Publikationsserver der Universitätsbibliothek Marburg

Titel:Charakterisierung der essentiellen Eisen-Schwefel-Cluster Biosynthesekomponenten des Suf-Systems in Bacillus subtilis
Autor:Albrecht, Alexander Gerhard
Weitere Beteiligte: Marahiel, Mohamed A. (Prof.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0052
DOI: https://doi.org/10.17192/z2012.0052
URN: urn:nbn:de:hebis:04-z2012-00523
DDC:540 Chemie
Titel (trans.):Characterization of the essential iron-sulfur-cluster biosynthesis components of the Bacillus subtilis Suf-system
Publikationsdatum:2012-02-16
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Cysteindesulfurase, Bacillus subtilis, Frataxin, Eisen-Schwefel-Cluster Biosynthese, Frataxin, Iron-sulfur-cluster biosyntheses, Kinetik, Heubacillus, Biochemie, Cysteindesulfurase, Biosynthese, Bacillus subtilis, Eisen-Schwefel-Proteide

Zusammenfassung:
Eisen-Schwefel-Cluster gehören zu den wichtigsten und vielseitigsten Cofaktoren in der Natur. Viele essentielle Stoffwechselwege, wie der Citratzyklus oder die Atmungskette sind direkt abhängig von Eisen-Schwefel-Enzymen. Durch die Toxizität von freiem Eisen und Sulfid sind die Organismen auf eine streng regulierte Biosynthese der Fe/S-Cluster angewiesen. Hierfür haben sich verschiedene Maschinerien entwickelt, die in allen Fällen auf drei essentiellen Kernkomponenten aufbauen: Einem Scaffoldprotein, auf dem der Cluster assembliert wird, eine Cysteindesulfurase zur Mobilisierung von Schwefel aus Cystein und ein Eisendonor, vermutlich ein Homologes von Frataxin. In dieser Arbeit wurden die Kernkomponenten des Eisen-Schwefel-Cluster-Biosynthese-systems von Bacillus subtilis untersucht. Nach der Identifizierung des potentiellen SufCDSUB-Systems durch BLAST-Analyse, wurde durch in vivo Untersuchungen an Deletionsmutanten zunächst das putative Scaffoldprotein SufU identifiziert. Es konnte gezeigt werden, dass eine verringerte Expression von SufU drastische Auswirkungen auf das Wachstum sowie eine reduzierte Aktivität von Eisen-Schwefel-Proteinen in Bacillus subtilis zur Folge hat. Weiterhin konnte in vitro gezeigt werden, dass SufU in der Lage ist, einen Fe/S-Cluster zu binden und diesen auf apo-Fe/S-Proteine zu transferieren. Neben dem Scaffoldprotein wurde die zweite Kernkomponente der Fe/S-Cluster Biosynthese charakterisiert: die Cysteindesulfurase SufS. Hier konnte gezeigt werden, dass SufS nur sehr geringe Aktivität aufweist und erst durch das Scaffoldprotein SufU aktiviert wird. Die Aktivierung von SufS ist dabei sowohl von der Cystein- als auch von der SufU-Konzentration abhängig. Durch weitere kinetische Untersuchungen konnte gezeigt werden, dass der Sulfidtransfer zwischen SufS und SufU einem Ping-Pong Reaktionsmechanismus folgt und Cystein 41 in SufU für den Mechanismus des Sulfidtransfers eine entscheidende Rolle spielt. Abschließend wurde Fra (YdhG) charakterisiert; ein Protein, das stukturhomolog zu humanem Frataxin ist. Eine Fra-Deletionsmutante zeigte einen Phänotyp, der auf eine deutliche Störung des gesamten Eisenhaushalts hindeutet. In vitro konnte gezeigt werden, dass Fra in der Lage ist Eisen zu binden und als Eisendonor für den Fe/S-Cluster Aufbau von SufU zu wirken.

Bibliographie / References

  1. Johnson, D.C., M.C. Unciuleac, and D.R. Dean, Controlled expression and functional analysis of iron-sulfur cluster biosynthetic components within Azotobacter vinelandii. J Bacteriol, 2006. 188(21): p. 7551-61.
  2. Loewen, P.C., et al., Structure of Helicobacter pylori catalase, with and without formic acid bound, at 1.6 A resolution. Biochemistry, 2004. 43(11): p. 3089-103.
  3. Hoff, K.G., et al., Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU. J Biol Chem, 2002. 277(30): p. 27353-9.
  4. Calmels, N., et al., The first cellular models based on frataxin missense mutations that reproduce spontaneously the defects associated with Friedreich ataxia. PLoS One, 2009. 4(7): p. e6379.
  5. Bou-Abdallah, F., et al., Iron binding and oxidation kinetics in frataxin CyaY of Escherichia coli. J Mol Biol, 2004. 341(2): p. 605-15.
  6. Mühlenhoff, U., et al., A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J Biol Chem, 2003. 278(42): p. 40612-20.
  7. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10.
  8. Beinert, H., Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem, 2000. 5(1): p. 2-15.
  9. Barras, F., L. Loiseau, and B. Py, How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Adv Microb Physiol, 2005. 50: p. 41-101.
  10. Chandramouli, K. and M.K. Johnson, HscA and HscB stimulate [2Fe-2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction. Biochemistry, 2006. 45(37): p. 11087-95.
  11. Tsai, C.L. and D.P. Barondeau, Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex. Biochemistry, 2010. 49(43): p. 9132-9.
  12. Jang, S. and J.A. Imlay, Micromolar Intracellular Hydrogen Peroxide Disrupts Metabolism by Damaging Iron-Sulfur Enzymes. Journal of Biological Chemistry, 2007. 282(2).
  13. Tokumoto, U., et al., Interchangeability and distinct properties of bacterial Fe-S cluster assembly systems: functional replacement of the isc and suf operons in Escherichia coli with the nifSU-like operon from Helicobacter pylori. J Biochem, 2004. 136(2): p. 199-209.
  14. Kuwayama, H., et al., PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res, 2002. 30(2): p. E2.
  15. Tokumoto, U. and Y. Takahashi, Genetic Analysis of the isc Operon in Escherichia coli Involved in the Biogenesis of Cellular Iron-Sulfur Proteins. The Journal of biochemistry, 2001. 130(1): p. 63-71.
  16. Miethke, M., et al., Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol, 2006. 61(6): p. 1413-27.
  17. Gibson, T.J., et al., Friedreich's ataxia protein: phylogenetic evidence for mitochondrial dysfunction. Trends Neurosci, 1996. 19(11): p. 465-8.
  18. Babcock, M., et al., Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science, 1997. 276(5319): p. 1709-12.
  19. Li, D.S., et al., Knock-out of the cyaY gene in Escherichia coli does not affect cellular iron content and sensitivity to oxidants. FEBS Lett, 1999. 456(1): p. 13-6.
  20. Foury, F., A. Pastore, and M. Trincal, Acidic residues of yeast frataxin have an essential role in Fe-S cluster assembly. EMBO Rep, 2007. 8(2): p. 194-9.
  21. Rotig, A., et al., Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet, 1997. 17(2): p. 215-7.
  22. Beinert, H., M.C. Kennedy, and C.D. Stout, Aconitase as Iron-Sulfur Protein, Enzyme, and Iron-Regulatory Protein. Chem Rev, 1996. 96(7): p. 2335-2374.
  23. Drapier, J.C. and J.B.J. Hibbs, Aconitases: a class of metalloproteins highly sensitive to nitric oxide synthesis. Methods in Enzymology, 1996. 269: p. 26-36.
  24. Zheng, L., U. Baumann, and J.-L. Reymond, An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Research, 2004. 32(14): p. e115.
  25. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54.
  26. Chung, M.C., A specific iron stain for iron-binding proteins in polyacrylamide gels: application to transferrin and lactoferrin. Anal Biochem, 1985. 148(2): p. 498-502.
  27. Qi, W. and J.A. Cowan, A structural and functional homolog supports a general role for frataxin in cellular iron chemistry. Chem Commun (Camb), 2010. 46(5): p. 719- 21.
  28. Kim, L., A. Mogk, and W. Schumann, A xylose-inducible Bacillus subtilis integration vector and its application. Gene, 1996. 181(1-2): p. 71-76.
  29. Dertz, E.A., et al., Bacillibactin-mediated iron transport in Bacillus subtilis. J Am Chem Soc, 2006. 128(1): p. 22-3.
  30. Andrews, S.C., A.K. Robinson, and F. Rodriguez-Quinones, Bacterial iron homeostasis. FEMS Microbiol Rev, 2003. 27(2-3): p. 215-37.
  31. Loiseau, L., et al., Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem, 2003. 278(40): p. 38352-9.
  32. Schaeffer, P., J. Millet, and J.P. Aubert, Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A, 1965. 54(3): p. 704-11.
  33. Antonkine, M.L., et al., Chemical rescue of a site-modified ligand to a [4Fe-4S] cluster in PsaC, a bacterial-like dicluster ferredoxin bound to photosystem I. Biochimica et Biophysica Acta, Bioenergetics, 2007. 1767(6): p. 712-724.
  34. Pohl, S., et al., Combined proteomic and transcriptomic analysis of the response of Bacillus anthracis to oxidative stress. Proteomics, 2011. 11(15): p. 3036-55.
  35. Lu, J., et al., Complementary roles of SufA and IscA in the biogenesis of iron-sulfur clusters in Escherichia coli. Biochem J, 2008. 409(2): p. 535-43.
  36. Kitaoka, S., et al., Crystal structure of Escherichia coli SufC, an ABC-type ATPase component of the SUF iron-sulfur cluster assembly machinery. FEBS Lett, 2006. 580(1): p. 137-43.
  37. Dhe-Paganon, S., et al., Crystal structure of human frataxin. J Biol Chem, 2000. 275(40): p. 30753-6.
  38. Cupp-Vickery, J.R., et al., Crystal Structure of the Molecular Chaperone HscA Substrate Binding Domain Complexed with the IscU Recognition Peptide ELPPVKIHC. Journal of Molecular Biology, 2004. 342(4): p. 1265-1278.
  39. Volbeda, A., et al., Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature, 1995. 373(6515): p. 580-7.
  40. Bugdahn, N., et al., Direct identification of a siderophore import protein using synthetic petrobactin ligands. Angew Chem Int Ed Engl, 2010. 49(52): p. 10210-3.
  41. Ding, H., et al., Distinct iron binding property of two putative iron donors for the iron- sulfur cluster assembly: IscA and the bacterial frataxin ortholog CyaY under physiological and oxidative stress conditions. J Biol Chem, 2007. 282(11): p. 7997- 8004.
  42. Cunningham, R.P., et al., Endonuclease III is an iron-sulfur protein. Biochemistry, 1989. 28(10): p. 4450-5.
  43. Riboldi, G.P., J.S. de Oliveira, and J. Frazzon, Enterococcus faecalis SufU scaffold protein enhances SufS desulfurase activity by acquiring sulfur from its cysteine-153. Biochim Biophys Acta, 2011.
  44. Copeland, R.A., Enzymes : a practical introduction to structure, mechanism, and data analysis. 2. Aufl.. ed2000, New York {[u.a.]: Wiley. XVII, 397 S.
  45. Demple, B., H. Ding, and M. Jorgensen, Escherichia coli SoxR protein: sensor/transducer of oxidative stress and nitric oxide. Methods Enzymol, 2002. 348: p. 355-64.
  46. Kobayashia, K., Essential Bacillus subtilis genes. PNAS, 2003. 100(8): p. 4678-4683.
  47. Ai, C., et al., Expression, Purification, and Characterization of an Iron Chaperon Protein CyaY from Acidithiobacillus ferrooxidans. Curr Microbiol, 2010.
  48. Lill, R., Function and biogenesis of iron-sulphur proteins. Nature, 2009. 460: p. 831- 838.
  49. Hunsicker-Wang, L.M., et al., High-resolution structure of the soluble, respiratory- type Rieske protein from Thermus thermophilus: analysis and comparison. Biochemistry, 2003. 42(24): p. 7303-17.
  50. Jang, S. and J.A. Imlay, Hydrogen peroxide inactivates the Escherichia coli Isc iron- sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol, 2010. 78(6): p. 1448-67.
  51. Kornhaber, G.J., et al., Identification of zinc-ligated cysteine residues based on 13Calpha and 13Cbeta chemical shift data. J Biomol NMR, 2006. 34(4): p. 259-69.
  52. Lee, J.H., W.S. Yeo, and J.H. Roe, Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol Microbiol, 2004. 51(6): p. 1745-55.
  53. Raulfs, E.C., et al., In vivo iron–sulfur cluster formation. PNAS, 2008. 105(25): p. 8591-8596.
  54. Yoon, T. and J.A. Cowan, Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J Am Chem Soc, 2003. 125(20): p. 6078-84.
  55. Fontecave, M., Iron-sulfur clusters: ever-expanding roles. Nat Chem Biol, 2006. 2(4): p. 171-4.
  56. Beinert, H., R.H. Holm, and E. Munck, Iron-sulfur clusters: nature's modular, multipurpose structures. Science, 1997. 277(5326): p. 653-9.
  57. Wollers, S., et al., Iron-sulfur (Fe-S) cluster assembly: the SufBCD complex is a new type of Fe-S scaffold with a flavin redox cofactor. J Biol Chem, 2010. 88.
  58. Yeo, W.S., et al., IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol Microbiol, 2006. 61(1): p. 206-18. 17. Seefeldt, L.C., B.M. Hoffman, and D.R. Dean, Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem, 2009. 78: p. 701-22.
  59. Selbach, B., E. Earles, and P.C. Dos Santos, Kinetic analysis of the bisubstrate cysteine desulfurase SufS from Bacillus subtilis. Biochemistry, 2010. 49(40): p. 8794- 802.
  60. Holleman, A.F. and N. Wiberg, Lehrbuch der anorganischen Chemie. 102., stark umgearb. und verb. Aufl. / von Nils Wiberg. ed2007, Berlin {[u.a.]: de Gruyter. XXXIX, 2149 S.
  61. Hausladen, A. and I. Fridovich, Measuring nitric oxide and superoxide: rate constants for aconitase reactivity. Methods in Enzymology, 1996. 269: p. 37-41.
  62. Rose, I.A. and E.L. O'Connell, Mechanism of Aconitase Action. Journal of Biological Chemistry, 1967. 242(8): p. 1870-1879.
  63. Lecerof, D., et al., Metal binding to Bacillus subtilis ferrochelatase and interaction between metal sites. J Biol Inorg Chem, 2003. 8(4): p. 452-8.
  64. Moore, C.M. and J.D. Helmann, Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol, 2005. 8(2): p. 188-95.
  65. Lenaz, G., et al., Mitochondrial Complex I: structural and functional aspects. Biochim Biophys Acta, 2006. 1757(9-10): p. 1406-20.
  66. Sambrook, J., E.F. Fritsch, and T. Maniatis, Molecular Cloning: A laboratory manual1989, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  67. Wada, K., et al., Molecular dynamism of Fe-S cluster biosynthesis implicated by the structure of the SufC(2)-SufD(2) complex. J Mol Biol, 2009. 387(1): p. 245-58. 85.
  68. Zhang, Y., et al., Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria. J Biol Chem, 2006. 281(32): p. 22493-502.
  69. Bothe, H., et al., Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev, 2010. 74(4): p. 529-51.
  70. Ayala-Castro, C., A. Saini, and F.W. Outten, Fe-S Cluster Assembly Pathways in Bacteria. Microbiology and Molecular Biology Reviews, 2008. 72(1): p. 110-125. 93. Partridge, J.D., et al., NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol, 2009. 73(4): p. 680-94.
  71. Wach, A., PCR-Synthesis of Marker Cassettes with Long Flanking Homology Regions for Gene Disruptions in S. cerevisiae. Yeast, 1996. 12: p. 259-265.
  72. Tapley, T.L. and L.E. Vickery, Preferential Substrate Binding Orientation by the Molecular Chaperone HscA. Journal of Biological Chemistry, 2004. 279(27): p. 28435-28442.
  73. Hatefi, Y. and D. Stiggall, Preparation and properties of succinate: ubiquinone oxidoreductase (complex II). Methods in Enzymology, 1978. 53: p. 21-27.
  74. Miethke, M. and M.A. Marahiel, Siderophore based iron Acquisition and Pathogen Control. Microbiology and Molecular Biology Reviews, 2007. 71(3): p. 413.
  75. Dertz, E.A., A. Stintzi, and K.N. Raymond, Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum. J Biol Inorg Chem, 2006. 11(8): p. 1087-97.
  76. Nair, M., et al., Solution structure of the bacterial frataxin ortholog, CyaY: mapping the iron binding sites. Structure, 2004. 12(11): p. 2037-48.
  77. Herzberg, C., et al., SPINE: a method for the rapid detection and analysis of protein- protein interactions in vivo. Proteomics, 2007. 7(22): p. 4032-5.
  78. Peuckert, F., et al., Structural basis and stereochemistry of triscatecholate siderophore binding by FeuA. Angew Chem Int Ed Engl, 2009. 48(42): p. 7924-7.
  79. Liu, J., et al., Structural characterization of an iron-sulfur cluster assembly protein IscU in a zinc-bound form. Proteins, 2005. 59(4): p. 875-81.
  80. Johnson, D.C., et al., Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem, 2005. 74: p. 247-81.
  81. Ohnishi, T., et al., Studies on iron-sulfur proteins in the site I region of the respiratory chain in pigeon heart mitochondria and submitochondrial particles. Biochem Biophys Res Commun, 1972. 46(4): p. 1631-8.
  82. Bonomi, F., et al., Studies on the Mechanism of Catalysis of Iron−Sulfur Cluster Transfer from IscU[2Fe2S] by HscA/HscB Chaperones. Biochemistry, 2008. 47(48): p. 12795–12801.
  83. Ollagnier-de-Choudens, S., Y. Sanakis, and M. Fontecave, SufA/IscA: reactivity studies of a class of scaffold proteins involved in [Fe-S] cluster assembly. J Biol Inorg Chem, 2004. 9(7): p. 828-38.
  84. Notredame, C., D.G. Higgins, and J. Heringa, T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol, 2000. 302(1): p. 205-17.
  85. Stülke, J., R. Hanschke, and M. Hecker, Temporal activation of β-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool. Journal of general microbiology, 1993. 139: p. 2041-2045.
  86. Gross, S.R., R.O. Burns, and H.E. Umbarger, The Biosynthesis of Leucine. II. The Enzymic Isomerization of β-Carboxy-β-Hydroxyisocaproate and α-Hydroxy-β- Carboxyisocaproate. Biochemistry, 1963. 2(5): p. 1046–1052.
  87. Netz, D.J.A., et al., The Cfd1–Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nature Chemical Biology, 2007. 3: p. 278 -286.
  88. Richardson, D.R., et al., The ins and outs of mitochondrial iron-loading: the metabolic defect in Friedreich's ataxia. J Mol Med, 2010. 88(4): p. 323-9.
  89. Eccleston, J.F., et al., The kinetic mechanism of the SufC ATPase: the cleavage step is accelerated by SufB. J Biol Chem, 2006. 281(13): p. 8371-8.
  90. Schroeter, R., et al., The peroxide stress response of Bacillus licheniformis. Proteomics, 2011. 11(14): p. 2851-66.
  91. Peuckert, F., et al., The siderophore binding protein FeuA shows limited promiscuity toward exogenous triscatecholates. Chem Biol, 2011. 18(7): p. 907-19.
  92. Outten, F.W., et al., The SufE Protein and the SufBCD Complex Enhance SufS Cysteine Desulfurase Activity as Part of a Sulfur Transfer Pathway for Fe-S Cluster Assembly in Escherichia coli. Journal of Biological Chemistry, 2003. 78(46): p. 45713-45719.
  93. Hakansson, K.O., M. Brugna, and L. Tasse, The three-dimensional structure of catalase from Enterococcus faecalis. Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 8): p. 1374-80.
  94. Musco, G., et al., Towards a structural understanding of Friedreich's ataxia: the solution structure of frataxin. Structure, 2000. 8(7): p. 695-707.
  95. Pastore, C., et al., Understanding the binding properties of an unusual metal-binding protein--a study of bacterial frataxin. FEBS J, 2007. 274(16): p. 4199-210.
  96. Schwyn, B. and J.B. Neilands, Universal chemical assay for the detection and determination of siderophores. Anal Biochem, 1987. 160(1): p. 47-56.
  97. Albrecht, A., Untersuchungen zur Biosynthese von Eisen-Schwefel-Clustern in Bacillus subtilis, in Fachbereich Chemie2007, Philipps-Universität Marburg: Marburg.
  98. Landmann, H., Untersuchungen zur Identifizierung und Charakterisierung von Metalloproteinen aus Bacillus subtilis, in Chemie/Biochemie2011, Philipps- Universität Marburg: Marburg. p. 128.
  99. Hansson, M.D., M. Lindstam, and M. Hansson, Crosstalk between metal ions in Bacillus subtilis ferrochelatase. J Biol Inorg Chem, 2006. 11(3): p. 325-33.
  100. Hansson, M.D., et al., Amino acid residues His183 and Glu264 in Bacillus subtilis ferrochelatase direct and facilitate the insertion of metal ion into protoporphyrin IX. Biochemistry, 2007. 46(1): p. 87-94.
  101. Prischi, F., et al., Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly. Nat Commun, 2010. 1: p. 95.
  102. Lill, R. and U. Muhlenhoff, Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem, 2008. 77: p. 669-700.
  103. Riboldi, G.P., H. Verli, and J. Frazzon, Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein. BMC Biochem, 2009. 10: p. 3.
  104. Pohl, T., et al., Effects of the deletion of the Escherichia coli frataxin homologue CyaY on the respiratory NADH:ubiquinone oxidoreductase. BMC Biochem, 2007. 8: p. 13.
  105. Hoff, K.G., J.R. Cupp-Vickery, and L.E. Vickery, Contributions of the LPPVK Motif of the Iron-Sulfur Template Protein IscU to Interactions with the Hsc66-Hsc20 Chaperone System. Journal of Biological Chemistry, 2003. 278(39): p. 37582-37589. 70.
  106. Macomber, L. and R.P. Hausinger, Mechanisms of nickel toxicity in microorganisms. Metallomics, 2011.
  107. Gerber, J., U. Muhlenhoff, and R. Lill, An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep, 2003. 4(9): p. 906-11.
  108. Vivas, E., E. Skovran, and D.M. Downs, Salmonella enterica strains lacking the frataxin homolog CyaY show defects in Fe-S cluster metabolism in vivo. J Bacteriol, 2006. 188(3): p. 1175-9.
  109. Ollinger, J., et al., Role of the Fur Regulon in Iron Transport in Bacillus subtilis. Journal of Bacteriology, 2006. 188(10): p. 3664.
  110. Yuvaniyama, P., et al., NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. PNAS, 2000. 97(2): p. 599-604.
  111. Miethke, M., et al., Iron starvation triggers the stringent response and induces amino acid biosynthesis for bacillibactin production in Bacillus subtilis. J Bacteriol, 2006. 188(24): p. 8655-7.
  112. Loiseau, L., et al., ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in Escherichia coli. Proc Natl Acad Sci U S A, 2007. 104(34): p. 13626-31.
  113. Karimova, G., et al., A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A, 1998. 95(10): p. 5752-6.
  114. Carrano, C.J. and K.N. Raymond, Coordination chemistry of microbial iron transport compounds: rhodotorulic acid and iron uptake in Rhodotorula pilimanae. J Bacteriol, 1978. 136(1): p. 69-74.
  115. Petrovic, A., et al., Hydrodynamic characterization of the SufBC and SufCD complexes and their interaction with fluorescent adenosine nucleotides. Protein Science, 2008. 17(7): p. 1264 -1274.
  116. Gupta, V., et al., Native Escherichia coli SufA, coexpressed with SufBCDSE, purifies as a [2Fe-2S] protein and acts as an Fe-S transporter to Fe-S target enzymes. J Am Chem Soc, 2009. 131(17): p. 6149-53.
  117. Vinella, D., et al., Iron-sulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-type carriers. PLoS Genet, 2009. 5(5): p. e1000497. 65.
  118. Nesbit, A.D., et al., Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation. J Mol Biol, 2009. 387(1): p. 28-41. 15.
  119. Mulkidjanian, A.Y. and M.Y. Galperin, On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct, 2009. 4: p. 27.
  120. Kim, J.H., et al., Structure and dynamics of the iron-sulfur cluster assembly scaffold protein IscU and its interaction with the cochaperone HscB. Biochemistry, 2009. 48(26): p. 6062-71.
  121. Chahal, H.K., et al., The SufBCD Fe-S scaffold complex interacts with SufA for Fe-S cluster transfer. Biochemistry, 2009. 48(44): p. 10644-53.
  122. Chillappagari, S., et al., Copper stress affects iron homeostasis by destabilizing iron- sulfur cluster formation in Bacillus subtilis. J Bacteriol, 2010. 192(10): p. 2512-24.
  123. Ye, H. and T.A. Rouault, Human Iron-Sulfur Cluster Assembly, Cellular Iron Homeostasis, and Disease. Biochemistry, 2010. 77.
  124. Stemmler, T.L., et al., Frataxin and mitochondrial FeS cluster biogenesis. J Biol Chem, 2010. 285(35): p. 26737-43.
  125. Wang, W., et al., In vivo evidence for the iron-binding activity of an iron-sulfur cluster assembly protein IscA in Escherichia coli. Biochem J, 2010. 432(3): p. 429-36. 66.
  126. Saini, A., et al., SufD and SufC ATPase activity are required for iron acquisition during in vivo Fe-S cluster formation on SufB. Biochemistry, 2010. 49(43): p. 9402- 12.
  127. Gakh, O., et al., Normal and Friedreich ataxia cells express different isoforms of frataxin with complementary roles in iron-sulfur cluster assembly. J Biol Chem, 2010. 285(49): p. 38486-501.
  128. Iannuzzi, C., et al., The Role of CyaY in Iron Sulfur Cluster Assembly on the E. coli IscU Scaffold Protein. PLoS One, 2011. 6(7): p. e21992.
  129. Schwartz, C.J., et al., IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc Natl Acad Sci U S A, 2001. 98(26): p. 14895-900.
  130. Siegel, L.M., A Direct Microdetermination for Sulfide. Analytical Biochemistry, 1965. 11: p. 126-132.
  131. Kispal, G., et al., The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Letters, 1997. 418(13): p. 346-350.
  132. Huet, G., M. Daffe, and I. Saves, Identification of the Mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of [Fe-S] cluster assembly: evidence for its implication in the pathogen's survival. J Bacteriol, 2005. 187(17): p. 6137-46.
  133. Andreoletti, P., et al., High-resolution structure and biochemical properties of a recombinant Proteus mirabilis catalase depleted in iron. Proteins, 2003. 50(2): p. 261- 71.
  134. Fontecave, M., et al., Mechanisms of iron-sulfur cluster assembly: the SUF machinery. J Biol Inorg Chem, 2005. 10(7): p. 713-21.
  135. Sendra, M., et al., The SUF iron-sulfur cluster biosynthetic machinery: sulfur transfer from the SUFS-SUFE complex to SUFA. FEBS Lett, 2007. 581(7): p. 1362-8.
  136. Ranquet, C., et al., Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins. J Biol Chem, 2007. 282(42): p. 30442-51.
  137. Adinolfi, S., et al., Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS. Nat Struct Mol Biol, 2009. 16(4): p. 390-6.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten