G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, und Y. Goldstein, Dis- order and the Optical-Absorption Edge of Hydrogenated Amorphous Silicon, Phys. Rev. Lett. 47, 1480 (1981).
  37. E. Estop, A. Izrael, und M. Sauvage, Double-crystal spectrometer measurements of lattice parameters and X-ray topography on heterojunctions GaAs-Al x Ga 1−x As, Acta Crystallographica Section A 32, 627 (1976).
  38. C. Skierbiszewski, S. Lepkowski, P. Perlin, T. Suski, W. Jantsch, und J. Geisz, Effective mass and conduction band dispersion of GaAsN/GaAs quantum wells, Physica E: Low-dimensional Systems and Nanostructures 13, 1078 (2002).
  39. T. Sander, J. Teubert, P. J. Klar, A. Lindsay, und E. P. O'Reilly, Effect of localized boron impurities on the line shape of the fundamental band gap transition in pho- tomodulated reflectance spectra of (B,Ga,In)As, Phys. Rev. B 83, 235213 (2011).
  40. J. D. Dow, Effects of final-state interactions on modulation spectra of semiconduc- tors, Surface Science 37, 787 (1973).
  41. Y. Zhang, B. J. Skromme, und F. S. Turco-Sandroff, Effects of thermal strain on the optical properties of heteroepitaxial ZnTe, Phys. Rev. B 46, 3872 (1992).
  42. W. Franz, Einfluß eines elektrischen Feldes auf eine optische Absorptionskante, Z. Naturforschung 13a, 484 (1958).
  43. W. F. Boyle und R. J. Sladek, Elastic constants and lattice anharmonicity of GaSb and GaP from ultrasonic-velocity measurements between 4.2 and 300 K, Phys. Rev. B 11, 2933 (1975).
  44. F. Evangelisti, A. Frova, und J. U. Fischbach, Electric-Field¯Induced Interference Effects at the Ground Exciton Level in GaAs, Phys. Rev. Lett. 29, 1001 (1972).
  45. Literaturverzeichnis [42] R. Williams, Electric Field Induced Light Absorption in CdS, Phys. Rev. 117, 1487 (1960).
  46. J. E. Bernard und A. Zunger, Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys, Phys. Rev. B 36, 3199 (1987).
  47. J. A. Van Vechten und T. K. Bergstresser, Electronic Structures of Semiconductor Alloys, Phys. Rev. B 1, 3351 (1970).
  48. J. J. Tietjen und L. R. Weisberg, Electron Mobility in GaAs 1−x P x Alloys, Appl. Phys. Lett. 7, 261 (1965).
  49. V. F. Gantmakher, Electrons and Disorder in Solids (Clarendon Press, Oxford, 2005).
  50. N. Mott, Electrons in disordered structures, Advances in Physics 16, 49 (1967).
  51. H. Asai und K. Oe, Energy band-gap shift with elastic strain in Ga x In 1−x P epitaxial layers on (001) GaAs substrates, J. Appl. Phys. 54, 2052 (1983).
  52. A. G. Thompson und J. C. Woolley, Energy-Gap Variation in Mixed III–V Alloys, Canadian Journal of Physics 45, 255 (1967).
  53. P. Bouguer, Essai d'optique, Sur la gradation de lalumì ere (Claude Jombert Paris, 1729) p. 164ff.
  54. M. J. S. P. Brasil, R. E. Nahory, F. S. Turco-Sandroff, H. L. Gilchrist, und R. J. Martin, Evolution of the band gap and the dominant radiative recombination center versus the composition for ZnSe 1−x Te x alloys grown by molecular beam epitaxy, Appl. Phys. Lett 58, 2509 (1991).
  55. S. Seto, N. Mochida, K. Inabe, K. Suzuki, T. Kuroda, und F. Mina- mi, Excitonic Emissions in ZnTe /GaAs Films Grown by Hot-Wall Epitaxy, physica status solidi (b) 229, 587 (2002).
  56. W. M. Theis, G. D. Sanders, C. E. Leak, K. K. Bajaj, und H. Morkoc, Excitonic transitions in GaAs/Ga x Al 1−x As quantum wells observed by photoreflectance spec- troscopy: Comparison with a first-principles theory, Phys. Rev. B 37, 3042 (1988).
  57. X. Liu, M.-E. Pistol, und L. Samuelson, Excitons bound to nitrogen pairs in GaAs, Phys. Rev. B 42, 7504 (1990).
  58. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, und M. Paniccia, An all-silicon Raman laser, Nature 433, 292 (2005).
  59. P. Yu und M. Cardona, Fundamentals of Semiconductors -Physics and Materials Properties, edited by C.-D. Bachem (Springer Berlin / Heidelberg, 2005).
  60. D. E. Aspnes, GaAs lower conduction-band minima: Ordering and properties, Phys. Rev. B 14, 5331 (1976).
  61. S.-H. Wei und A. Zunger, Giant and Composition-Dependent Optical Bowing Co- efficient in GaAsN Alloys, Phys. Rev. Lett. 76, 664 (1996).
  62. L. de Broglie, Licht und Materie (H. Goverts Verlag Hamburg, 1939) p. 163. [65] E. Burstein, Anomalous Optical Absorption Limit in InSb, Phys. Rev. 93, 632 (1954).
  63. C. Kruse, Grüne oberflächenemittierende Halbleiterlaser (VCSEL) auf Basis von II-VI-Verbindungen, Dissertation, Universität Bremen (2004).
  64. M. R. Leys, H. Titze, L. Samuelson, und J. Petruzzello, Growth and characteri- zation of strained layers of GaAs x P 1−x , J. Cryst. Growth 93, 504 (1988).
  65. H. Sugiura und M. Yamaguchi, Growth of dislocation-free silicon films by molecular beam epitaxy (MBE), Journal of Vacuum Science and Technology 19, 157 (1981).
  66. N. Lovergine, M. Longo, P. Prete, C. Gerardi, L. Calcagnile, R. Cingolani, und A. M. Mancini, Growth of ZnTe by metalorganic vapor phase epitaxy: Sur- face adsorption reactions, precursor stoichiometry effects, and optical studies, J. Appl. Phys. 81, 685 (1997).
  67. M. Lipson, Guiding, modulating, and emitting light on Silicon-challenges and op- portunities, Lightwave Technology, Journal of 23, 4222 (2005).
  68. D. Patel, T. E. Crumbaker, J. R. Sites, und I. L. Spain, Hall effect measurement in the diamond anvil high-pressure cell, Rev. Sci. Instrum. 57, 2795 (1986).
  69. B. I. Halperin und M. Lax, Impurity-Band Tails in the High-Density Limit. I. Minimum Counting Methods, Phys. Rev. 148, 722 (1966).
  70. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press NY, 1985).
  71. D. M. Szmyd, P. Porro, A. Majerfeld, und S. Lagomarsino, Heavily doped GaAs:Se. I. Photoluminescence determination of the electron effective mass, J. Appl. Phys. 68, 2367 (1990).
  72. B. Kunert, Herstellung von (GaIn)(NAsP)/GaP Mischkristallsystemen und de- ren Charakterisierung zur Realisierung eines direkten Halbleiters, Dissertation, Philipps-Universität Marburg (2005).
  73. D. E. Aspnes und J. E. Rowe, High-Resolution Interband-Energy Measurements from Electroreflectance Spectra, Phys. Rev. Lett. 27, 188 (1971).
  74. W. Walukiewicz, Hole-scattering mechanisms in modulation-doped heterostructu- res, J. Appl. Phys. 59, 3577 (1986).
  75. D. Monroe, Hopping in Exponential Band Tails, Phys. Rev. Lett. 54, 146 (1985).
  76. K. Kudlek, N. Presser, J. Gutowski, K. Hingerl, E. Abramof, A. Pesek, H. Pauli, und H. Sitter, Impurity and defect distribution in ZnTe/GaAs epilayers of different thickness, J. Cryst. Growth 117, 290 (1992).
  77. A. Miller und E. Abrahams, Impurity Conduction at Low Concentrations, Phys. Rev. 120, 745 (1960).
  78. S. Tomic, E. P. O'Reilly, P. J. Klar, H. Grüning, W. Heimbrodt, W. M. Chen, und I. A. Buyanova, Influence of conduction-band nonparabolicity on electron confinement and effective mass in GaN x As 1−x GaAs quantum wells, Phys. Rev. B 69, 245305 (2004).
  79. R. F. Schnabel, R. Zimmermann, D. Bimberg, H. Nickel, R. Lösch, und W. Schlapp, Influence of exciton localization on recombination line shapes: In x Ga 1−x As/GaAs quantum wells as a model, Phys. Rev. B 46, 9873 (1992).
  80. A. B. Fredj, M. Debbichi, und M. Said, Influence of the composition fluc- tuation and the disorder on the bowing band gap in semiconductor materials, Microelectronics Journal 38, 860 (2007).
  81. W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, I. Miotkowski, M. J. Seong, H. Alawadhi, und A. K. Ramdas, Interaction of Localized Electronic States with the Conduction Band: Band Anticrossing in II-VI Semiconductor Ternaries, Phys. Rev. Lett. 85, 1552 (2000).
  82. P. Lautenschlager, M. Garriga, S. Logothetidis, und M. Cardona, Interband critical points of GaAs and their temperature dependence, Phys. Rev. B 35, 9174 (1987).
  83. M. Shinada und S. Sugano, Interband Optical Transitions in Extreme- ly Anisotropic Semiconductors. I. Bound and Unbound Exciton Absorption, Journal of the Physical Society of Japan 21, 1936 (1966).
  84. P. J. Dean, G. Kaminsky, und R. B. Zetterstrom, Intrinsic Optical Absorption of Gallium Phosphide between 2.33 and 3.12 eV, J. Appl. Phys. 38, 3551 (1967).
  85. R. A. Noack, Inversion of the Γ and L conduction bands of GaSb under uniaxial stress, physica status solidi (b) 90, 615 (1978).
  86. Aldred, Investigation of InGaAs-InP quantum wells by optical spectroscopy, Semicond. Sci. Technol. 1, 29 (1986).
  87. D. G. Thomas und J. J. Hopfield, Isoelectronic Traps Due to Nitrogen in Gallium Phosphide, Phys. Rev. 150, 680 (1966).
  88. S. Sari, Landau transitions at higher gaps in InSb and GaSb, Solid State Communications 12, 705 (1973).
  89. M. E. Straumanis und C. D. Kim, Lattice Parameters, Thermal Expansion Co- efficients, Phase Width, and Perfection of the Structure of GaSb and InSb, J. Appl. Phys. 36, 3822 (1965).
  90. Adachi, GaAs, AlAs, and Al x Ga 1−x As@B: Material parameters for use in rese- arch and device applications, J. Appl. Phys. 58, R1 (1985).
  91. T. Weir, A. C. Mitchell, und W. J. Nellis, Metallization of Fluid Molecular Hydrogen at 140 GPa (1.4 Mbar), Phys. Rev. Lett. 76, 1860 (1996).
  92. I. Németh, T. Torunski, B. Kunert, W. Stolz, und K. Volz, Microstructural analysis of Ga(NAs)/GaP heterostructures, J. Appl. Phys. 101, 123524 (2007).
  93. A. Gavini und M. Cardona, Modulated Piezoreflectance in Semiconductors, Phys. Rev. B 1, 672 (1970).
  94. M. Cardona, Modulation Spectroscopy, edited by F. Seitz, D. Turnbull, und H. Eh- renreich (Academic Press NY, 1969).
  95. N. Bottka, D. Gaskill, R. Sillmon, R. Henry, und R. Glosser, Mo- dulation spectroscopy as a tool for electronic material characterization, Journal of Electronic Materials 17, 161 (1988).
  96. B. Kunert, K. Volz, J. Koch, und W. Stolz, MOVPE growth conditions of the no- vel direct band gap, diluted nitride Ga(NAsP) material system pseudomorphically strained on GaP-substrate, J. Cryst. Growth 298, 121 (2007).
  97. W. Y. Hsu, J. D. Dow, D. J. Wolford, und B. G. Streetman, Nitrogen isoelectronic trap in GaAs 1−x P x : II. Model calculation of the electronic states N Γ and N X at low temperature, Phys. Rev. B 16, 1597 (1977).
  98. X. Liu, M. E. Pistol, L. Samuelson, S. Schwetlick, und W. Seifert, Nitrogen pair luminescence in GaAs, Appl. Phys. Lett. 56, 1451 (1990).
  99. J. R. Chelikowsky und M. L. Cohen, Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors, Phys. Rev. B 14, 556 (1976).
  100. M. Gal und C. Shwe, Novel contactless electroreflectance spectroscopy of semicon- ductors, J. Appl. Phys. 56, 545 (1990).
  101. A. Addamiano, On the Preparation of the Phosphides of Aluminum, Gallium and Indium, Journal of the American Chemical Society 82, 1537 (1960).
  102. H. Kanzaki und S. Sakuragi, Optical Absorption and Luminescence of Exci- tons in Silver Halides Containing Isoelectronic Impurities. Part I. AgBr:I − , Journal of the Physical Society of Japan 27, 109 (1969).
  103. D. D. Sell und H. C. Casey, Optical absorption and photoluminescence studies of thin GaAs layers in GaAs/Al x Ga 1−x As double heterostructures, J. Appl. Phys. 45, 800 (1974).
  104. W. Spitzer, M. Gershenzon, C. Frosch, und D. Gibbs, Optical absorption in n-type gallium phosphide, Journal of Physics and Chemistry of Solids 11, 339 (1959).
  105. M. D. Sturge, Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV, Phys. Rev. 127, 768 (1962).
  106. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, und F. Priolo, Optical gain in silicon nanocrystals, Nature 408, 440 (2000).
  107. J. Tauc und A. Abrahám, Optical investigation of the band structure of Ge-Si alloys, Journal of Physics and Chemistry of Solids 20, 190 (1961).
  108. B. Monemar, P. O. Holtz, H. P. Gislason, N. Magnea, C. Uihlein, und P. L. Liu, Optical properties of complex defects created by Ag diffusion in ZnTe, Phys. Rev. B 32, 3844 (1985).
  109. C. Karcher, H. Grüning, M. Güngerich, P. J. Klar, B. Kunert, K. Volz, W. Stolz, und W. Heimbrodt, Optical properties of Ga(NAsP) lattice matched to Si, physica status solidi (c) 6, 2638 (2009).
  110. D. Patel, C. S. Menoni, H. Temkin, C. Tome, R. A. Logan, und D. Co- blentz, Optical properties of semiconductor lasers with hydrostatic pressure, Appl. Phys. Lett. 74, 737 (1993).
  111. J. D. Cuthbert und D. G. Thomas, Optical Properties of Tellurium as an Isoelec- tronic Trap in Cadmium Sulfide, J. Appl. Phys. 39, 1573 (1968).
  112. K. Sato und S. Adachi, Optical properties of ZnTe, J. Appl. Phys. 73, 926 (1993).
  113. M. E. Straumanis und C. D. Kim, Phase extent of gallium arsenide determined by the lattice constant and density method, Acta Crystallographica 19, 256 (1965).
  114. D. Auvergne, P. Merle, und H. Mathieu, Phonon-assisted transitions in gallium- phosphide modulation spectra, Phys. Rev. B 12, 1371 (1975).
  115. H. Dumont, J.-E. Bourée, A. Marbeuf, und O. Gorochov, Photo- assisted growth of ZnTe by metalorganic chemical vapour deposition, J. Cryst. Growth 130, 600 (1993).
  116. H. Wagner, W. Kuhn, und W. Gebhardt, Photoluminescence proper- ties of MOVPE grown ZnTe layers on (100) GaAs and (100) GaSb, J. Cryst. Growth 101, 199 (1990).
  117. T. K. Tran, W. Park, W. Tong, M. M. Kyi, B. K. Wagner, und C. J. Summers, Photoluminescence properties of ZnS epilayers, J. Appl. Phys. 81, 2803 (1997).
  118. P. J. Klar, C. M. Townsley, D. Wolverson, J. J. Davies, D. E. Ashenford, und B. Lunn, Photomodulated reflectivity of Zn 1−x Mn x Te/ZnTe multiple-quantum wells with below-bandgap excitation, Semicond. Sci. Technol. 10, 1568 (1995).
  119. O. J. Glembocki, B. V. Shanabrook, N. Bottka, W. T. Beard, und J. Comas, Photoreflectance characterization of interband transitions in GaAs/AlGaAs multiple quantum wells and modulation-doped heterojunctions, Appl. Phys. Lett. 46, 970 (1985).
  120. E. Wang und W. A. Jr, Photoreflectance of cadmium sulfide at the fundamental absorption edge, Physics Letters A 27, 347 (1968).
  121. Sacks, Photoreflectance of GaAs and Ga 0.82 Al 0.18 As at elevated temperatures up to 600 @BULLET C, Appl. Phys. Lett 53, 1080 (1988).
  122. P. Parayanthal, H. Shen, F. H. Pollak, O. J. Glembocki, B. V. Sha- nabrook, und W. T. Beard, Photoreflectance of GaAs/GaAlAs multiple quantum wells: Topographical variations in barrier height and well width, Appl. Phys. Lett. 48, 1261 (1986).
  123. H. Qiang, F. H. Pollak, und G. Hickman, Piezo-photoreflectance of the direct gaps of GaAs and Ga 0.78 Al 0.22 As, Solid State Communications 76, 1087 (1990).
  124. E. O'Reilly und A. Lindsay, k · P Model of Ordered GaN x As 1−x , physica status solidi (b) 216, 131 (1999).
  125. J. Bittebierre und R. T. Cox, Possible identification of zinc-vacancy˘donor- impurity complexes in zinc telluride by optically detected magnetic resonance, Phys. Rev. B 34, 2360 (1986).
  126. S.-H. Wei und A. Zunger, Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends, Phys. Rev. B 60, 5404 (1999).
  127. A. R. Goni, K. Syassen, K. Strossner, und M. Cardona, Pressure de- pendence of the direct optical gap and refractive index of Ge and GaAs, Semicond. Sci. Technol. 4, 246 (1989).
  128. M. I. McMahon, R. J. Nelmes, N. G. Wright, und D. R. Allan, Pressure dependence of the Imma phase of silicon, Phys. Rev. B 50, 739 (1994).
  129. A. Reznitsky, S. Permogorov, S. Verbin, A. Naumov, Y. Korostelin, V. Novozhilov, und S. Prokov'ev, Localization of excitons and Anderson transition in ZnSe1-xTex solid solutions, Solid State Communications 52, 13 (1984).
  130. G. Giesecke und H. Pfister, Präzisionsbestimmung der Gitterkonstanten von A I IIB v -Verbindungen, Acta Crystallographica 11, 369 (1958).
  131. O. Rubel, M. Galluppi, S. D. Baranovskii, K. Volz, L. Geelhaar, H. Riechert, P. Thomas, und W. Stolz, Quantitative description of disorder parameters in (GaIn)(NAs) quantum wells from the temperature-dependent photoluminescence spectroscopy, J. Appl. Phys. 98, 063518 (2005).
  132. [167] J. C. Irwin und J. LaCombe, Raman Scattering in ZnTe, J. Appl. Phys. 41, 1444 (1970).
  133. D. Lancefield, A. R. Adams, und M. A. Fisher, Reassessment of ionized impurity scattering and compensation in GaAs and InP including correlation scattering, J. Appl. Phys. 62, 2342 (1987).
  134. S. E. Stokowski und D. D. Sell, Reflectivity and (dRdE)R of GaP between 2.5 and 6.0 eV, Phys. Rev. B 5, 1636 (1972).
  135. H. Heinke, M. O. Möller, D. Hommel, und G. Landwehr, Relaxation and mo- saicity profiles in epitaxial layers studied by high resolution X-ray diffraction, J. Cryst. Growth 135, 41 (1994).
  136. Y. Oka und M. Cardona, Resonance Raman scattering of excitonic polaritons by LO and acoustic phonons in ZnTe, Solid State Communications 30, 447 (1979).
  137. [123] I. Suemune, K. Uesugi, und W. Walukiewicz, Role of nitrogen in the reduced temperature dependence of band-gap energy in GaNAs, Appl. Phys. Lett. 77, 3021 (2000).
  138. D. Fröhlich, F. Kubacki, M. Schlierkamp, H. Mayer, und U. Rössler, Two-Photon Spectroscopy of Excitons and Polaritons in Strained ZnTe, physica status solidi (b) 177, 379 (1993).
  139. D. E. Aspnes und A. A. Studna, Schottky-Barrier Electroreflectance: Application to GaAs, Phys. Rev. B 7, 4605 (1973).
  140. J. G. Gay, Screening of Excitons in Semiconductors, Phys. Rev. B 4, 2567 (1971).
  141. J. S. Blakemore, Semiconducting and other major properties of gallium arsenide, J. Appl. Phys. 53, R123 (1982).
  142. B. O. Seraphin und N. Bottka, Franz-Keldysh Effect of the Refractive Index in Semiconductors, Phys. Rev. 139, A560 (1965).
  143. H. Venghaus und P. J. Dean, Shallow-acceptor, donor, free-exciton, and bound- exciton states in high-purity zinc telluride, Phys. Rev. B 21, 1596 (1980).
  144. E. T. J. M. Smeets, Solid composition of GaAs 1−x P x grown by organometallic vapour phase epitaxy, J. Cryst. Growth 82, 385 (1987).
  145. S. Chichibu, K. Wada, und S. Nakamura, Spatially resolved cathodoluminescence spectra of InGaN quantum wells, Appl. Phys. Lett. 71, 2346 (1997).
  146. K. Volz, T. Torunski, B. Kunert, O. Rubel, S. Nau, S. Reinhard, und W. Stolz, Specific structural and compositional properties of (GaIn)(NAs) and their influence on optoelectronic device performance, J. Cryst. Growth 272, 739 (2004).
  147. O. Rubel, W. Stolz, und S. D. Baranovskii, Spectral dependence of the photolumi- nescence decay in disordered semiconductors, Appl. Phys. Lett. 91, 021903 (2007).
  148. A. Baldereschi und N. O. Lipari, Spherical Model of Shallow Acceptor States in Semiconductors, Phys. Rev. B 8, 2697 (1973).
  149. J. A. Van Vechten, O. Berolo, und J. C. Woolley, Spin-Orbit Splitting in Compo- sitionally Disordered Semiconductors, Phys. Rev. Lett. 29, 1400 (1972).
  150. E. Tournié, C. Morhain, G. Neu, M. Laügt, C. Ongaretto, J. P. Faurie, R. Triboulet, und J. O. Ndap, Structural and optical characterization of ZnSe single crystals grown by solid-phase recrystallization, J. Appl. Phys. 80, 2983 (1996).
  151. A. Zunger und J. E. Jaffe, Structural Origin of Optical Bowing in Semiconductor Alloys, Phys. Rev. Lett. 51, 662 (1983).
  152. S. J. Sweeney, D. McConville, N. F. Massé, R.-X. Bouyssou, A. R. Adams, C. N. Ahmad, und C. Hanke, Temperature and pressure dependence of re- combination processes in 1.5 µm InGaAlAs/InP-based quantum well lasers, physica status solidi (b) 241, 3391 (2004).
  153. J. Camassel, D. Auvergne, und H. Mathieu, Temperature dependence of the band gap and comparison with the threshold frequency of pure GaAs lasers, J. Appl. Phys. 46, 2683 (1975).
  154. S. Zollner, M. Garriga, J. Humlek, S. Gopalan, und M. Cardona, Temperature dependence of the dielectric function and the interband critical-point parameters of GaSb, Phys. Rev. B 43, 4349 (1991).
  155. Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica 34, 149 (1967).
  156. [192] S. D. Baranovskii, R. Eichmann, und P. Thomas, Temperature- dependent exciton luminescence in quantum wells by computer simulation, Phys. Rev. B 58, 13081 (1998).
  157. T. Yamanaka und M. Tokonami, The anharmonic thermal vibration in ZnX (X = S, Se, Te) and its dependence on the chemical-bond characters, Acta Crystallographica Section B 41, 298 (1985).
  158. T. S. Moss, The Interpretation of the Properties of Indium Antimonide, Proceedings of the Physical Society. Section B 67, 775 (1954).
  159. R. J. Nicholas, R. A. Stradling, J. C. Portal, und S. Askenazy, The magnetophonon effect in InAs 1-x P x, Journal of Physics C: Solid State Physics 12, 1653 (1979).
  160. P. R. C. Kent und A. Zunger, Theory of electronic structure evolution in GaAsN and GaPN alloys, Phys. Rev. B 64, 115208 (2001).
  161. H. P. Hjalmarson, P. Vogl, D. J. Wolford, und J. D. Dow, Theory of Substitutional Deep Traps in Covalent Semiconductors, Phys. Rev. Lett. 44, 810 (1980).
  162. T. Soma, Thermal expansion and lattice dynamics under pressure of ZnS, ZnSe and ZnTe, Solid State Communications 34, 927 (1980).
  163. R. Hill und D. Richardson, The variation of energy gap with composition in ZnS-Te alloys, J. Phys. C: Solid State Phys. 6, L115 (1973).
  164. D. Aspnes, Third-derivative modulation spectroscopy with low-field electroreflec- tance, Surface Science 37, 418 (1973).
  165. I. A. Buyanova, G. Pozina, J. P. Bergman, W. M. Chen, H. P. Xin, und C. W. Tu, Time-resolved studies of photoluminescence in GaN x P 1−x alloys: Evidence for indirect-direct band gap crossover, Appl. Phys. Lett 81, 52 (2002).
  166. H. A. Klasens, Transfer of Energy Between Centres in Zinc Sulphide Phosphors, Nature 158, 306 (1946).
  167. A. Polimeni, G. Baldassarri Höger von Högersthal, F. Masia, A. Frova, M. Ca- pizzi, S. Sanna, V. Fiorentini, P. J. Klar, und W. Stolz, Tunable variation of the electron effective mass and exciton radius in hydrogenated GaAs 1−x N x , Phys. Rev. B 69, 041201 (2004).
  168. A. Lindsay und E. P. O'Reilly, Unification of the Band Anticros- sing and Cluster-State Models of Dilute Nitride Semiconductor Alloys, Phys. Rev. Lett. 93, 196402 (2004).
  169. W. Wilke, R. Seedorf, und K. Horn, Valence band offset and interface che- mistry of II-VI epitaxial layers grown on the (110) surface of III-V materials, J. Cryst. Growth 101, 620 (1990).
  170. G. Bastard, E. E. Mendez, L. L. Chang, und L. Esaki, Variational calculations on a quantum well in an electric field, Phys. Rev. B 28, 3241 (1983).
  171. A. Wissenschaftlicher Werdegang Wissenschaftlicher Werdegang 08.1987 -10.1989
  172. J. Dessus, L. S. Dang, A. Nahmani, und R. Romestain, Zeeman spectroscopy of exciton bound to trigonal acceptor center in ZnTe, Solid State Communications 37, 689 (1981).
  173. J. N. Baillargeon, K. Y. Cheng, G. E. Hofler, P. J. Pearah, und K. C. Hsieh, Luminescence quenching and the formation of the GaP 1−x N x alloy in GaP with increasing nitrogen content, Appl. Phys. Lett. 60, 2540 (1992).
  174. F. Masia, A. Polimeni, G. B. H. von Högersthal, M. Bissiri, M. Capizzi, P. J. Klar, und W. Stolz, Early manifestation of localization effects in diluted Ga(AsN), Appl. Phys. Lett. 82, 4474 (2003).
  175. Literaturverzeichnis [207] K. Kazlauskas, G. Tamulaitis, A. Zukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, und R. Gaska, Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping, Appl. Phys. Lett. 83, 3722 (2003).
  176. A. H. Rodriguez, C. Trallero-Giner, M. Munoz, und M. C. Tamargo, Electroreflectance spectroscopy in self-assembled quantum dots: lens symmetry, Phys. Rev. B 72, 045304 (2005).
  177. F. D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proceedings of the National Academy of Sciences 30, 244 (1944).
  178. H. Haug und S. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific Publishing, London, 2004).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten