Publikationsserver der Universitätsbibliothek Marburg

Titel:Die chemische Bindung in hochkoordinierten Übergangsmetallverbindungen
Autor:von Hopffgarten, Moritz
Weitere Beteiligte: Frenking, Gernot (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0613
DOI: https://doi.org/10.17192/z2011.0613
URN: urn:nbn:de:hebis:04-z2011-06139
DDC:540 Chemie
Titel (trans.):The Chemical Bond in Highly Coordinated Transition Metal Compounds
Publikationsdatum:2011-10-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument
2. Daten

Schlagwörter:
transition metal, Chemische Bindung, Übergangsmetall, Quantenchemie, Clusterverbindungen, chemical bond, cluster compound, complex, Komplexe, quantum chemistry

Zusammenfassung:
Die Natur der chemischen Bindung in experimentell bekannten zinkreichen Übergangsmetallverbindungen M(ZnR)n (n = 8-12) wird untersucht um die Existenz der ungewöhnlich hohen Koordinationszahlen zu verstehen. Die untersuchten Moleküle erinnern an endohedrale Cluster, es stellt sich aber heraus, dass ihre Stabilität durch starke radiale Wechselwirkungen erzeugt wird, die für Koordinationsverbindungen typisch sind.

Bibliographie / References

  1. R. Daly, P. Piccoli, A. J. Schultz, T. K. Todorova, L. Gagliardi, G. S. Girolami. Synthesis and Properties of a Fifteen-Coordinate Complex: The Thorium Amino- diboranate [Th(H 3 BNMe 2 BH 3 ) 4 ]. Angew. Chem. Int. Ed. 2010, 49, 3379–3381; Angew. Chem. 2010, 122, 3451–3453.
  2. X. Wang, L. Andrews, I. Infante, L. Gagliardi. Infrared Spectra of the WH 4 (H 2 ) 4 Complex in Solid Hydrogen. J. Am. Chem. Soc. 2008, 130, 1972–1978.
  3. J. P. Perdew. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824.
  4. J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria. Climbing the Density Func- tional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 92, 146401.
  5. P. Pyykkö. Relativistic effects in structural chemistry. Chem. Rev. 1988, 88, 563– 594.
  6. C. Møller, M. S. Plesset. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622.
  7. H. Zabrodsky, S. Peleg, D. Avnir. Continuous symmetry measures. 2. Symmetry groups and the tetrahedron. J. Am. Chem. Soc. 1993, 115, 8278–8289.
  8. R. F. W. Bader. Bond Paths Are Not Chemical Bonds. J. Phys. Chem. A 2009, 113, 10391–10396.
  9. H. Zabrodsky, S. Peleg, D. Avnir. Continuous symmetry measures. J. Am. Chem. Soc. 1992, 114, 7843–7851.
  10. G. Frenking, R. Tonner. Carbodicarbenes—divalent carbon(0) compounds exhi- biting carbon–carbon donor–acceptor bonds. WIREs Comput. Mol. Sci. 2011, doi:10.1002/wcms.53.
  11. M. von Hopffgarten, G. Frenking. Energy Decomposition Analysis. WIREs Com- put. Mol. Sci., doi:10.1002/wcms.71.
  12. M. Molon, C. Gemel, M. von Hopffgarten, G. Frenking, R. A. Fischer. Molecular Home Rothery Compounds [M(ZnR) n ] and [M(ZnR) a (GaR) b ] (a+2b = n≥8): Re- Literaturverzeichnis lations of Coordination Polyhedra and Electronic Structure. Inorg. Chem. 2011, ASAP, doi:10.1021/ic200800e.
  13. T. Bollermann, K. Freitag, C. Gemel, M. Molon, R. W. Seidel, M. von Hopffgar- ten, P. Jerabek, G. Frenking, R. A. Fischer. The rich chemistry of [Zn 2 Cp* 2 ]: Trapping three different types of zinc ligands in the unusual PdZn 7 complex [Pd(ZnCp*) 4 (ZnMe) 2 (Zn{tmeda})]. Inorg. Chem. doi:10.1021/ic201701r.
  14. M. von Hopffgarten, G. Frenking. Building a Bridge Between Coordination Com- pounds and Clusters: Bonding Analysis of the Icosahedral Molecules [M(ER) 12 ] (M = Cr, Mo, W; E = Zn, Cd, Hg). J. Phys. Chem. A, doi:10.1021/jp2038762.
  15. A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
  16. A. Becke. Density-functional exchange-energy approximation with correct asym- ptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.
  17. A. Diefenbach, F. M. Bickelhaupt, G. Frenking. The Nature of the Transition Metal-Carbonyl Bond and the Question about the Valence Orbitals of Transition Metals. A Bond-Energy Decomposition Analysis of TM(CO) q 6 (TM q = Hf 2− , Ta − , W, Re + , Os 2+ , Ir 3+ ). J. Am. Chem. Soc. 2000, 122, 6449–6458.
  18. ∆E int -267.6 -363.1 -386.0 ∆E Pauli 233.1 345.0 351.8 ∆E elstat [a] -176.8 (35.3%) -261.9 (37.0%) -283.2 (38.0%) ∆E orb [a] -323.9 (64.7%) -446.2 (63.0%) -462.6 (62.0%) ∆E(a g ) [b] -68.5 (21.2%) -70.2 (15.7%) -66.0 (14.3%)
  19. ∆E int -549.9 -555.9 -580.1 ∆E Pauli 1662.5 1641.0 1729.1 ∆E elstat [a] -1577.3 (71.3%) -1606.2 (73.1%) -1761.0 (76.3%) ∆E orb [a] -635.2 (28.7%) -590.7 (26.9%) -548.2 (23.7%) ∆E(a g ) [b] -236.7 (37.3%) -226.9 (38.4%) -144.8 (26.4%) ∆E(h g ) [b] -405.7 (63.9%) -362.3 (61.4%) -399.3 (72.9%) ∆E(t 1u ) [b] 7.5 (-1.2%) -1.3 (0.2%) -3.7 (0.7%)
  20. C. Boucher, M. G. B. Drew, P. Giddings, L. M. Harwood, M. J. Hudson, P. B. Iveson, C. Madic. 12-coordinate complexes formed by the early lanthanide metals with 2,6-bis(-1,2,4-triazin-3-yl)-pyridine. Inorg. Chem. Commun. 2002, 5, 596– 599.
  21. Die Werte in Klammern entsprechen dem Anteil an den gesamten Orbitalwechselwirkungen ∆E orb . -1.9 (0.1%) -48.6 (3.6%) -72.3 (5.7%) ∆E orb [a] -1340.0 (99.9%) -1295.6 (96.4%) 1206.3 (94.4%) ∆E(a g ) [b] -9.3 (0.7%) -21.5 (1.7%) -37.2 (3.1%) ∆E(h g ) [b] -1150.8 (85.9%) -1116.1 (86.2%) -991.2 (82.2%) ∆E(t 1u ) [b] -176.1 (13.1%) -154.8 (11.9%) -174.2 (14.4%)
  22. ∆E(1α) [b] –37.0 (s; 0.702) –42.9 (s; 0.672) –31.1 (s; 0.634) ∆E(2α) [b] +44.5 (d; 0.558) +17.2 (d; 0.507) +9.9 (d; 0.518) ∆E(3α) [b] +44.5 (d; 0.557) +17.2 (d; 0.506) +9.9 (d; 0.518) ∆E(4α) [b] +44.5 (d; 0.557) +17.2 (d; 0.506) +9.9 (d; 0.518) ∆E(5α) [b] +44.5 (d; 0.557) +17.2 (d; 0.506) +9.9 (d; 0.518) ∆E(6α) [b] +44.5 (d; 0.557) +17.2 (d; 0.506) +9.9 (d; 0.518) ∆E(7α) [b] –16.6 (p; 0.141) –14.4 (p; 0.133) –15.5 (p; 0.142) ∆E(8α) [b] –16.6 (p; 0.141) –14.4 (p; 0.133) –15.5 (p; 0.142) ∆E(9α) [b] –16.6 (p; 0.141) –14.4 (p; 0.133) –15.5 (p; 0.142)
  23. ∆E(1β) [b] –46.3 (d; 0.728) –61.3 (d; 0.712) –57.2 (d; 0.681) ∆E(2β) [b] –46.3 (d; 0.728) –61.2 (d; 0.712) –57.2 (d; 0.681) ∆E(3β) [b] –46.3 (d; 0.727) –61.2 (d; 0.712) –57.2 (d; 0.681) ∆E(4β) [b] –46.3 (d; 0.727) –61.2 (d; 0.712) –57.2 (d; 0.681) ∆E(5β) [b] –46.3 (d; 0.727) –61.2 (d; 0.711) –57.2 (d; 0.681) ∆E(6β) [b] –10.1 (s; 0.159) –9.8 (s; 0.160) –17.2 (s; 0.235) ∆E(7β) [b] –7.1 (p; 0.120) –5.7 (p; 0.108) –6.6 (p; 0.120) ∆E(8β) [b] –7.1 (p; 0.120) –5.7 (p; 0.108) –6.6 (p; 0.120) ∆E(9β) [b] –7.1 (p; 0.120) –5.7 (p; 0.108) –6.6 (p; 0.120) ∆E(s) [c] –78.3 (19.3%) –76.7 (14.7%) –72.9 (13.5%) ∆E(d) [c] –229.0 (56.3%) –354.6 (67.8%) –365.0 (67.5%) ∆E(p) [c] –47.7 (11.7%) –39.3 (7.5%) –45.3 (8.4%) Rest [c] –51.1 (12.6%) –52.7 (10.1%) –57.4 (10.6%)
  24. ∆E(1β) [b] –289.4 (d; 0.869) –245.7 (d; 0.866) –213.5 (d; 0.840) ∆E(2β) [b] –289.3 (d; 0.869) –245.7 (d; 0.866) –213.4 (d; 0.840) ∆E(3β) [b] –289.3 (d; 0.869) –245.6 (d; 0.866) –213.5 (d; 0.840) ∆E(4β) [b] –289.1 (d; 0.869) –245.6 (d; 0.866) –213.5 (d; 0.840) ∆E(5β) [b] –289.1 (d; 0.868) –245.6 (d; 0.866) –213.4 (d; 0.840) ∆E(6β) [b] –44.1 (s; 0.230) –38.3 (s; 0.224) –57.7 (s; 0.311) ∆E(7β) [b] –25.1 (p; 0.165) –21.2 (p; 0.155) –22.7 (p; 0.166) ∆E(8β) [b] –25.1 (p; 0.164) –21.2 (p; 0.155) –22.7 (p; 0.166) ∆E(9β) [b] –25.1 (p; 0.164) –21.2 (p; 0.155) –22.7 (p; 0.166) ∆E(s) [c] –33.7 (2.3%) –43.6 (3.1%) –54.8 (4.1%) ∆E(d) [c] –1074.1 (74.1%) –1055.4 (75.5%) –930.2 (70.4%) ∆E(p) [c] –154.8 (10.7%) –132.0 (9.4%) –142.5 (10.8%) Rest [c] –186.4 (12.9%) –166.5 (11.9%) –193.4 (14.6%)
  25. ∆E(1α) [b] –259.8 (s; 1.000) –241.9 (s; 0.991) –185.4 (s; 0.740) ∆E(2α) [b] –96.6 (d; 0.536) –68.3 (d; 0.513) –82.1 (d; 0.521) ∆E(3α) [b] –96.6 (d; 0.536) –68.3 (d; 0.513) –82.1 (d; 0.521) ∆E(4α) [b] –96.5 (d; 0.536) –68.3 (d; 0.513) –82.1 (d; 0.521) ∆E(5α) [b] –96.5 (d; 0.536) –68.3 (d; 0.513) –82.1 (d; 0.521) ∆E(6α) [b] –96.5 (d; 0.536) –68.3 (d; 0.513) –82.1 (d; 0.521) ∆E(7α) [b] +0.8 (p; 0.082) –0.5 (p; 0.064) –0.4 (p; 0.069) ∆E(8α) [b] +0.9 (p; 0.082) –0.5 (p; 0.064) –0.4 (p; 0.069) ∆E(9α) [b] +0.9 (p; 0.082) –0.5 (p; 0.064) –0.4 (p; 0.069)
  26. ∆E(1α) [b] –68.2 (s; 0.645) –66.9 (s; 0.615) –55.7 (s; 0.594) ∆E(2α) [b] +0.5 (d; 0.588) –9.7 (d; 0.546) –15.8 (d; 0.549) ∆E(3α) [b] +0.5 (d; 0.588) –9.7 (d; 0.546) –15.8 (d; 0.549) ∆E(4α) [b] +0.5 (d; 0.588) –9.7 (d; 0.546) –15.8 (d; 0.549) ∆E(5α) [b] +0.5 (d; 0.588) –9.7 (d; 0.546) –15.8 (d; 0.549) ∆E(6α) [b] +0.5 (d; 0.588) –9.7 (d; 0.546) –15.8 (d; 0.549) ∆E(7α) [b] –8.8 (p; 0.120) –7.4 (p; 0.108) –8.5 (p; 0.120) ∆E(8α) [b] –8.8 (p; 0.120) –7.4 (p; 0.108) –8.5 (p; 0.120) ∆E(9α) [b] –8.8 (p; 0.120) –7.4 (p; 0.108) –8.5 (p; 0.120)
  27. ∆E int –542.9 –597.8 –589.4 ∆E Pauli 249.9 352.3 385.5 ∆E elstat [a] –39.0 (4.9%) –112.9 (11.9%) –148.0 (15.2%) ∆E orb [a] –753.8 (95.1%) –837.2 (88.1%) –826.9 (84.8%)
  28. Durchgezogene Linien, die Atomkerne miteinander verbinden, stellen Bindungspfade dar, senkrecht dazu sind die Schnittstrecken der Nullflussflächen mit der betrachtete Ebene. Bindungskritische Punkte sind die Schnittpunkte der Bindungspfade mit den Nullflussflächen -564.0 (29.5%) -519.4 (27.4%) -468.0 (23.8%) ∆E(a g ) [b] -239.2 (42.4%) -228.8 (44.1%) -143.9 (30.8%) ∆E(h g ) [b] -330.0 (58.5%) -287.3 (55.3%) -318.5 (68.1%) ∆E(t 1u ) [b] 5.4 (-1.0%) -3.0 (0.6%) -5.2 (1.1%)
  29. ∆E(1α) [b] +10.4 (s; 0.761) –5.3 (s; 0.726) +2.9 (s; 0.670) ∆E(2α) [b] +74.4 (d; 0.508) +34.6 (d; 0.458) +27.5 (d; 0.470) ∆E(3α) [b] +74.4 (d; 0.508) +34.6 (d; 0.458) +27.4 (d; 0.470) ∆E(4α) [b] +74.3 (d; 0.508) +34.6 (d; 0.458) +27.4 (d; 0.470) ∆E(5α) [b] +74.2 (d; 0.508) +34.5 (d; 0.458) +27.4 (d; 0.470) ∆E(6α) [b] +74.2 (d; 0.508) +34.5 (d; 0.458) +27.4 (d; 0.470) ∆E(7α) [b] –26.5 (p; 0.165) –22.8 (p; 0.155) –24.8 (p; 0.166) ∆E(8α) [b] –26.5 (p; 0.164) –22.8 (p; 0.155) –24.8 (p; 0.166) ∆E(9α) [b] –26.5 (p; 0.164) –22.8 (p; 0.155) –24.8 (p; 0.166)
  30. S. H. Vosko, L. Wilk, M. Nusair. Accurate spin-dependent electron liquid correla- tion energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980, 58, 1200–1211.
  31. M. P. Mitoraj, A. Michalak, T. Ziegler. A Combined Charge and Energy Decom- position Scheme for Bond Analysis. J. Chem. Theory Comput. 2009, 5, 962–975.
  32. L. Laaksonen. A graphics program for the analysis and display of molecular dy- namics trajectories. J. Mol. Graphics 1992, 10, 33–34.
  33. G. F. Caramori, G. Frenking. Analysis of the metal–ligand bonds in [Mo(X)(NH 2 ) 3 ] (X = P, N, PO, and NO), [Mo(CO) 5 (NO)] + , and [Mo(CO) 5 - (PO)] + . Theor. Chem. Acc. 2008, 120, 351–361.
  34. P. Deglmann, F. Furche, R. Ahlrichs. An efficient implementation of second ana- lytical derivatives for density functional methods. Chem. Phys. Lett. 2002, 362, 511–518.
  35. T. J. Kealy, P. L. Pauson. A New Type of Organo-Iron Compound. Nature 1951, 168, 1039–1040.
  36. K. B. Wiberg. Application of the Pople-Santry-Segal CNDO Method to the Cy- clopropylcarbinyl and the Cyclobutyl Cation and to Bicyclobutane. Tetrahedron 1968, 24, 1083–1096.
  37. A. L. Allred, E. G. Rochow. A scale of electronegativity based on electrostatic force. J. Inorg. Nucl. Chem. 1958, 5, 264–268.
  38. J. C. Slater. A simplification of the Hartree-Fock method. Phys. Rev. 1951, 81, 385–390.
  39. T. Ziegler, A. Rauk. A theoretical study of the ethylene-metal bond in comple- xes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method. Inorg. Chem. 1979, 18, 1558–1565.
  40. J. C. Slater. Atomic Shielding Constants. Phys. Rev. 1930, 36, 57–64.
  41. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Oxford University Press, Oxford, 1990.
  42. K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 1997, 97, 119–124.
  43. [112] K. Eichkorn, O. Treutler, H. ¨ Ohm, M. Häser, R. Ahlrichs. Auxiliary Basis Sets to Approximate Coulomb Potentials. Chem. Phys. Lett. 1995, 242, 652–660.
  44. A. Werner. Beitrag zur Konstitution anorganischer Verbindungen. Z. Anorg. Chem. 1893, 3, 267–330.
  45. D. Seyferth. Bis(benzene)chromium. 1. Franz Hein at the University of Leipzig and Harold Zeiss and Minoru Tsutsui at Yale. Organometallics 2002, 21, 1520– 1530.
  46. D. Seyferth. Bis(benzene)chromium. 2. Its Discovery by E. O. Fischer and W. Hafner and Subsequent Work by the Research Groups of E. O. Fischer, H. H. Zeiss, F. Hein, C. Elschenbroich, and Others. Organometallics 2002, 21, 2800– 2820.
  47. V. M. Rayón, G. Frenking. Bis(benzene)chromium Is a δ-Bonded Molecule and Ferrocene Is a π-Bonded Molecule. Organometallics 2003, 22, 3304–3308.
  48. F. L. Hirshfeld. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138.
  49. N. Takagi, A. Krapp, G. Frenking. Bonding Analysis of Metal–Metal Multiple Bonds in R 3 M–M'R 3 (M, M' = Cr, Mo, W; R = Cl, NMe 2 ). Inorg. Chem. 2011, 50, 819–826.
  50. R. Tonner, G. Heydenrych, G. Frenking. Bonding analysis of N -heterocyclic car- bene tautomers and phosphine ligands in transition-metal complexes: a theoretical study. Chem. Asian J. 2007, 2, 1555–1567.
  51. Q. Luo, Q.-S. Li, Z. H. Yu, Y. Xie, R. B. King, H. F. Schaefer. Bonding of Seven Carbonyl Groups to a Single Metal Atom: Theoretical Study of M(CO) n (M = Ti, Zr, Hf; n = 7, 6, 5, 4). J. Am. Chem. Soc. 2008, 130, 7756–7765.
  52. A. Michalak, M. Mitoraj, T. Ziegler. Bond Orbitals from Chemical Valence Theo- ry. J. Phys. Chem. A 2008, 112, 1933–1939.
  53. H. V. R. Dias, C. Dash, M. Yousufuddin, M. A. Celik, G. Frenking. Cationic Gold Carbonyl Complex on a Phosphine Support. Inorg. Chem. 2011, 50, 4253–4255.
  54. C. Bach, H. Willner, F. Aubke, C. Wang, S. J. Rettig, J. Trotter. Cationic Iridi- um(III) Carbonyl Complexes: [Ir(CO) 6 ] 3+ and [Ir(CO) 5 Cl] 2+ . Angew. Chem. Int.
  55. A. Krapp, G. Frenking. Chemical bonding in " early–late " transition metal com- plexes [(H 2 N) 3 M–M'(CO) 4 ] (M = Ti, Zr, Hf; M' = Co, Rh, Ir). Theor. Chem. Acc. 2010, 127, 141–148.
  56. D. Cremer, E. Kraka. Chemical Bonds without Bonding Electron Density -Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical Bond? Angew. Chem. Int. Ed. 1984, 8, 627–628; Angew. Chem. 1984, 81, 612– 614.
  57. V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded com- plexes. J. Chem. Phys. 2003, 119, 12129–12137.
  58. M. Pinsky, D. Avnir. Continuous Symmetry Measures. 5. The Classical Polyhedra. Inorg. Chem. 1998, 37, 5575–5582.
  59. T. Bollermann, K. Freitag, C. Gemel, R. W. Seidel, M. v. Hopffgarten, G. Fren- king, R. A. Fischer. Coordination Chemistry of Zn 2 Cp * 2 to Transition Metals: Preparation of a Novel ZnZnCp* Ligand. Angew. Chem. Int. Ed. 2011, 50, 772– 776; Angew. Chem. 2011, 123, 798–802.
  60. A. Pevec, M. Mrak, A. Demšar, S. Petricek, H. W. Roesky. Coordination number 12 in praseodymium and 11 in neodymium complexes with organofluorotitanate ligands. Polyhedron 2003, 22, 575–579.
  61. W. von E. Doering, F. L. Detert. Cycloheptatrienylium Oxide. J. Am. Chem. Soc. 1951, 73, 876–877.
  62. R. Hoffmann, R. B. Woodward. Das Konzept von der Erhaltung der Orbitalsym- metrie. Chem. unserer Zeit 1972, 6, 167–174.
  63. I. Resa, E. Carmona, E. Gutierrez-Puebla, A. Monge. Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond. Science 2004, 305, 1136–1138.
  64. R. F. W. Bader. Definition of Molecular Structure: By Choice or by Appeal to Observation? J. Phys. Chem. A 2010, 114, 7431–7444.
  65. W. Gordon. Der Comptoneffekt nach der Schrödingerschen Theorie. Z. Phys. 1927, 40, 117–133.
  66. C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.
  67. E. O. Fischer, W. Hafner. Di-benzol-chrom. ¨ Uber Aromatenkomplexe von Metal- len I. Z. Naturforsch. 1955, 10B, 665–668.
  68. E. Hückel. Die freien Radikale der organischen Chemie. Quantentheoretische Bei- träge zum Problem der aromatischen und ungesättigten Verbindungen. IV. Z. Phys. 1933, 83, 632–668.
  69. Die Werte in Klammern entsprechen dem Anteil an den gesamten attraktiven Wechselwirkungen ∆E elstat + ∆E orb .
  70. I. Fernández, G. Frenking. Direct estimate of the strength of conjugation and hyperconjugation by the energy decomposition analysis method. Chem. Eur. J. 2006, 12, 3617–3629.
  71. R. Tonner, G. Frenking. Divalent Carbon(0) Chemistry, Part 1: Parent Com- pounds. Chem. Eur. J. 2008, 14, 3260–3272.
  72. R. Tonner, G. Frenking. Divalent carbon(0) chemistry, part 2: Protonation and complexes with main group and transition metal Lewis acids. Chem. Eur. J. 2008, 14, 3273–3289.
  73. ∆E(1β) [b] +22.0 (d; 0.455) +1.6 (d; 0.400) +4.5 (d; 0.372) ∆E(2β) [b] +22.0 (d; 0.455) +1.6 (d; 0.400) +4.5 (d; 0.371) ∆E(3β) [b] +22.0 (d; 0.455) +1.6 (d; 0.400) +4.5 (d; 0.371) ∆E(4β) [b] +22.0 (d; 0.455) +1.6 (d; 0.400) +4.5 (d; 0.371) ∆E(5β) [b] +22.0 (d; 0.455) +1.6 (d; 0.400) +4.5 (d; 0.371) ∆E(6β) [b] +4.0 (s; 0.103) +2.0 (s; 0.098) +3.5 (s; 0.146) ∆E(7β) [b] +2.0 (p; 0.082) +0.1 (p; 0.064) +0.5 (p; 0.069) ∆E(8β) [b] +2.0 (p; 0.082) +0.1 (p; 0.064) +0.5 (p; 0.069) ∆E(9β) [b] +2.0 (p; 0.082) +0.1 (p; 0.064) +0.5 (p; 0.069) ∆E(s) [c] –255.8 (42.3%) –239.9 (43.7%) –181.9 (34.3%) ∆E(d) [c] –372.7 (61.6%) –333.5 (60.7%) –388.0 (73.3%) ∆E(p) [c] +8.6 (–1.4%) –1.2 (0.2%) +0.3 (–0.1%) Rest [c] +15.1 (–2.5%) +25.3 (–4.6%) +40.0 (–7.6%)
  74. ∆E(1β) [b] +28.8 (d; 0.549) +2.9 (d; 0.514) +0.6 (d; 0.482) ∆E(2β) [b] +28.8 (d; 0.549) +2.9 (d; 0.514) +0.6 (d; 0.482) ∆E(3β) [b] +28.8 (d; 0.549) +2.9 (d; 0.513) +0.6 (d; 0.482) ∆E(4β) [b] +28.8 (d; 0.549) +2.9 (d; 0.513) +0.6 (d; 0.482) ∆E(5β) [b] +28.8 (d; 0.549) +2.9 (d; 0.513) +0.6 (d; 0.482) ∆E(6β) [b] +3.6 (s; 0.115) +2.0 (s; 0.118) +1.2 (s; 0.177) ∆E(7β) [b] +2.0 (p; 0.088) +0.9 (p; 0.071) +0.8 (p; 0.081) ∆E(8β) [b] +2.0 (p; 0.088) +0.9 (p; 0.071) +0.8 (p; 0.081) ∆E(9β) [b] +2.0 (p; 0.088) +0.9 (p; 0.071) +0.8 (p; 0.081) ∆E(s) [c] –202.4 (44.3%) –181.8 (38.3%) –123.3 (29.0%) ∆E(d) [c] –292.7 (64.1%) –320.4 (67.5%) –331.7 (78.0%) ∆E(p) [c] +7.2 (–1.6%) +1.5 (–0.3%) +0.3 (–0.1%) Rest [c] +31.2 (–6.8%) +26.1 (–5.5%) +29.7 (–7.0%)
  75. ∆E(1β) [b] –140.9 (d; 0.802) –136.2 (d; 0.798) –120.4 (d; 0.765) ∆E(2β) [b] –140.9 (d; 0.802) –136.2 (d; 0.798) –120.3 (d; 0.765) ∆E(3β) [b] –140.9 (d; 0.802) –136.1 (d; 0.797) –120.3 (d; 0.765) ∆E(4β) [b] –140.9 (d; 0.802) –136.1 (d; 0.797) –120.3 (d; 0.765) ∆E(5β) [b] –140.9 (d; 0.802) –136.0 (d; 0.797) –120.3 (d; 0.765) ∆E(6β) [b] –23.7 (s; 0.190) –21.7 (s; 0.191) –33.7 (s; 0.268) ∆E(7β) [b] –15.1 (p; 0.141) –12.8 (p; 0.133) –13.5 (p; 0.142) ∆E(8β) [b] –15.1 (p; 0.141) –12.8 (p; 0.133) –13.5 (p; 0.142) ∆E(9β) [b] –15.1 (p; 0.141) –12.7 (p; 0.133) –13.5 (p; 0.142) ∆E(s) [c] –60.7 (8.1%) –64.6 (7.7%) –64.8 (7.8%) ∆E(d) [c] –482.0 (63.9%) –594.6 (71.0%) –552.1 (66.8%) ∆E(p) [c] –95.1 (12.6%) –81.5 (9.7%) –87.0 (10.5%) Rest [c] –116.0 (15.4%) –96.5 (11.5%) –123.0 (14.9%)
  76. P. Deglmann, F. Furche. Efficient characterization of stationary points on poten- tial energy surfaces. J. Chem. Phys. 2002, 117, 9535–9538.
  77. R. Ahlrichs. Efficient evaluation of three-center two-electron integrals over Gaus- sian functions. Phys. Chem. Chem. Phys. 2004, 6, 5119–5121.
  78. O. Treutler, R. Ahlrichs. Efficient Molecular Numerical Integration Schemes. J. Chem. Phys. 1995, 102, 346–354.
  79. R. S. Mulliken. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833–1840.
  80. R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel. Electronic structure calcu- lations on workstation computers: The program system turbomole. Chem. Phys.
  81. P. Rejmak, M. Mitoraj, E. Broclawik. Electronic view on ethene adsorption in Cu(I) exchanged zeolites. Phys. Chem. Chem. Phys. 2010, 12, 2321–2330.
  82. T. Weiske, D. K. Böhme, J. Hru˘ sák, W. Krätschmer, H. Schwarz. Endohedral Cluster Compounds: Inclusion of Helium within C 60 ·+ and C 70 ·+ through Collision Experiments. Angew. Chem. Int. Ed. 1991, 30, 884–886; Angew. Chem. 1991, 103, 898–900.
  83. D. Andrae, U. Haeussermann, M.Dolg, H.Stoll, H.Preuss. Energy-adjusted ab in- itio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141.
  84. J. Uddin, G. Frenking. Energy Analysis of Metal-Ligand Bonding in Transition Metal Complexes with Terminal Group-13 Diyl Ligands (CO) 4 Fe-ER, Fe(EMe) 5
  85. C. Massera, G. Frenking. Energy Partitioning Analysis of the Bonding in L 2 TM- C 2 H 2 and L 2 TM-C 2 H 4 (TM = Ni, Pd, Pt; L 2 = (PH 3 ) 2 , (PMe 3 ) 2 , H 2 PCH 2 PH 2 , H 2 P(CH 2 ) 2 PH 2 ). Organometallics 2003, 22, 2758–2765.
  86. C. J. Cramer. Essentials of Computational Chemistry: Theory and Models. Second Edition. Wiley & Sons Ltd. Chichester, 2004.
  87. X. Li, B. Kiran, J. Li, H.-J. Zhai, L.-S. Wang. Experimental Observation and Confirmation of Icosahedral W@Au 12 and Mo@Au 12 Molecules. Angew. Chem. Int. Ed. 2002, 41, 4786–4789; Angew. Chem. 2002, 114, 4980–4983.
  88. Dem Einfluss und der Bedeutung der Arbeiten von G. N. Lewis ist eine Sonder- ausgabe des Journal of Computational Chemistry, editiert von G. Frenking und S. Shaik, gewidmet. 90 Years of Chemical Bonding. J. Comput. Chem. 2007, 28, Issue 1.
  89. J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
  90. J. E. Ellis, K. M. Chi. Highly reduced organometallics. 28. Synthesis, isolation, and characterization of [K(cryptand 2.2.2)] 2 [Hf(CO) 6 ], the first substance to contain hafnium in a negative oxidation state. Structural characterization of [K(cryptand 2.2.2)] 2 [M(CO) 6 ]·pyridine (M = Ti, Zr, and Hf). J. Am. Chem. Soc. 1990, 112, 6022–6025.
  91. H. Willner, F. Aubke. Homoleptic Metal Carbonyl Cations of the Electron-Rich Metals: Their Generation in Superacid Media Together with Their Spectroscopic and Structural Characterization. Angew. Chem. Int. Ed. 1997, 36, 2402–2425; Angew. Chem. 1997, 109, 2506–2530.
  92. L. Gagliardi, P. Pyykkö. How many hydrogen atoms can be bound to a metal? Predicted MH 12 species. J. Am. Chem. Soc. 2004, 126, 15014–15015.
  93. H.-J. Zhai, J. Li, L.-S. Wang. Icosahedral gold cage clusters: M@Au − 12 (M = V, Nb, and Ta). J. Chem. Phys. 2004, 121, 8369–8374.
  94. P. Pyykkö, N. Runeberg. Icosahedral WAu 12 : A Predicted Closed-Shell Species, Stabilized by Aurophilic Attraction and Relativity and in Accord with the 18- Electron Rule. Angew. Chem. Int. Ed. 2002, 41, 2174–2176; Angew. Chem. 2002, 114, 2278–2280.
  95. J. H. Wood, A. M. Boring. Improved Pauli Hamiltonian for local-potential pro- blems. Phys. Rev. B 1978, 18, 2701–2711.
  96. S. Grimme. Improved second-order Møller-Plesset perturbation theory by separate scaling of parallel-and antiparallel-spin pair correlation energies. J. Chem. Phys. 2003, 118, 9095–9102.
  97. M. Saunders, H. A. Jimenez-Vazquez, R. J. Cross, S. Mroczkowski, M. L. Gross, D. E. Giblin, R. J. Poreda. Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure. J. Am. Chem. Soc. 1994, 116, 2193– 2194.
  98. P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136, 864–871.
  99. J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry -Principles of Structure and Reactivity. Fourth Edition, HarperCollins College Publishers, New York, 1993.
  100. F. Jensen. Introduction to Computational Chemistry.Second Edition. Wiley & Sons Ltd. Chichester, 2007.
  101. F. M. Bickelhaupt, E. J. Baerends. Kohn-Sham Density Functional Theory: Pre- dicting and Understanding Chemistry; in: Reviews in Computational Chemistry, Vol. 15. K. B. Lipkowitz, D. B. Boyd (Eds.), Wiley-VCH, Weinheim, 2000, pp. 1–86.
  102. R. Hoffmann, H. Hopf. Learning from Molecules in Distress. Angew. Chem. Int.
  103. J.-L. Heully, I. Lindgren, E. Lindroth, S. Lundqvist, A.-M. Martensson-Pendrill. Diagonalisation of the Dirac Hamiltonian as a basis for a relativistic many-body procedure. J. Phys. B 1986, 19, 2799–2815.
  104. A. Szabo, N. S. Ostlund. Modern Quantum Chemistry. Dover Publications, Inc. Mineola, New York, 1996.
  105. T. Bollermann, T. Cadenbach, C. Gemel, M. von Hopffgarten, G. Frenking, R. A. Fischer. Molecular Alloys: Experimental and Theoretical Investigations on the Substitution of Zinc by Cadmium and Mercury in the Homologous Series [Mo(M'R) 12 ] and [M(M'R) 8 ] (M=Pd, Pt; M'=Zn, Cd, Hg). Chem. Eur. J. 2010, 16, 13372–13384.
  106. P. Pyykkö, M. Atsumi. Molecular Double-Bond Covalent Radii for Elements Li- E112. Chem. Eur. J. 2009, 15, 12770–12779.
  107. K. Morokuma. Molecular Orbital Studies of Hydrogen Bonds. III. C=O· · · H-O Hydrogen Bond in H 2 CO· · · H 2 O and H 2 CO· · · 2H 2 O. J. Chem. Phys. 1971, 55, 1236–1244.
  108. P. Pyykkö, M. Atsumi. Molecular Single-Bond Covalent Radii for Elements 1-118. Chem. Eur. J. 2009, 15, 186–197.
  109. M. P. Mitoraj, A. Michalak. Multiple Boron–Boron Bonds in Neutral Molecules: An Insight from the Extended Transition State Method and the Natural Orbitals for Chemical Valence Scheme. Inorg. Chem. 2011, 50, 2168–2174.
  110. [109] A. E. Reed, F. Weinhold. Natural localized molecular orbitals. J. Chem. Phys. 1985, 83, 1736–1740.
  111. A. E. Reed, R. B. Weinstock, F. Weinhold. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746.
  112. C. C. J. Roothaan. New Developments in Molecular Orbital Theory. Rev. Mod. Phys. 1951, 23, 69–89.
  113. C. Wang, B. Bley, G. Balzer-Jollenbeck, A. R. Lewis, S. C. Siu, H. Willner, F. Aub- ke. New homoleptic metal carbonyl cations: the syntheses, vibrational and 13 C MAS NMR spectra of hexacarbonyl-ruthenium(II) and -osmium(II) undecafluo- rodiantimonate(V), [Ru(CO) 6 ][Sb 2 F 11 ] 2 and [Os(CO) 6 ][Sb 2 F 11 ] 2 . J. Chem. Soc., Chem. Commun. 1995, 2071–2072.
  114. E. Broclawik, J. Za lucka, P. Kozyra, M. Mitoraj, J. Datka. New Insights into Charge Flow Processes and Their Impact on the Activation of Ethene and Ethyne by Cu(I) and Ag(I) Sites in MFI. J. Phys. Chem. C 2010, 114, 9808–9816.
  115. V. Fock. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörper- problems. Z. Phys. 1930, 61, 126–148.
  116. M. Saunders, R. J. Cross, H. A. Jiménez-Vázquez, R. Shimshi, A. Khong. Noble Gas Atoms Inside Fullerenes. Science 1996, 271, 1693–1697.
  117. P. Deglmann, K. May, F. Furche, R. Ahlrichs. Nuclear second analytical derivative calculations using auxiliary basis set expansion. Chem. Phys. Lett. 2004, 384, 103–107.
  118. G. te Velde, E. Baerends. Numerical Integration for Polyatomic Systems. J. Com- put. Phys. 1992, 99, 84–98.
  119. T. Ziegler, A. Rauk. On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chim. Acta 1977, 46, 1–10.
  120. M. P. Mitoraj, A. Michalak, T. Ziegler. On the Nature of the Agostic Bond bet- ween Metal Centers and β-Hydrogen Atoms in Alkyl Complexes. An Analysis Based on the Extended Transition State Method and the Natural Orbitals for Chemical Valence Scheme (ETS-NOCV). Organometallics 2009, 28, 3727–3733.
  121. H. B. Schlegel. Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 1982, 3, 214–218.
  122. E. van Lenthe, E. J. Baerends. Optimized Slater-type basis sets for the elements
  123. A. Krapp, F. M. Bickelhaupt, G. Frenking. Orbital overlap and chemical bonding. Chem. Eur. J. 2006, 12, 9196–9216.
  124. C. Elschenbroich. Organometallchemie. 5., ¨ uberarbeitete Auflage. Teubner Verlag, Wiesbaden 2005, p. 450.
  125. G. Distefano, V. H. Dibeler. Photoionization study of the dimethyl compounds of zinc, cadmium, and mercury. Int. J. Mass Spectrom. Ion Phys. 1970, 4, 59–68.
  126. D. M. P. Mingos. Polyhedral skeletal electron pair approach. Acc. Chem. Res. 1984, 17, 311–319.
  127. H. J. Berthold, G. Groh. Preparation of Tertramethylzirconium, Zr(CH 3 ) 4 . An- gew. Chem. Int. Ed. 1966, 5, 516; Angew. Chem. 1966, 78, 495.
  128. M. A. Ratner, J. W. Moskowitz, S. Topiol. Pseudopotential calculations. 5. Results for Group 2A and 2B dimethyls and chlorides. J. Am. Chem. Soc. 1978, 100, 2329–2334.
  129. M. von Hopffgarten, Quantenchemische Untersuchungen von Verbindungen der Gruppen 6 und 10 mit ungewöhnlich hohen Koordinationszahlen. Diplomarbeit. Philipps-Universität Marburg, 2008.
  130. E. Hückel. Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronen- konfiguration des Benzols und verwandter Verbindungen. Z. Phys. 1931, 70, 204– 286.
  131. E. Hückel. Quantentheoretische Beiträge zum Problem der aromatischen und un- gesättigten Verbindungen. III. Z. Phys. 1932, 76, 628–648.
  132. O. Klein. Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 1926, 37, 895–906.
  133. E. Schrödinger. Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 1926, 384, 361–376.
  134. J. P. Perdew, M. Ernzerhof, K. Burke. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985.
  135. C. Chang, M. Pelissier, P. Durand. Regular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory. Phys. Scr. 1986, 34, 394–404.
  136. J. P. Desclaux. Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120. Atom. Data Nucl. Data 1973, 12, 311–406.
  137. E. van Lenthe, E. J. Baerends, J. G. Snijders. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993, 99, 4597–4610.
  138. Tabelle A.25: Ergebnisse der EDA-NOCV von [M(ZnH) 12 ] 3+ (M = Co, Rh, Ir) mit BP86/TZ2P+. Die Fragmente sind M 3+ (d 5α s 1α ) und (ZnH) 12 (a 1β g h 5β g ) in I h - Symmetrie. Energien in kcal/mol. Co 3+ + (ZnH) 12
  139. Tabelle A.24: Ergebnisse der EDA-NOCV von [M(ZnH) 12 ] 2+ (M = Fe, Ru, Os) mit BP86/TZ2P+. Die Fragmente sind M 2+ (d 5α s 1α ) und (ZnH) 12 (a 1β g h 5β g ) in I h - Symmetrie. Energien in kcal/mol.
  140. W. Kohn, L. J. Sham. Self-Consistent Equations Including Exchange and Corre- lation Effects. Phys. Rev. A 1965, 140, 1133–1138.
  141. W. J. Hehre, R. Ditchfield, J. A. Pople. Self-Consistent Molecular Orbital Me- thods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261.
  142. and Ni(EMe) 4 (E = B-Tl; R = Cp, N(SiH 3 ) 2 , Ph, Me) Reveals Significant π Bonding in Homoleptical Molecules. J. Am. Chem. Soc. 2001, 123, 1683–1693.
  143. K. Wade. Structural and Bonding Patterns in Cluster Chemistry. Adv. Inorg. Chem. Radiochem. 1976, 18, 1–66.
  144. S. González-Gallardo, G. Prabusankar, T. Cadenbach, C. Gemel, M. v. Hopffgar- ten, G. Frenking, R. A. Fischer. Structure and Bonding of Metal-Rich Coordina- tion Compounds Containing Low Valent Ga(I) and Zn(I) Ligands. Struct. Bond. 2010, 136, 147–188.
  145. F. Calderazzo, U. Englert, G. Pampaloni, G. Pelizzi, R. Zamboni. Studies on carbonyl derivatives of early transition elements. A convenient method for the preparation of the hexacarbonylniobate(1-) anion at atmospheric pressure and room temperature. Crystal and molecular structure of [M(CO) 6 ] − (M = Nb, Ta) as their bis(triphenylphosphine) nitrogen(1+) derivatives. Inorg. Chem. 1983, 22, 1865–1870.
  146. T. Cadenbach, C. Gemel, R. Schmid, M. Halbherr, K. Yusenko, M. Cokoja, R. Fi- scher. Substituent-Free Gallium by Hydrogenolysis of Coordinated GaCp*: Syn- thesis and Structure of Highly Fluxional [Ru 2 (Ga)(GaCp*) 7 (H) 3 ]. Angew. Chem. Int. Ed. 2009, 48, 3872–3876; Angew. Chem. 2009, 121, 3930–3934.
  147. B. Bley, H. Willner, F. Aubke. Synthesis and Spectroscopic Characterization of Hexakis(carbonyl)iron(II) Undecafluorodiantimonate(V), [Fe(CO) 6 ][Sb 2 F 11 ] 2 . In- org. Chem. 1997, 36, 158–160.
  148. R. Ercoli, F. Calderazzo, A. Alberola. Synthesis of Vanadium Hexacarbonyl. J. Am. Chem. Soc. 1960, 82, 2966–2967.
  149. P. H. M. Budzelaar, A. A. H. Van der Zeijden, J. Boersma, G. J. M. Van der Kerk, A. L. Spek, A. J. M. Duisenberg. Tantalum-zinc compounds -structure of (CH 3 C 5 H 4 ) 2 TaH(ZnC 5 H 5 ) 2 . Organometallics 1984, 3, 159–163.
  150. Tabelle A.23: Ergebnisse der EDA-NOCV von [M(ZnH) 12 ] + (M = Mn, Tc, Re) mit BP86/TZ2P+. Die Fragmente sind M + (d 5α s 1α ) und (ZnH) 12 (a 1β g h 5β g ) in I h - Symmetrie. Energien in kcal/mol.
  151. H. Bethe. Termaufspaltung in Kristallen. Ann. Phys. 1929, 395, 133–208.
  152. G. N. Lewis. The Atom and the Molecule. J. Am. Chem. Soc. 1916, 38, 762–785.
  153. R. B. Woodward, R. Hoffmann. The Conservation of Orbital Symmetry. Angew. Chem. Int. Ed. 1969, 8, 781–853; Angew. Chem. 1969, 81, 797–869.
  154. J. H. Van Vleck. The Group Relation Between the Mulliken and Slater-Pauling Theories of Valence. J. Chem. Phys. 1935, 3, 803–806.
  155. E. Cerpa, A. Krapp, A. Vela, G. Merino. The Implications of Symmetry of the External Potential on Bond Paths. Chem. Eur. J. 2008, 14, 10232 – 10234.
  156. G. G. Hall. The Molecular Orbital Theory of Chemical Valency. VIII. A Method of Calculating Ionization Potentials. Proc. R. Soc. Lond. A 1951, 205, 541–552.
  157. L. Pauling. The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd Edition. Cornell University Press, Ithaca, NY, 1960.
  158. M. Lein, G. Frenking. The Nature of the Chemical Bond in the Light of an Ener- gy Decomposition Analysis; in: Theory and Applications of Computational Che- mistry: The First 40 Years. C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria (Eds.), Elsevier, Amsterdam, 2005, pp. 291–372.
  159. K. K. Pandey, G. Frenking. The Nature of the ME Bond: Theoretical Investigation of the Molecules [(RO) 3 M≡E] (M = Mo, W; E = N, P, As, Sb, Bi; R = H, Me) and [(Me 3 CO) 3 Mo≡P]. Eur. J. Inorg. Chem. 2004, 4388–4395.
  160. G. Heydenrych, M. von Hopffgarten, E. Stander, O. Schuster, H. G. Rauben- heimer, G. Frenking. The Nature of the Metal-Carbene Bond in Normal and Abnormal Pyridylidene, Quinolylidene and Isoquinolylidene Complexes. (Theo- retical Studies of Organometallic Compounds, Part 62.). Eur. J. Inorg. Chem. 2009, 1892–1904.
  161. R. Kurczab, M. P. Mitoraj, A. Michalak, T. Ziegler. Theoretical Analysis of the Resonance Assisted Hydrogen Bond Based on the Combined Extended Transition State Method and Natural Orbitals for Chemical Valence Scheme. J. Phys. Chem. A 2010, 114, 858–8590.
  162. P. Pyykkö. Theoretical Chemistry of Gold. Angew. Chem. Int. Ed. 2004, 43, 4412–4456; Angew. Chem. 2004, 116, 4512–4557.
  163. I. Antes, G. Frenking. Theoretical Studies of Organometallic Compounds. XIV. Structure and Bonding of the Transition Metal Methyl and Phenyl Compounds MCH 3 and MC 6 H 5 (M = Cu, Ag, Au) and M(CH 3 ) 2 and M(C 6 H 5 ) 2 (M = Zn, Cd, Hg). Organometallics 1995, 14, 4263–4268.
  164. [147] O. P. Charkin, N. M. Klimenko, D. Moran, A. M. Mebel, D. O. Charkin, P. v. R. Schleyer. Theoretical Study of Complexes of Closo-Borane, Alane, and Gallane Anions with Cations of Light Metals Inside and Outside of Icosahedral Clusters [A 12 H 2− 12 ] (A = B, Al, and Ga). J. Phys. Chem. A 2002, 106, 11594–11602.
  165. P. Pyykkö, F. Mendizabal. Theory of d 10 –d 10 closed-shell attraction. III. Rings. Inorg. Chem. 1998, 37, 3018–3025.
  166. P. Pyykkö, N. Runeberg, F. Mendizabal. Theory of the d 10 –d 10 Closed-Shell At- traction: 1. Dimers Near Equilibrium. Chem. Eur. J. 1997, 3, 1451–1457.
  167. E. N. Esenturk, J. Fettinger, B. Eichhorn. The Pb 2− 12 and Pb 2− 10 zintl ions and the [M@Pb 12 ] 2− and [M@Pb 10 ] 2− cluster series where M = Ni, Pd, Pt. J. Am. Chem.
  168. P. A. M. Dirac. The Quantum Theory of the Electron (Part I). Proc. Roy. Soc. London A 1928, 117, 610–624.
  169. W. E. Hunter, D. C. Hrncir, R. V. Bynum, R. A. Penttila, J. L. Atwood. The search for dimethylzirconocene. Crystal structures of dimethylzirconocene, dime- thylhafnocene, chloromethylzirconocene, and (µ-oxo)bis(methylzirconocene). Or- ganometallics 1983, 2, 750–755.
  170. A. Hermann, M. Lein, P. Schwerdtfeger. The Search for the Species with the Hig- hest Coordination Number. Angew. Chem. Int. Ed. 2007, 46, 2444–2447; Angew. Chem. 2007, 119, 2496–2499.
  171. G. Wilkinson, M. Rosenblum, M. C. Whiting, R. B. Woodward. The Structure of Iron Bis-Cyclopentadienyl. J. Am. Chem. Soc. 1952, 74, 2125–2126.
  172. J. C. Slater. The Theory of Complex Spectra. Phys. Rev. 1929, 34, 1293–1322.
  173. D. R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Math. Proc. Camb. Phil. Soc. 1928, 24, 89– 110.
  174. P. M. Boerrigter, G. te Velde, E. Baerends. Three-dimensional Numerical Inte- gration for Electronic Structure Calculations. Int. J. Quantum Chem. 1988, 33, 87–113.
  175. C. F. Guerra, J. Snijders, G. te Velde, E. Baerends. Towards an order-N DFT method. Theor. Chem. Acc. 1998, 99, 391–403.
  176. P. Pyykkö, S. Riedel, M. Patzschke. Triple-Bond Covalent Radii. Chem. Eur. J. 2005, 11, 3511–3520.
  177. P. Pyykkö. Understanding the eighteen-electron rule. J. Organomet. Chem. 2006, 691, 4336–4340.
  178. G. Frenking, A. Krapp. Unicorns in the world of chemical bonding models. J. Comput. Chem. 2007, 28, 15–24.
  179. R. Hoffmann, Powel Lecture, University of Richmond am 8. Februar 2008. Abstract im Internet unter https://facultystaff.richmond.edu/∼cstevens/Seminar/Hoffman%20Lecture.pdf (Stand: 18.04.2011).
  180. C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem. 1996, 17, 49–56.
  181. J. H. Van Vleck. Valence Strength and the Magnetism of Complex Salts. The Journal of Chemical Physics 1935, 3, 807–813.
  182. K. Freitag, Vortrag an der Philipps-Universität Marburg am 17.06.2011.
  183. M. P. Johansson, P. Pyykkö. WAu 12 (CO) 12 ? Chem. Commun. 2010, 46, 3762– 3764.
  184. W. Heitler, F. London. Wechselwirkung neutraler Atome und homöopolare Bin- dung nach der Quantenmechanik. Z. Phys. 1927, 44, 455–472.
  185. A. Einstein. Zur Elektrodynamik bewegter Körper. Ann. Phys. 1905, 17, 891–921.
  186. E. O. Fischer, W. Pfab. Zur Kristallstruktur der Di-Cyclopentadienyl- Verbindungen des zweiwertigen Eisens, Kobalts und vernickelt. Z. Naturforsch. B 1952, 7, 377–379.
  187. W. Pauli. Zur Quantenmechanik des magnetischen Elektrons. Z. Phys. 1927, 43, 601–623.
  188. M. Born, R. Oppenheimer. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457–484.
  189. F. Weigend, R. Ahlrichs. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design an assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
  190. W. Koch, M. C. Holthausen. A Chemist's Guide to Density Functional Theory, Second Edition. Wiley-VCH, Weinheim 2001.
  191. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch. Ab Initio Calcu- lation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627.
  192. T. Cadenbach, T. Bollermann, C. Gemel, M. Tombul, I. Fernández, M. von Hopff- garten, G. Frenking, R. A. Fischer. Molecular Alloys, Linking Organometallics with Intermetallic Hume-Rothery Phases: The Highly Coordinated Transition Metal Compounds [M(ZnR) n ] (n ≥ 8) Containing Organo-Zinc Ligands. J. Am. Chem. Soc. 2009, 131, 16063–16077.
  193. T. Bollermann, T. Cadenbach, C. Gemel, K. Freitag, M. Molon, V. Gwildies, R. A. Fischer. Homoleptic Hexa and Penta Gallylene Coordinated Complexes of Molybdenum and Rhodium. Inorg. Chem. 2011, 50, 5808–5814.
  194. T. Cadenbach, T. Bollermann, C. Gemel, I. Fernández, M. von Hopffgarten, G. Frenking, R. A. Fischer. Twelve One-Electron Ligands Coordinating One Me- tal Center: Structure and Bonding of [Mo(ZnCH 3 ) 9 (ZnCp*) 3 ]. Angew. Chem. Int.
  195. T. Bollermann, M. Molon, C. Gemel, K. Freitag, R. W. Seidel, M. von Hopff- garten, P. Jerabek, G. Frenking, R. A. Fischer. Oligonuclear molecular models of intermetallic phases: A case study on [Pd 2 Zn 6 Ga 2 (Cp*) 5 (CH 3 ) 3 ]. submitted.
  196. M. Kaupp, H. Stoll, H. Preuss. Pseudopotential calculations for methyl com- pounds of zinc and magnesium. J. Comput. Chem. 1990, 11, 1029–1037.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten