Publikationsserver der Universitätsbibliothek Marburg

Titel:Verbesserte in vitro und in planta DNA-Reparatur durch CPD-Photolyasen.
Autor:Kaiser, Gebhard Alexander
Weitere Beteiligte: Batschauer, Alfred (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0125
URN: urn:nbn:de:hebis:04-z2012-01255
DOI: https://doi.org/10.17192/z2012.0125
DDC: Biowissenschaften, Biologie
Titel (trans.):Improved in vitro and in planta DNA repair by CPD photolyases.
Publikationsdatum:2012-05-18
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
UV-Toleranz, Thermus thermophilus, Arabidopsis thaliana, Arabidopsis thaliana, Antenna chromophore, Cyclobutane pyrimidine dimmers, Photolyase, Transgene Pflanzen, DNS-Reparatur, Thermus thermophilus, Cyclobutanpyrimidindimer, Photolyase, Antennen-Chromophor, DNA repair

Zusammenfassung:
CPD-Photolyasen sind Enzyme, die lichtabhängig Cyclobutanpyrimidindimer (CPD), eines der Hauptprodukte der UV-abhängigen DNA-Schädigung, reparieren. Sie können bei fast allen Lebewesen gefunden werden und spielen eine zentrale Rolle bei der UV-Resistenz dieser Organismen. Als monomeres, fehlerfrei und energieneutral arbeitendes Reparatursystem sind sie ein geeignetes Werkzeug für die biotechnologische Verbesserung der UV-Toleranz. So könnten sie helfen, den negativen Folgen der erhöhten UV-Belastung, die durch das Ozonloch entstehen, entgegen zu wirken. In Escherichia coli rekombinant überexprimiert bindet die CPD-Photolyase aus Thermus thermophilus FMN als zweiten Kofaktor. Im Gegensatz hierzu binden die meisten anderen diesbezüglich analysierten Photolyasen Methenyltetrahydrofofalt oder Deazaflavin als zweiten Kofaktor. In dieser Arbeit wird durch Absorptions- und Wirkungsspektroskopie gezeigt, dass FMN als Antennenchromophor fungiert und die absorbierte Lichtenergie auf den katalytisch aktiven FAD-Kofaktor überträgt. Hierdurch wird die Photoreduktion und Enzymaktivität der Thermus thermophilus Photolyase deutlich verbessert. Als sessile und photoautotrophe Organismen sind Pflanzen in besonderem Maße UV- und Lichtstress ausgesetzt. Sie besitzen hochkomplexe Signal- und Schutzmechanismen, um sich optimal an die an ihrem Standort vorherrschenden Lichtbedingungen anzupassen. Bei der UV-Toleranz von Pflanzen spielen CPD-Photolyasen eine zentrale Rolle. In dieser Arbeit wurde untersucht, ob die gezielte Verbesserung der Reparatur von CPD-Schäden durch die Überexpression der Arabidopsis CPD-Photolyase in Arabidopsis thaliana einen positiven Effekt auf die UV-Toleranz der Pflanzen hat. Hierfür wurde der kodierende Bereich des CPD- Photolyasegens (At-PHR1) mit dem starken und konstitutiven 35S CaMV Promotor fusioniert und Arabidopsis stabil mit dem resultierenden Konstrukt transformiert. Die stabile Integration des Transgens in das Genom wurde durch Southern Blot überprüft und zudem die Anzahl der T-DNA-Insertionen bestimmt. Die Überexpression wurde dann auf transkriptioneller und posttranskriptioneller Ebene bestimmt. Es konnten deutlich erhöhte Transkript- und Proteinmengen von CPD-Photolyase in den transgenen Linien nachgewiesen werden. Um den Einfluss der At-PHR1-Überexpression auf die Reparatur von CPD-Schäden zu untersuchen, wurden Rosettenblätter mit UV-B und UV-A reichem Licht bestrahlt und die CPD-Akkumulationsrate bestimmt. Hierbei zeigte sich eine deutlich verringerte Akkumulation von CPDs in den transgenen Linien. Weiterhin wurde untersucht, wie sich die Reduktion der CPD-Akkumulation auf das Wachstum der Pflanzen auswirkt. Hierzu wurde das Frischgewicht und der Rosettendurchmesser der unter UV-Stress angezogen Pflanzen bestimmt. Hierbei zeigen die Photolyase-überexprimierenden Pflanzen im Vergleich zum Wildtyp eine deutlich geringere Sensitivität gegenüber UV-B. In der Literatur gibt es widersprüchliche Angaben zur zellulären Lokalisation von CPD-Photolyasen in Pflanzen. Durch Konfokale Laser Scanning Mikroskopie von Arabidopsis Protoplasten, die ein At-PHR1::GFP Fusionsprotein exprimierten, wird hier gezeigt, dass die zelluläre Lokalisation von At-PHR1 auf den Zellkern beschränkt ist.

Bibliographie / References

  1. Lämmli U. K. (1970) "Cleavage of structural proteins during the assembly of the head of bacteriophage T4." Nature 227(5259): 680-5.
  2. Cannon G. C., Hedrick L. A. und Heinhorst S. (1995) "Repair mechanisms of UV-induced DNA damage in soybean chloroplasts." Plant Mol Biol 29(6): 1267-77.
  3. Reisbacher S. (2009) "Funktionelle Analyse von Cryptochrom 3 aus Arabidopsis thaliana." Fachbereich Biologie Philipps-Universität Marburg, Marburg.
  4. Hays J. B. (2002) "Arabidopsis thaliana, a versatile model system for study of eukaryotic genome-maintenance functions." DNA Repair (Amst) 1(8): 579-600.
  5. Iida K., Fukami-Kobayashi K., Toyoda A., Sakaki Y., Kobayashi M., Seki M. und Shinozaki K. (2009) "Analysis of multiple occurrences of alternative splicing events in Arabidopsis thaliana using novel sequenced full-length cDNAs." DNA Res 16(3): 155-64.
  6. Schall R. F., Jr., Fraser A. S., Hansen H. W., Kern C. W. und Tenoso H. J. (1978) "A sensitive manual enzyme immunoassay for thyroxine." Clin Chem 24(10): 1801-4.
  7. Oberpichler I., Pierik A. J., Wesslowski J., Pokorny R., Rosen R., Vugman M., Zhang F., Neubauer O., Ron E. Z., Batschauer A. und Lamparter T. (2011) "A Photolyase-Like Protein from Agrobacterium tumefaciens with an Iron-Sulfur Cluster." PLoS One 6(10): e26775.
  8. Park H. W., Kim S. T., Sancar A. und Deisenhofer J. (1995) "Crystal structure of DNA photolyase from Escherichia coli." Science 268(5219): 1866-72.
  9. Klar T., Kaiser G., Hennecke U., Carell T., Batschauer A. und Essen L. O. (2006) "Natural and non-natural antenna chromophores in the DNA photolyase from Thermus thermophilus." Chembiochem 7(11): 1798-806.
  10. Birnboim H. C. (1983) "A rapid alkaline extraction method for the isolation of plasmid DNA." Methods Enzymol 100: 243-55.
  11. Gruijl F. R., Yasui A., Hoeijmakers J. H. und van der Horst G. T. (2005) "Powerful skin cancer protection by a CPD-photolyase transgene." Curr Biol 15(2): 105-15.
  12. Okafuji A., Biskup T., Hitomi K., Getzoff E. D., Kaiser G., Batschauer A., Bacher A., Hidema J., Teranishi M., Yamamoto K., Schleicher E. und Weber S. (2010) "Light-induced activation of class II cyclobutane pyrimidine dimer photolyases." DNA Repair (Amst) 9(5): 495-505.
  13. Kleiner O., Butenandt J., Carell T. und Batschauer A. (1999) "Class II DNA photolyase from Arabidopsis thaliana contains FAD as a cofactor." Eur J Biochem 264(1): 161-7.
  14. Huang Y., Baxter R., Smith B. S., Partch C. L., Colbert C. L. und Deisenhofer J. (2006) "Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity." Proc Natl Acad Sci U S A 103(47): 17701-6.
  15. Komori H., Masui R., Kuramitsu S., Yokoyama S., Shibata T., Inoue Y. und Miki K. (2001) "Crystal structure of thermostable DNA photolyase: pyrimidine-dimer recognition mechanism." Proc Natl Acad Sci U S A 98(24): 13560-5.
  16. Park H., Zhang K., Ren Y., Nadji S., Sinha N., Taylor J. S. und Kang C. (2002) "Crystal structure of a DNA decamer containing a cis-syn thymine dimer." Proc Natl Acad Sci U S A 99(25): 15965-70.
  17. Kelner A. (1949) "Effect of Visible Light on the Recovery of Streptomyces Griseus Conidia from Ultra-violet Irradiation Injury." Proc Natl Acad Sci U S A 35(2): 73-9.
  18. Rupert C. S. (1960) "Photoreactivation of transforming DNA by an enzyme from bakers' yeast." J Gen Physiol 43: 573-95.
  19. Waterworth W. M., Jiang Q., West C. E., Nikaido M. und Bray C. M. (2002) "Characterization of Arabidopsis photolyase enzymes and analysis of their role in protection from ultraviolet-B radiation." J Exp Bot 53(371): 1005-15.
  20. Rowan B. A., Oldenburg D. J. und Bendich A. J. (2010) "RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis." J Exp Bot 61(10): 2575-88.
  21. Nielsen B. L., Cupp J. D. und Brammer J. (2010) "Mechanisms for maintenance, replication, and repair of the chloroplast genome in plants." J Exp Bot 61(10): 2535-7.
  22. Petersen J. L. und Small G. D. (2001) "A gene required for the novel activation of a class II DNA photolyase in Chlamydomonas." Nucleic Acids Res 29(21): 4472-81.
  23. Hada M., Iida Y. und Takeuchi Y. (2000b) "Action spectra of DNA photolyases for photorepair of cyclobutane pyrimidine dimers in sorghum and cucumber." Plant Cell Physiol 41(5): 644-8.
  24. Mees A., Klar T., Gnau P., Hennecke U., Eker A. P., Carell T. und Essen L. O. (2004) "Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair." Science 306(5702): 1789-93.
  25. Sancar A., Lindsey-Boltz L. A., Unsal-Kacmaz K. und Linn S. (2004) "Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints." Annu Rev Biochem 73: 39-85.
  26. Jenkins G. I. (2009) "Signal transduction in responses to UV-B radiation." Annu Rev Plant Biol 60: 407-31.
  27. Wade H. K., Bibikova T. N., Valentine W. J. und Jenkins G. I. (2001) "Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue." Plant J 25(6): 675-85.
  28. Popov N., Schmitt M., Schulzeck S. und Matthies H. (1975) "Reliable micromethod for determination of the protein content in tissue homogenates." Acta Biol Med Ger 34(9): 1441-6.
  29. Castells E., Molinier J., Drevensek S., Genschik P., Barneche F. und Bowler C. (2010) "det1- 1-induced UV-C hyposensitivity through UVR3 and PHR1 photolyase gene over-expression." Plant J 63(3): 392-404.
  30. Castells E., Molinier J., Benvenuto G., Bourbousse C., Zabulon G., Zalc A., Cazzaniga S., Genschik P., Barneche F. und Bowler C. (2011) "The conserved factor DE-ETIOLATED 1 cooperates with CUL4-DDB1DDB2 to maintain genome integrity upon UV stress." EMBO J 30(6): 1162-72.
  31. Holmes M. G. und Keiller D. R. (2002) "Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species." Plant, Cell & Environment 25(1): 85-93.
  32. Tarcha P. J., Chu V. P. und Whittern D. (1987) "2,3-Diaminophenazine is the product from the horseradish peroxidase-catalyzed oxidation of o-phenylenediamine." Anal Biochem 165(1): 230-3.
  33. Varghese A. J. (1970) "5-Thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light." Biochem Biophys Res Commun 38(3): 484-90.
  34. Payne G. und Sancar A. (1990) "Absolute action spectrum of E-FADH2 and E-FADH2-MTHF forms of Escherichia coli DNA photolyase." Biochemistry 29(33): 7715-27.
  35. Selby C. P. und Sancar A. (2006) "A cryptochrome/photolyase class of enzymes with single- stranded DNA-specific photolyase activity." Proc Natl Acad Sci U S A 103(47): 17696-700.
  36. Sancar G. B., Jorns M. S., Payne G., Fluke D. J., Rupert C. S. und Sancar A. (1987) "Action mechanism of Escherichia coli DNA photolyase. III. Photolysis of the enzyme-substrate complex and the absolute action spectrum." J Biol Chem 262(1): 492-8.
  37. Körner C. (2003) "Alpine Plant Life -Functional Plant Ecology of High Mountain Ecosystems"
  38. Sun C. W., Griffen S. und Callis J. (1997) "A model for the evolution of polyubiquitin genes from the study of Arabidopsis thaliana ecotypes." Plant Mol Biol 34(5): 745-58.
  39. Holdeman L. V. und Chen J.-S. (1977) "Anaerobe laboratory manual" 4. Aufl. Anaerobe Lab., Virginia Polytechnic Institute and State Univ., (Blacksburg, VA, USA).
  40. The Arabidopsis Genome Initiative (2000) "Analysis of the genome sequence of the flowering plant Arabidopsis thaliana." Nature 408(6814): 796-815.
  41. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis." J Biol Chem 283(6): 3256-63.
  42. Kleine T., Lockhart P. und Batschauer A. (2003) "An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles." Plant J 35(1): 93-103.
  43. Eisen J. A. und Hanawalt P. C. (1999) "A phylogenomic study of DNA repair genes, proteins, and processes." Mutat Res 435(3): 171-213.
  44. Radany E. H. und Friedberg E. C. (1980) "A pyrimidine dimer-DNA glycosylase activity associated with the v gene product of bacterophage T4." Nature 286(5769): 182-5.
  45. Meinke D. W., Cherry J. M., Dean C., Rounsley S. D. und Koornneef M. (1998) "Arabidopsis thaliana: a model plant for genome analysis." Science 282(5389): 662, 679-82.
  46. Liu Z., Hall J. D. und Mount D. W. (2001) "Arabidopsis UVH3 gene is a homolog of the Saccharomyces cerevisiae RAD2 and human XPG DNA repair genes." Plant J 26(3): 329-38.
  47. Bradford M. M. (1976) "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding." Anal Biochem 72: 248-54.
  48. Schaffner W. und Weissmann C. (1973) "A rapid, sensitive, and specific method for the determination of protein in dilute solution." Anal Biochem 56(2): 502-14.
  49. Hada M., Hino K., Buchholz G., Goss J., Wellmann E. und Shin M. (2000a) "Assay of DNA photolyase activity in spinach leaves in relation to cell compartmentation-evidence for lack of DNA photolyase in chloroplasts." Biosci Biotechnol Biochem 64(6): 1288-91.
  50. Lottspeich F. und Zorbas H. (1998) "Bioanalytik" 1. Aufl. Spectrum Akademischer Verlag (Heidelberg; Berlin ).
  51. Ward J. F. (1985) "Biochemistry of DNA lesions." Radiat Res Suppl 8: S103-11.
  52. Drewnowski A. und Gomez-Carneros C. (2000) "Bitter taste, phytonutrients, and the consumer: a review." Am J Clin Nutr 72(6): 1424-35.
  53. Bjerrum J. B. und Schäfer-Nilsen C. (1986) "Buffer systems and transfer parameters for semidry electroblotting with a horizontal apparatus " In: ElectrophoresisElectrophoresis´86. Ed.: Dunn M. J. VCH (Weinheim ): 315-327.
  54. Oldenburg D. J. und Bendich A. J. (2004) "Changes in the structure of DNA molecules and the amount of DNA per plastid during chloroplast development in maize." J Mol Biol 344(5): 1311-30.
  55. Rhaese H. J. und Freese E. (1968) "Chemical analysis of DNA alterations. I. Base liberation and backbone breakage of DNA and oligodeoxyadenylic acid induced by hydrogen peroxide and hydroxylamine." Biochim Biophys Acta 155(2): 476-90.
  56. Müller F. (1991) "Chemistry and biochemistry of flavoenzymes " 1. Aufl. CRC Press, (Boca Raton ).
  57. Vichi P., Coin F., Renaud J. P., Vermeulen W., Hoeijmakers J. H., Moras D. und Egly J. M. (1997) "Cisplatin-and UV-damaged DNA lure the basal transcription factor TFIID/TBP." EMBO J 16(24): 7444-56.
  58. Haseltine W. A., Gordon L. K., Lindan C. P., Grafstrom R. H., Shaper N. L. und Grossman L. (1980) "Cleavage of pyrimidine dimers in specific DNA sequences by a pyrimidine dimer DNA-glycosylase of M. luteus." Nature 285(5767): 634-41.
  59. Reardon J. T., Nichols A. F., Keeney S., Smith C. A., Taylor J. S., Linn S. und Sancar A. (1993) "Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6-4]T, and T[Dewar]T." J Biol Chem 268(28): 21301-8.
  60. Pokorny R., Klar T., Essen L. O. und Batschauer A. (2005) "Crystallization and preliminary X- ray analysis of cryptochrome 3 from Arabidopsis thaliana." Acta Crystallogr Sect F Struct Biol Cryst Commun 61(Pt 10): 935-8.
  61. Maul M. J., Barends T. R., Glas A. F., Cryle M. J., Domratcheva T., Schneider S., Schlichting I. und Carell T. (2008) "Crystal structure and mechanism of a DNA (6-4) photolyase." Angew Chem Int Ed Engl 47(52): 10076-80.
  62. Kiontke S., Geisselbrecht Y., Pokorny R., Carell T., Batschauer A. und Essen L.-O. (2011) "Crystal structures of an archeal class II DNA photolyase and its complex with UV-damaged duplex DNA." EMBO J 30: 4497-49.
  63. Takahashi M., Teranishi M., Ishida H., Kawasaki J., Takeuchi A., Yamaya T., Watanabe M., Makino A. und Hidema J. (2011) "Cyclobutane pyrimidine dimer (CPD) photolyase repairs ultraviolet-B-induced CPDs in rice chloroplast and mitochondrial DNA." Plant J.
  64. Setlow R. B. (1966) "Cyclobutane-type pyrimidine dimers in polynucleotides." Science 153(734): 379-86.
  65. Wang S. Y. und Varghese A. J. (1967) "Cytosine-thymine addition product from DNA irradiated with ultraviolet light." Biochem Biophys Res Commun 29(4): 543-9.
  66. Southern E. M. (1975) "Detection of specific sequences among DNA fragments separated by gel electrophoresis." J Mol Biol 98(3): 503-17.
  67. Biskup T., Schleicher E., Okafuji A., Link G., Hitomi K., Getzoff E. D. und Weber S. (2009) "Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor." Angew Chem Int Ed Engl 48(2): 404-7.
  68. Veit M., Bilger T., Muhlbauer T., Brummet W. und Winter K. (1996) "Diurnal changes in flavonoids." J. Plant Physiol. 148: 478-82.
  69. Kimura S., Tahira Y., Ishibashi T., Mori Y., Mori T., Hashimoto J. und Sakaguchi K. (2004) "DNA repair in higher plants; photoreactivation is the major DNA repair pathway in non- proliferating cells while excision repair (nucleotide excision repair and base excision repair) is active in proliferating cells." Nucleic Acids Res 32(9): 2760-7.
  70. Kimura S. und Sakaguchi K. (2006) "DNA repair in plants." Chem Rev 106(2): 753-66.
  71. Kim S. T. und Sancar A. (1991) "Effect of base, pentose, and phosphodiester backbone structures on binding and repair of pyrimidine dimers by Escherichia coli DNA photolyase." Biochemistry 30(35): 8623-30.
  72. Svoboda D. L., Smith C. A., Taylor J. S. und Sancar A. (1993) "Effect of sequence, adduct type, and opposing lesions on the binding and repair of ultraviolet photodamage by DNA photolyase and (A)BC excinuclease." J Biol Chem 268(14): 10694-700.
  73. Teramura A. H. (1983) "Effects of ultraviolet-B radiation on the growth and yield of crop plants." Physiologia Plantarum 58(3): 415-427.
  74. Hartman R. F. und Rose S. D. (1992) "Efficient photosensitized pyrimidine dimer splitting by a reduced flavin requires the deprotonated flavin." Journal of the American Chemical Society 114(9): 3559-3560.
  75. Vande Berg B. J. und Sancar G. B. (1998) "Evidence for dinucleotide flipping by DNA photolyase." J Biol Chem 273(32): 20276-84.
  76. Kerr J. B. und McElroy C. T. (1993) "Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion." Science 262(5136): 1032-4.
  77. Kim S. T., Sancar A., Essenmacher C. und Babcock G. T. (1992b) "Evidence from photoinduced EPR for a radical intermediate during photolysis of cyclobutane thymine dimer by DNA photolyase. ." J Am Chem Soc 114: 4442-43.
  78. Vairapandi M. und Duker N. J. (1994) "Excision of ultraviolet-induced photoproducts of 5- methylcytosine from DNA." Mutat Res 315(2): 85-94.
  79. Shimomura O., Johnson F. H. und Saiga Y. (1962) "Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea." J Cell Comp Physiol 59: 223-39.
  80. Palfey B. A. und Massey V. (1998) "Flavin-dependent enzymes" In: Comprehensive Biological Catalysis. Ed.: Sinnott M. Academic Press (New York). Bd.III: 83–154.
  81. Islam S. D. M., Susdorf T., Penzkofer A. und Hegemann P. (2003) "Fluorescence quenching of flavin adenine dinucleotide in aqueous solution by pH dependent isomerisation and photo-induced electron transfer." Chemical Physics 295(2): 137-149.
  82. Boorstein R. J., Hilbert T. P., Cunningham R. P. und Teebor G. W. (1990) "Formation and stability of repairable pyrimidine photohydrates in DNA." Biochemistry 29(46): 10455-60.
  83. Henle E. S. und Linn S. (1997) "Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide." J Biol Chem 272(31): 19095-8.
  84. Polverelli M. und Teoule R. (1974a) "Gamma irradiation of cytosine in an aerated aqueous solution. I. Identification of radiolysis products of cytosine resulting from the deamination pathway." Z Naturforsch [C] 29(1): 12-5.
  85. O'Brien E. A., Zhang Y., Wang E., Marie V., Badejoko W., Lang B. F. und Burger G. (2009) "GOBASE: an organelle genome database." Nucleic Acids Res 37(Database issue): D946-50.
  86. Negrutiu I., Shillito R., Potrykus I., Biasini G. und Sala F. (1987) "Hybrid Genes in the Analysis of Transformation Conditions .1. Setting up a Simple Method for Direct Gene- Transfer in Plant-Protoplasts." Plant Molecular Biology 8(5): 363-373.
  87. Ueda T., Kato A., Kuramitsu S., Terasawa H. und Shimada I. (2005) "Identification and characterization of a second chromophore of DNA photolyase from Thermus thermophilus HB27." J Biol Chem 280(43): 36237-43.
  88. Jorns M. S., Sancar G. B. und Sancar A. (1984) "Identification of a neutral flavin radical and characterization of a second chromophore in Escherichia coli DNA photolyase." Biochemistry 23(12): 2673-9.
  89. Kaiser G., Kleiner O., Beisswenger C. und Batschauer A. (2009) "Increased DNA repair in Arabidopsis plants overexpressing CPD photolyase." Planta 230: 505-15.
  90. Hidema J., Taguchi T., Ono T., Teranishi M., Yamamoto K. und Kumagai T. (2007) "Increase in CPD photolyase activity functions effectively to prevent growth inhibition caused by UVB radiation." Plant J 50(1): 70-9.
  91. Tevini M. und Iwanzik W. (1983) "Inhibition of photosynthetic activity by UV-B radiation in radish seedlings." Physiologia Plantarum 58(3): 395-400.
  92. Tommasi S., Swiderski P. M., Tu Y., Kaplan B. E. und Pfeifer G. P. (1996) "Inhibition of transcription factor binding by ultraviolet-induced pyrimidine dimers." Biochemistry 35(49): 15693-703.
  93. Shibutani S., Takeshita M. und Grollman A. P. (1991) "Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG." Nature 349(6308): 431-4.
  94. Lloyd R. S. (2005) "Investigations of pyrimidine dimer glycosylases--a paradigm for DNA base excision repair enzymology." Mutat Res 577(1-2): 77-91.
  95. Robberecht R., Caldwell M. M. und Billings W. D. (1980) "Leaf Ultraviolet Optical Properties Along a Latitudinal Gradient in the Arctic-Alpine Life Zone." Ecology 61(3): 612-619.
  96. Weber S. (2005) "Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase." Biochim Biophys Acta 1707(1): 1-23.
  97. Zeugner A., Byrdin M., Bouly J. P., Bakrim N., Giovani B., Brettel K. und Ahmad M. (2005) "Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function." J Biol Chem 280(20): 19437-40.
  98. Niki E. (2009) "Lipid peroxidation: physiological levels and dual biological effects." Free Radic Biol Med 47(5): 469-84.
  99. Compton S. J. und Jones C. G. (1985) "Mechanism of dye response and interference in the Bradford protein assay." Anal Biochem 151(2): 369-74.
  100. Yasui A., Yajima H., Kobayashi T., Eker A. P. und Oikawa A. (1992) "Mitochondrial DNA repair by photolyase." Mutat Res 273(2): 231-6.
  101. Sakamoto A., Tanaka A., Watanabe H. und Tano S. (1998) "Molecular cloning of Arabidopsis photolyase gene (PHR1) and characterization of its promoter region." DNA Seq 9(5-6): 335- 40.
  102. Kanai S., Kikuno R., Toh H., Ryo H. und Todo T. (1997) "Molecular evolution of the photolyase-blue-light photoreceptor family." J Mol Evol 45(5): 535-48.
  103. Murphy T. M. und Gao M. J. (2001) "Multiple forms of formamidopyrimidine-DNA glycosylase produced by alternative splicing in Arabidopsis thaliana." J Photochem Photobiol B 61(3): 87-93.
  104. Bjelland S. und Seeberg E. (2003) "Mutagenicity, toxicity and repair of DNA base damage induced by oxidation." Mutat Res 531(1-2): 37-80.
  105. Siemering K. R., Golbik R., Sever R. und Haseloff J. (1996) "Mutations that suppress the thermosensitivity of green fluorescent protein." Curr Biol 6(12): 1653-63.
  106. Patrick M. H. (1970) "Near-U.V. photolysis of pyrimidine heteroadducts in E. coli DNA." Photochem Photobiol 11(6): 477-85.
  107. Lindahl T. (1976) "New class of enzymes acting on damaged DNA." Nature 259(5538): 64-6.
  108. Pastwa E. und Blasiak J. (2003) "Non-homologous DNA end joining." Acta Biochim Pol 50(4): 891-908.
  109. Stadtman E. R. (1993) "Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions." Annu Rev Biochem 62: 797-821.
  110. Povirk L. F. und Steighner R. J. (1989) "Oxidized apurinic/apyrimidinic sites formed in DNA by oxidative mutagens." Mutat Res 214(1): 13-22.
  111. Rizzini L., Favory J. J., Cloix C., Faggionato D., O'Hara A., Kaiserli E., Baumeister R., Schafer E., Nagy F., Jenkins G. I. und Ulm R. (2011) "Perception of UV-B by the Arabidopsis UVR8 protein." Science 332(6025): 103-6.
  112. Kurkin V. A. (2003) "Phenylpropanoids from Medicinal Plants: Distribution, Classification, Structural Analysis, and Biological Activity." Chemistry of Natural Compounds 39(2): 123-153.
  113. Nishio T., Katoh A., Omote Y. und Kashima C. (1978) "Photochemistry of 1-substituted-4,6- dimethyl-2(1H)-pyrimidin-2-ones: Synthesis of 2-oxo-1,3-diazabicyclo[2,2,0]hex-5-enes." Tetrahedron Letters 19(18): 1543-1544.
  114. Rupert C. S., Goodgal S. H. und Herriott R. M. (1958) "Photoreactivation in vitro of ultraviolet-inactivated Hemophilus influenzae transforming factor." J Gen Physiol 41(3): 451- 71.
  115. Jiang C. Z., Yee J., Mitchell D. L. und Britt A. B. (1997a) "Photorepair mutants of Arabidopsis." Proc Natl Acad Sci U S A 94(14): 7441-5.
  116. Christie J. M. (2007) "Phototropin blue-light receptors." Annu Rev Plant Biol 58: 21-45.
  117. Okamura T., Sancar A., Heelis P. F., Begley T. P., Hirata Y. und Mataga N. (1991) "Picosecond laser photolysis studies on the photorepair of pyrimidine dimers by DNA photolyase. 1. Laser photolysis of photolyase-2-deoxyuridine dinucleotide photodimer complex." Journal of the American Chemical Society 113(8): 3143-3145.
  118. Gritz L. und Davies J. (1983) "Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae." Gene 25(2-3): 179-88.
  119. Prasher D. C., Eckenrode V. K., Ward W. W., Prendergast F. G. und Cormier M. J. (1992) "Primary structure of the Aequorea victoria green-fluorescent protein." Gene 111(2): 229-33.
  120. Hackett P. B. und Sauerbier W. (1974) "Radiological mapping of the ribosomal RNA transcription unit in E. coli." Nature 251(5476): 639-41.
  121. Breen A. P. und Murphy J. A. (1995) "Reactions of oxyl radicals with DNA." Free Radic Biol Med 18(6): 1033-77.
  122. Dulbecco R. (1949) "Reactivation of ultra-violet-inactivated bacteriophage by visible light." Nature 163(4155): 949.
  123. Mittler R., Vanderauwera S., Gollery M. und Van Breusegem F. (2004) "Reactive oxygen gene network of plants." Trends Plant Sci 9(10): 490-8.
  124. Maréchal A. und Brisson N. (2010) "Recombination and the maintenance of plant organelle genome stability." New Phytol 186(2): 299-317.
  125. Payne G., Wills M., Walsh C. und Sancar A. (1990) "Reconstitution of Escherichia coli photolyase with flavins and flavin analogues." Biochemistry 29(24): 5706-11.
  126. Liu Z., Hossain G. S., Islas-Osuna M. A., Mitchell D. L. und Mount D. W. (2000) "Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1." Plant J 21(6): 519-28.
  127. Draper C. K. und Hays J. B. (2000) "Replication of chloroplast, mitochondrial and nuclear DNA during growth of unirradiated and UVB-irradiated Arabidopsis leaves." Plant J 23(2): 255-65.
  128. Maeda H., Matsu-ura S., Yamauchi Y. und Ohmori H. (2001) "Resazurin as an electron acceptor in glucose oxidase-catalyzed oxidation of glucose." Chem Pharm Bull (Tokyo) 49(5): 622-5.
  129. Malhotra K., Kim S. T., Walsh C. und Sancar A. (1992) "Roles of FAD and 8-hydroxy-5- deazaflavin chromophores in photoreactivation by Anacystis nidulans DNA photolyase." J Biol Chem 267(22): 15406-11.
  130. Molina M. J. und Rowland F. S. (1974) "Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone." Nature 249(5460): 810-812.
  131. Öztürk N., Song S. H., Ozgur S., Selby C. P., Morrison L., Partch C., Zhong D. und Sancar A. (2007) "Structure and function of animal cryptochromes." Cold Spring Harb Symp Quant Biol 72: 119-31.
  132. Sancar A. (2003) "Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors." Chem Rev 103(6): 2203-37.
  133. Structure, function, and evolution." Mol Cell 11(1): 59-67.
  134. Blake C. C., Koenig D. F., Mair G. A., North A. C., Phillips D. C. und Sarma V. R. (1965) "Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution." Nature 206(986): 757-61.
  135. Johnson L. N. und Phillips D. C. (1965) "Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6 Angstrom resolution." Nature 206(986): 761-3.
  136. Osterlund M. T., Hardtke C. S., Wei N. und Deng X. W. (2000) "Targeted destabilization of HY5 during light-regulated development of Arabidopsis." Nature 405(6785): 462-6.
  137. Payne G., Heelis P. F., Rohrs B. R. und Sancar A. (1987) "The active form of Escherichia coli DNA photolyase contains a fully reduced flavin and not a flavin radical, both in vivo and in vitro." Biochemistry 26(22): 7121-7.
  138. Yu X., Liu H., Klejnot J. und Lin C. (2010) "The Cryptochrome Blue Light Receptors." The Arabidopsis Book: e0135.
  139. Faktor O., Loake G., Dixon R. A. und Lamb C. J. (1997) "The G-box and H-box in a 39 bp region of a French bean chalcone synthase promoter constitute a tissue-specific regulatory element." The Plant Journal 11(5): 1105-1113.
  140. Setlow R. B. (1968) "The photochemistry, photobiology, and repair of polynucleotides." Prog Nucleic Acid Res Mol Biol 8: 257-95.
  141. Hardy P. M. (1985) "The Protein Amino Acids" In: Chemistry and Biochemistry of the Amino Acids. Ed.: Barrett G. C. Chapman and Hall, (London, New York).
  142. Kim J. K. und Choi B. S. (1995) "The solution structure of DNA duplex-decamer containing the (6-4) photoproduct of thymidylyl(3'-->5')thymidine by NMR and relaxation matrix refinement." Eur J Biochem 228(3): 849-54.
  143. Varghese A. J. und Wang S. Y. (1968) "Thymine-thymine adduct as a photoproduct of thymine." Science 160(824): 186-7.
  144. Schägger H. und von Jagow G. (1987) "Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa." Anal Biochem 166(2): 368-79.
  145. Jansen M. A. K. (2002) "Ultraviolet-B radiation effects on plants: induction of morphogenic responses." Physiologia Plantarum 116(3): 423-429.
  146. Varghese A. J. und Wang S. Y. (1967) "Ultraviolet irradiation of DNA in vitro and in vivo produces a 3d thymine-derived product." Science 156(3777): 955-7.
  147. Marmur J. und Grossman L. (1961) "Ultraviolet light induced linking of deoxyribonucleic acid strands and its reversal by photoreactivating enzyme." Proc Natl Acad Sci U S A 47: 778-87.
  148. Cadet J., Sage E. und Douki T. (2005) "Ultraviolet radiation-mediated damage to cellular DNA." Mutat Res 571(1-2): 3-17.
  149. Cockell C. S. und Knowland J. (1999) "Ultraviolet radiation screening compounds." Biol Rev Camb Philos Soc 74(3): 311-45.
  150. Harlow E. und Lane D. (1999) "Using antibodies : a laboratory manual" 2. Aufl. Cold Spring Harbor Laboratory Press, (Cold Spring Harbor, NY).
  151. Jiang C. Z., Yen C. N., Cronin K., Mitchell D. und Britt A. B. (1997b) "UV-and gamma- radiation sensitive mutants of Arabidopsis thaliana." Genetics 147(3): 1401-9.
  152. Stapleton A. E., Thornber C. S. und Walbot V. (1997) "UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): developmental and cellular heterogeneity of damage and repair." Plant, Cell & Environment 20(3): 279-290.
  153. Birnboim H. C. und Doly J. (1979) "A rapid alkaline extraction procedure for screening recombinant plasmid DNA." Nucleic Acids Res 7(6): 1513-23.
  154. Kavakli I. H. und Sancar A. (2004) "Analysis of the role of intraprotein electron transfer in photoreactivation by DNA photolyase in vivo." Biochemistry 43(48): 15103-10.
  155. Caldwell M. M., Bornman J. F., Ballare C. L., Flint S. D. und Kulandaivelu G. (2007) "Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors." Photochem Photobiol Sci 6(3): 252-66.
  156. Demarsy E. und Fankhauser C. (2009) "Higher plants use LOV to perceive blue light." Curr Opin Plant Biol 12(1): 69-74.
  157. Eker A. P., Kooiman P., Hessels J. K. und Yasui A. (1990) "DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans." J Biol Chem 265(14): 8009-15.
  158. Sunderland P. A., West C. E., Waterworth W. M. und Bray C. M. (2006) "An evolutionarily conserved translation initiation mechanism regulates nuclear or mitochondrial targeting of DNA ligase 1 in Arabidopsis thaliana." Plant J 47(3): 356-67.
  159. Jiao Y., Lau O. S. und Deng X. W. (2007) "Light-regulated transcriptional networks in higher plants." Nat Rev Genet 8(3): 217-30.
  160. Mone M. J., Volker M., Nikaido O., Mullenders L. H., van Zeeland A. A., Verschure P. J., Manders E. M. und van Driel R. (2001) "Local UV-induced DNA damage in cell nuclei results in local transcription inhibition." EMBO Rep 2(11): 1013-7.
  161. Bieza K. und Lois R. (2001) "An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics." Plant Physiol 126(3): 1105-15.
  162. Thoma F. (1999) "Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair." EMBO J 18(23): 6585-98.
  163. Schul W., Jans J., Rijksen Y. M., Klemann K. H., Eker A. P., de Wit J., Nikaido O., Nakajima S., Yasui A., Hoeijmakers J. H. und van der Horst G. T. (2002) "Enhanced repair of cyclobutane pyrimidine dimers and improved UV resistance in photolyase transgenic mice." EMBO J 21(17): 4719-29.
  164. Brown B. A., Cloix C., Jiang G. H., Kaiserli E., Herzyk P., Kliebenstein D. J. und Jenkins G. I. (2005) "A UV-B-specific signaling component orchestrates plant UV protection." Proc Natl Acad Sci U S A 102(50): 18225-30.
  165. Ma L., Li J., Qu L., Hager J., Chen Z., Zhao H. und Deng X. W. (2001) "Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways." Plant Cell 13(12): 2589-607.
  166. Chattopadhyay S., Ang L. H., Puente P., Deng X. W. und Wei N. (1998) "Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression." Plant Cell 10(5): 673-83.
  167. Ryoji M., Katayama H., Fusamae H., Matsuda A., Sakai F. und Utano H. (1996) "Repair of DNA damage in a mitochondrial lysate of Xenopus laevis oocytes." Nucleic Acids Res 24(20): 4057-62.
  168. Nakajima S., Sugiyama M., Iwai S., Hitomi K., Otoshi E., Kim S. T., Jiang C. Z., Todo T., Britt A. B. und Yamamoto K. (1998) "Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana." Nucleic Acids Res 26(2): 638-44.
  169. Ma L., Gao Y., Qu L., Chen Z., Li J., Zhao H. und Deng X. W. (2002) "Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis." Plant Cell 14(10): 2383-98.
  170. Meyerowitz E. M. (2001) "Prehistory and history of Arabidopsis research." Plant Physiol 125(1): 15-9.
  171. Tanaka A., Sakamoto A., Ishigaki Y., Nikaido O., Sun G., Hase Y., Shikazono N., Tano S. und Watanabe H. (2002) "An ultraviolet-B-resistant mutant with enhanced DNA repair in Arabidopsis." Plant Physiol 129(1): 64-71.
  172. Kliebenstein D. J., Lim J. E., Landry L. G. und Last R. L. (2002) "Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1." Plant Physiol 130(1): 234-43.
  173. Liu Z., Hong S. W., Escobar M., Vierling E., Mitchell D. L., Mount D. W. und Hall J. D. (2003) "Arabidopsis UVH6, a homolog of human XPD and yeast RAD3 DNA repair genes, functions in DNA repair and is essential for plant growth." Plant Physiol 132(3): 1405-14.
  174. Kato R., Hasegawa K., Hidaka Y., Kuramitsu S. und Hoshino T. (1997) "Characterization of a thermostable DNA photolyase from an extremely thermophilic bacterium, Thermus thermophilus HB27." J Bacteriol 179(20): 6499-503.
  175. Lee J. H., Bae S. H. und Choi B. S. (2000) "The Dewar photoproduct of thymidylyl(3'-->5')- thymidine (Dewar product) exhibits mutagenic behavior in accordance with the "A rule"." Proc Natl Acad Sci U S A 97(9): 4591-6.
  176. Shedge V., Arrieta-Montiel M., Christensen A. C. und Mackenzie S. A. (2007) "Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs." Plant Cell 19(4): 1251-64.
  177. Landry L. G., Stapleton A. E., Lim J., Hoffman P., Hays J. B., Walbot V. und Last R. L. (1997) "An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation." Proc Natl Acad Sci U S A 94(1): 328-32.
  178. Lee J. H., Hwang G. S. und Choi B. S. (1999) "Solution structure of a DNA decamer duplex containing the stable 3' T.G base pair of the pyrimidine(6-4)pyrimidone photoproduct [(6-4) adduct]: implications for the highly specific 3' T --> C transition of the (6-4) adduct." Proc Natl Acad Sci U S A 96(12): 6632-6.
  179. Rousseaux M. C., Ballare C. L., Giordano C. V., Scopel A. L., Zima A. M., Szwarcberg- Bracchitta M., Searles P. S., Caldwell M. M. und Diaz S. B. (1999) "Ozone depletion and UVB radiation: impact on plant DNA damage in southern South America." Proc Natl Acad Sci U S A 96(26): 15310-5.
  180. Waters L. S., Minesinger B. K., Wiltrout M. E., D'Souza S., Woodruff R. V. und Walker G. C. (2009) "Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance." Microbiol Mol Biol Rev 73(1): 134-54.
  181. Stege H., Roza L., Vink A. A., Grewe M., Ruzicka T., Grether-Beck S. und Krutmann J. (2000) "Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin." Proc Natl Acad Sci U S A 97(4): 1790-5.
  182. Lucas-Lledó J. I. und Lynch M. (2009) "Evolution of mutation rates: phylogenomic analysis of the photolyase/cryptochrome family." Mol Biol Evol 26(5): 1143-53.
  183. Moldt J., Pokorny R., Orth C., Linne U., Geisselbrecht Y., Marahiel M. A., Essen L. O. und Batschauer A. (2009) "Photoreduction of the folate cofactor in members of the photolyase family." J Biol Chem 284(32): 21670-83.
  184. Shigenaga M. K., Gimeno C. J. und Ames B. N. (1989) "Urinary 8-hydroxy-2'-deoxyguanosine as a biological marker of in vivo oxidative DNA damage." Proc Natl Acad Sci U S A 86(24): 9697-701.
  185. Jin H., Cominelli E., Bailey P., Parr A., Mehrtens F., Jones J., Tonelli C., Weisshaar B. und Martin C. (2000) "Transcriptional repression by AtMYB4 controls production of UV- protecting sunscreens in Arabidopsis." EMBO J 19(22): 6150-61.
  186. Bourre F., Renault G. und Sarasin A. (1987) "Sequence effect on alkali-sensitive sites in UV- irradiated SV40 DNA." Nucleic Acids Res 15(21): 8861-75.
  187. Mitchell D. L., Jen J. und Cleaver J. E. (1992) "Sequence specificity of cyclobutane pyrimidine dimers in DNA treated with solar (ultraviolet B) radiation." Nucleic Acids Res 20(2): 225-9.
  188. Kasai H. und Nishimura S. (1984) "Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents." Nucleic Acids Res 12(4): 2137-45.
  189. Yamane T., Wyluda B. J. und Shulman R. G. (1967) "Dihydrothymine from UV-irradiated DNA." Proc Natl Acad Sci U S A 58(2): 439-42.
  190. Warner H. R., Demple B. F., Deutsch W. A., Kane C. M. und Linn S. (1980) "Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA." Proc Natl Acad Sci U S A 77(8): 4602-6.
  191. Duncan J., Hamilton L. und Friedberg E. C. (1976) "Enzymatic degradation of uracil- containing DNA. II. Evidence for N-glycosidase and nuclease activities in unfractionated extracts of Bacillus subtilis." J Virol 19(2): 338-45.
  192. Subramanian C., Kim B. H., Lyssenko N. N., Xu X., Johnson C. H. und von Arnim A. G. (2004) "The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer." Proc Natl Acad Sci U S A 101(17): 6798-802.
  193. Cohen S. N., Chang A. C., Boyer H. W. und Helling R. B. (1973) "Construction of biologically functional bacterial plasmids in vitro." Proc Natl Acad Sci U S A 70(11): 3240-4.
  194. Donahue B. A., Yin S., Taylor J. S., Reines D. und Hanawalt P. C. (1994) "Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template." Proc Natl Acad Sci U S A 91(18): 8502-6.
  195. Szymkowski D. E., Lawrence C. W. und Wood R. D. (1993) "Repair by human cell extracts of single (6-4) and cyclobutane thymine-thymine photoproducts in DNA." Proc Natl Acad Sci U S A 90(21): 9823-7.
  196. Kim S. T., Li Y. F. und Sancar A. (1992a) "The third chromophore of DNA photolyase: Trp-277 of Escherichia coli DNA photolyase repairs thymine dimers by direct electron transfer." Proc Natl Acad Sci U S A 89(3): 900-4.
  197. Yanagawa Y., Sullivan J. A., Komatsu S., Gusmaroli G., Suzuki G., Yin J., Ishibashi T., Saijo Y., Rubio V., Kimura S., Wang J. und Deng X. W. (2004) "Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes." Genes Dev 18(17): 2172-81.
  198. LeClerc J. E., Borden A. und Lawrence C. W. (1991) "The thymine-thymine pyrimidine- pyrimidone(6-4) ultraviolet light photoproduct is highly mutagenic and specifically induces 3' thymine-to-cytosine transitions in Escherichia coli." Proc Natl Acad Sci U S A 88(21): 9685-9.
  199. Chory J. und Peto C. A. (1990) "Mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and chloroplast development in Arabidopsis." Proc Natl Acad Sci U S A 87(22): 8776-80.
  200. Pokorny R., Klar T., Hennecke U., Carell T., Batschauer A. und Essen L. O. (2008) "Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome." Proc Natl Acad Sci U S A 105(52): 21023-7.
  201. Rodgers C. T. und Hore P. J. (2009) "Chemical magnetoreception in birds: the radical pair mechanism." Proc Natl Acad Sci U S A 106(2): 353-60.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten