Publikationsserver der Universitätsbibliothek Marburg

Titel:Rolle von TRPM8 und TRPA1 Kanälen bei der Regulation des Gefäßtonus
Autor:Kurtz, Felix
Weitere Beteiligte: Köhler, Ralf (Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0791
URN: urn:nbn:de:hebis:04-z2011-07918
DOI: https://doi.org/10.17192/z2011.0791
DDC: Medizin
Titel (trans.):Role of TRPM8 and TRPA1 channels for the regulation of the vascular tone
Publikationsdatum:2011-12-19
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Gefäßtonus, ion-channels, Ionenkanäle, vascular-tone ,, TRP, TRPM8, Patch-Clamp-Methode, TRPA1, gap-junctions, TRP-Kanäle, Elektrophysiologie, Endothel, EDHF, vessel

Zusammenfassung:
Über den endothelabhängigen Hyperpolarisation-Faktor (EDHF) induziert das Gefäßendothel eine Hyperpolarisation der direkt benachbarten Gefäßmuskelzellen und bewirkt so deren Relaxation. Gleichwohl die chemische Idendität des EDHF noch nicht geklärt ist, geht man davon aus, dass die EDHF Wirkung zunächst durch eine Aktivierung calciumregulierter Kaliumkanäle (KCa) im Endothel initiiert wird. Der hierfür erforderliche Anstieg der lokalen Calciumkonzentration in der Umgebung von KCa Kanälen kann über verschiedene Signalwege induziert werden. Ein bedeutsamer Weg dabei ist die Aktivierung von plasmalemmalen Kationenkanälen aus der Transient-Rezeptor-Potential (TRP)- Kanalfamilie, welche einen lokalen transmembranären Calciumeinstrom ermöglichen. Aufgrund präliminärer Literaturhinweise auf eine mögliche bedeutsame Rolle von TRPM8 und TRPA1 Kanälen für die endothelvermittelte Gefäßdilatation wurde in dieser Arbeit die Funktion dieser Kanäle als potentielle EDHF Induktoren pharmakologisch und elektrophysiologisch charakterisiert. Dazu wurde zunächst die Wirkung etablierter TRMP8 Aktivatoren (Menthol und Icilin) und eines TRPA1 Aktivators (AITC) auf den Gefäßwiderstand isoliert perfundierter Ateriae carotides der Maus untersucht. Alle genannten Substanzen induzierten konzentrationsabhängig Dilatationen, in unterschiedlichem Ausmaß, wobei die stärkste Dilatation mit Icilin zu beobachten war. Die gefäßdilatierende Wirkung dieser Substanzen blieb allerdings auch nach mechanischer Endotheldenudierung erhalten, was für eine endothelunabhängige Dilatation spricht. In Einklang damit konnten mit den genannten TRP-Kanalaktivatoren auch keine TRP-charakteristischen Transmembranströme in isolierten Endothelzellen aus den Arteriae carotides induziert werden, was gegen eine wesentliche funktionelle Rolle von TRMP8 und TRPA1 Kanälen in Endothelzellen spricht. Beobachtet wurde die Aktivierung eines kräftigen Kationenausstromes durch Menthol in isolierten Endothelzellen, sowie eine nahezu komplette Hemmung eines Kationeneinstromes (wahrscheinlich L-Typ Calciumkanäle) durch Menthol in kultivierten glatten Gefäßmuskelzellen (A7R5 Zellen). Die Hemmung der L-Typ Calciumkanäle durch Menthol könnte eine Erklärung für endothelunabhängige vasodilatierende Wirkung von Menthol bieten. Eine Beteiligung endothelialer TRPM8 und TRPA1 Kanäle bei der Regulation des Gefäßtonus konnte allerdings im Rahmen dieser Arbeit nicht bestätigt werden.

Bibliographie / References

  1. Hartmannsgruber, V., W. T. Heyken, et al. (2007). "Arterial response to shear stress critically depends on endothelial TRPV4 expression." PLoS ONE 2(9): e827.
  2. de Wit, C., F. Roos, et al. (2000). "Impaired conduction of vasodilation along arterioles in connexin40-deficient mice." Circ Res 86(6): 649-55.
  3. Yao, X. and C. J. Garland (2005). "Recent developments in vascular endothelial cell transient receptor potential channels." Circ Res 97(9): 853-63.
  4. Bautista, D. M., J. Siemens, et al. (2007). "The menthol receptor TRPM8 is the principal detector of environmental cold." Nature 448(7150): 204-8.
  5. Kurtz, L., F. Schweda, et al. (2007). "Lack of connexin 40 causes displacement of renin-producing cells from afferent arterioles to the extraglomerular mesangium." J Am Soc Nephrol 18(4): 1103-11.
  6. Shimokawa, H., H. Yasutake, et al. (1996). "The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation." J Cardiovasc Pharmacol 28(5): 703- 11.
  7. Brahler, S., A. Kaistha, et al. (2009). "Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension." Circulation 119(17): 2323-32.
  8. Busse, R., G. Edwards, et al. (2002). "EDHF: bringing the concepts together." Trends Pharmacol Sci 23(8): 374-80.
  9. Neher, E., B. Sakmann, et al. (1978). "The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes." Pflugers Arch 375(2): 219-28.
  10. Bidaux, G., M. Roudbaraki, et al. (2005). "Evidence for specific TRPM8 expression in human prostate secretory epithelial cells: functional androgen receptor requirement." Endocr Relat Cancer 12(2): 367-82.
  11. Kwan, H. Y., Y. Huang, et al. (2007). "TRP channels in endothelial function and dysfunction." Biochim Biophys Acta 1772(8): 907-14.
  12. Fonfria, E., P. R. Murdock, et al. (2006). "Tissue distribution profiles of the human TRPM cation channel family." J Recept Signal Transduct Res 26(3): 159-78.
  13. Zhang, L. and G. J. Barritt (2006). "TRPM8 in prostate cancer cells: a potential diagnostic and prognostic marker with a secretory function?" Endocr Relat Cancer 13(1): 27-38.
  14. Szentandrassy, N., G. Szigeti, et al. (2004). "Effect of thymol on calcium handling in mammalian ventricular myocardium." Life Sci 74(7): 909-21.
  15. Carter, T. D. and D. Ogden (1994). "Acetylcholine-stimulated changes of membrane potential and intracellular Ca2+ concentration recorded in endothelial cells in situ in the isolated rat aorta." Pflugers Arch 428(5-6): 476-84.
  16. Aires, V., A. Hichami, et al. (2007). "Activation of TRPC6 calcium channels by diacylglycerol (DAG)-containing arachidonic acid: a comparative study with DAG-containing docosahexaenoic acid." Biochimie 89(8): 926-37.
  17. Colburn, R. W., M. L. Lubin, et al. (2007). "Attenuated cold sensitivity in TRPM8 null mice." Neuron 54(3): 379-86.
  18. Montell, C., L. Birnbaumer, et al. (2002). "A unified nomenclature for the superfamily of TRP cation channels." Mol Cell 9(2): 229-31.
  19. Moncada, S., R. M. Palmer, et al. (1989). "Biosynthesis of nitric oxide from L- arginine. A pathway for the regulation of cell function and communication." Biochem Pharmacol 38(11): 1709-15.
  20. Ledoux, J., M. E. Werner, et al. (2006). "Calcium-activated potassium channels and the regulation of vascular tone." Physiology (Bethesda) 21: 69-78.
  21. Landsberg, J. W. and J. X. Yuan (2004). "Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation." News Physiol Sci 19: 44-50.
  22. Bodding, M., U. Wissenbach, et al. (2007). "Characterisation of TRPM8 as a pharmacophore receptor." Cell Calcium 42(6): 618-28.
  23. Rawls, S. M., T. Gomez, et al. (2007). "Differential behavioral effect of the TRPM8/TRPA1 channel agonist icilin (AG-3-5)." Eur J Pharmacol 575(1-3): 103-4.
  24. Fujimoto, T., K. T. Tokuyasu, et al. (1987). "Direct morphological demonstration of the coexistence of vimentin and desmin in the same intermediate filaments of vascular smooth muscle cells." J Submicrosc Cytol 19(1): 1-9.
  25. Schmid, E., M. Osborn, et al. (1982). "Distribution of vimentin and desmin filaments in smooth muscle tissue of mammalian and avian aorta." Exp Cell Res 137(2): 329-40.
  26. Duncan, L. M., J. Deeds, et al. (1998). "Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis." Cancer Res 58(7): 1515- 20.
  27. Fiscus, R. R., R. M. Rapoport, et al. (1983). "Endothelium-dependent and nitrovasodilator-induced activation of cyclic GMP-dependent protein kinase in rat aorta." J Cyclic Nucleotide Protein Phosphor Res 9(6): 415-25.
  28. Feletou, M. and P. M. Vanhoutte (1988). "Endothelium-dependent hyperpolarization of canine coronary smooth muscle." Br J Pharmacol 93(3): 515-24.
  29. Rapoport, R. M., M. B. Draznin, et al. (1983). "Endothelium-dependent vasodilator- and nitrovasodilator-induced relaxation may be mediated through cyclic GMP formation and cyclic GMP-dependent protein phosphorylation." Trans Assoc Am Physicians 96: 19-30.
  30. Archer, S. L., F. S. Gragasin, et al. (2003). "Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels." Circulation 107(5): 769-76.
  31. Benedikt, J., J. Teisinger, et al. (2007). "Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4,5-bisphosphate." J Neurochem 100(1): 211-24.
  32. Hayashi, T., T. Kondo, et al. (2009). "Expression of the TRPM8-immunoreactivity in dorsal root ganglion neurons innervating the rat urinary bladder." Neurosci Res.
  33. Panner, B. J. and C. R. Honig (1967). "Filament ultrastructure and organization in vertebrate smooth muscle. Contraction hypothesis based on localization of actin and myosin." J Cell Biol 35(2): 303-21.
  34. Liu, B. and F. Qin (2005). "Functional control of cold-and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate." J Neurosci 25(7): 1674-81.
  35. Malencik, D. A., S. R. Anderson, et al. (1982). "Functional interactions between smooth muscle myosin light chain kinase and calmodulin." Biochemistry 21(17): 4031-9.
  36. McKemy, D. D. (2005). "How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation." Mol Pain 1: 16.
  37. Khanna, R., M. C. Chang, et al. (1999). "hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation." J Biol Chem 274(21): 14838-49.
  38. Zhiqi, S., M. H. Soltani, et al. (2004). "Human melastatin 1 (TRPM1) is regulated by MITF and produces multiple polypeptide isoforms in melanocytes and melanoma." Melanoma Res 14(6): 509-16.
  39. McKemy, D. D., W. M. Neuhausser, et al. (2002). "Identification of a cold receptor reveals a general role for TRP channels in thermosensation." Nature 416(6876): 52-8.
  40. Thorneloe, K. S. and M. T. Nelson (2005). "Ion channels in smooth muscle: regulators of intracellular calcium and contractility." Can J Physiol Pharmacol 83(3): 215-42.
  41. Rittenhouse, S. E. and J. P. Sasson (1985). "Measurement of IP3 mass as a monitor of phospholipase C activation in stimulated human platelets." Nouv Rev Fr Hematol 27(4): 239-42.
  42. Xia, X. M., B. Fakler, et al. (1998). "Mechanism of calcium gating in small- conductance calcium-activated potassium channels." Nature 395(6701): 503- 7.
  43. Liu, Y., M. L. Lubin, et al. (2006). "Molecular identification and functional characterization of a temperature-sensitive transient receptor potential channel (TRPM8) from canine." Eur J Pharmacol 530(1-2): 23-32.
  44. Carvajal, J. A., A. M. Germain, et al. (2000). "Molecular mechanism of cGMP- mediated smooth muscle relaxation." J Cell Physiol 184(3): 409-20.
  45. Erster Abschnitt der ärztlichen Prüfung Oktober 2006 – Juli 2009 klinischer Studienabschnitt, Wahlfach " Niere und Transplantationsmedizin " Seit Dezember 2007 experimentelle Doktorarbeit in der Klinik für Nephrologie/ Biomedizinisches Forschungszentrum des Uniklinikums Marburg in der Arbeitsgruppe von Prof.
  46. Persönliche Daten: Name: Kurtz Vorname: Felix Geburtsdatum: 01.10.1984
  47. Moncada, S. and J. R. Vane (1978). "Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin." Pharmacol Rev 30(3): 293-331.
  48. Adelstein, R. S., M. A. Conti, et al. (1980). "Regulation of myosin light chain kinase by reversible phosphorylation and calcium-calmodulin." Ann N Y Acad Sci 356: 142-50.
  49. Lopez, D., A. Rodriguez-Sinovas, et al. (2009). "Replacement of Cx43 by Cx32 in a knock-in mice model attenuates aortic EDHF-mediated relaxation." Exp Physiol.
  50. Rees, D. D., R. M. Palmer, et al. (1989). "Role of endothelium-derived nitric oxide in the regulation of blood pressure." Proc Natl Acad Sci U S A 86(9): 3375-8.
  51. Fill, M. and J. A. Copello (2002). "Ryanodine receptor calcium release channels." Physiol Rev 82(4): 893-922.
  52. Heumann, H. G. (1973). "Smooth muscle: contraction hypothesis based on the arrangement of actin and myosin filaments in different states of contraction." Philos Trans R Soc Lond B Biol Sci 265(867): 213-7.
  53. Chappey, O., M. P. Wautier, et al. (1997). "[Structure and functions of the endothelium]." Rev Prat 47(20): 2223-6.
  54. Owsianik, G., D. D'Hoedt, et al. (2006). "Structure-function relationship of the TRP channel superfamily." Rev Physiol Biochem Pharmacol 156: 61-90.
  55. Kamenskaia, N. L. (1955). "[Structure of the endothelium of the renal arteries and veins.]." Dokl Akad Nauk SSSR 103(3): 495-8.
  56. Studium der Humanmedizin an der Philipps-Universität Marburg September 2006
  57. Longbottom, E. R., M. J. Luckas, et al. (2000). "The effects of inhibiting myosin light chain kinase on contraction and calcium signalling in human and rat myometrium." Pflugers Arch 440(2): 315-21.
  58. Chuang, H. H., W. M. Neuhausser, et al. (2004). "The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel." Neuron 43(6): 859-69.
  59. Montell, C., L. Birnbaumer, et al. (2002). "The TRP channels, a remarkably functional family." Cell 108(5): 595-8.
  60. Johnson, C. D., D. Melanaphy, et al. (2009). "Transient receptor potential melastatin 8 (TRPM8) channel involvement in the regulation of vascular tone." Am J Physiol Heart Circ Physiol.
  61. Kwan, K. Y., A. J. Allchorne, et al. (2006). "TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction." Neuron 50(2): 277-89.
  62. Di, A. and A. B. Malik "TRP channels and the control of vascular function." Curr Opin Pharmacol 10(2): 127-32.
  63. Andersson, D. A., H. W. Chase, et al. (2004). "TRPM8 activation by menthol, icilin, and cold is differentially modulated by intracellular pH." J Neurosci 24(23): 5364-9.
  64. Dhaka, A., A. N. Murray, et al. (2007). "TRPM8 is required for cold sensation in mice." Neuron 54(3): 371-8.
  65. Nealen, M. L., M. S. Gold, et al. (2003). "TRPM8 mRNA is expressed in a subset of cold-responsive trigeminal neurons from rat." J Neurophysiol 90(1): 515-20.
  66. Moncada, S. and J. R. Vane (1978). "Unstable metabolites of arachidonic acid and their role in haemostasis and thrombosis." Br Med Bull 34(2): 129-35.
  67. Gollasch, M. and M. T. Nelson (1997). "Voltage-dependent Ca2+ channels in arterial smooth muscle cells." Kidney Blood Press Res 20(6): 355-71.
  68. Kwan, K. Y. and D. P. Corey (2009). "Burning cold: involvement of TRPA1 in noxious cold sensation." J Gen Physiol 133(3): 251-6.
  69. Furchgott, R. F. and J. V. Zawadzki (1980). "The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine." Nature 288(5789): 373-6.
  70. Haeseler, G., D. Maue, et al. (2002). "Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol." Eur J Anaesthesiol 19(8): 571-9.
  71. Magyar, J., N. Szentandrassy, et al. (2002). "Effects of thymol on calcium and potassium currents in canine and human ventricular cardiomyocytes." Br J Pharmacol 136(2): 330-8.
  72. Behrendt, H. J., T. Germann, et al. (2004). "Characterization of the mouse cold- menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay." Br J Pharmacol 141(4): 737-45.
  73. Chen, G., H. Suzuki, et al. (1988). "Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels." Br J Pharmacol 95(4): 1165-74.
  74. Rees, D. D., R. M. Palmer, et al. (1989). "A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation." Br J Pharmacol 96(2): 418-24.
  75. Guo, R. W. and L. Huang (2008). "New insights into the activation mechanism of store-operated calcium channels: roles of STIM and Orai." J Zhejiang Univ Sci B 9(8): 591-601.
  76. Mizuno, Y., E. Isotani, et al. (2008). "Myosin light chain kinase activation and calcium sensitization in smooth muscle in vivo." Am J Physiol Cell Physiol 295(2): C358-64.
  77. Daniels, R. L., Y. Takashima, et al. (2009). "Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate." J Biol Chem 284(3): 1570-82.
  78. Karashima, Y., K. Talavera, et al. (2009). "TRPA1 acts as a cold sensor in vitro and in vivo." Proc Natl Acad Sci U S A 106(4): 1273-8.
  79. Vriens, J., B. Nilius, et al. (2008). "Herbal Compounds and Toxins Modulating TRP Channels." Curr Neuropharmacol 6(1): 79-96.
  80. Figueroa, X. F. and B. R. Duling (2009). "Gap junctions in the control of vascular function." Antioxid Redox Signal 11(2): 251-66.
  81. Earley, S., A. L. Gonzales, et al. (2009). "Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+-Activated K+ channels." Circ Res 104(8): 987-94.
  82. Bredt, D. S. and S. H. Snyder (1990). "Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme." Proc Natl Acad Sci U S A 87(2): 682-5.
  83. Voets, T. and B. Nilius (2003). "The pore of TRP channels: trivial or neglected?" Cell Calcium 33(5-6): 299-302.
  84. Nilius, B., J. Prenen, et al. (2005). "The selectivity filter of the cation channel TRPM4." J Biol Chem 280(24): 22899-906.
  85. Nilius, B. and G. Droogmans (2001). "Ion channels and their functional role in vascular endothelium." Physiol Rev 81(4): 1415-59.
  86. Karashima, Y., N. Damann, et al. (2007). "Bimodal action of menthol on the transient receptor potential channel TRPA1." J Neurosci 27(37): 9874-84.
  87. Mahieu, F., G. Owsianik, et al. (2007). "TRPM8-independent menthol-induced Ca2+ release from endoplasmic reticulum and Golgi." J Biol Chem 282(5): 3325- 36.
  88. Karashima, Y., J. Prenen, et al. (2008). "Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators." Pflugers Arch 457(1): 77-89.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten