Publikationsserver der Universitätsbibliothek Marburg

Titel:Biodegradable Amphiphilic Block Copolymers:Synthesis, Characterization and Properties Evaluation
Autor:Assem, Yasser
Weitere Beteiligte: Greiner, Andreas (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0603
DOI: https://doi.org/10.17192/z2011.0603
URN: urn:nbn:de:hebis:04-z2011-06037
DDC: Chemie
Titel (trans.):Biodegradable Amphiphilic Block Copolymers:Synthesis, Characterization and Properties Evaluation
Publikationsdatum:2011-10-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Bioabbaubare, Polyester, Blockcopolymer, Biodegradable, Polyester

Summary:
Different biodegradable amphiphilic block copolymers were prepared by melt-polycondensation. These block copolymers are composed of different molar ratio of two segments, 1st is hydrophilic block which is methoxy poly(ethylene oxide) MPEO of two different molecular weights, (5000 and 2000 g/mol). The hydrophobic segments are aliphatic poly ester of poly hexylene adipate PHA, polybutylene succinate PBS, polyhexylene succinate PHS and polybutylene adipate PBA. Full characterization of these block copolymers have been achieved using GPC, NMR, Thermal analysis, and X-ray analysis. Hydrolytic and enzymatic degradation have been done. Loading of PHA-b-MPEO5 with pH sensitive moiety is also achieved. Values of cmc of two commercially available surfactants as well as two samples of our polymers were measured by fluorescence spectroscopy using pyrene as a probe

Bibliographie / References

  1. Shih, Y. F.; Wu, T. M. Enzymatic degradation kinetics of poly(butylene succinate) nanocomposites. Journal of Polymer Research 2009, 16 (2), 109-115.
  2. Kalyanasundaram, K.; Thomas, J. K. Solvent-dependent fluorescence of pyrene-3- carboxaldehyde and its applications in the estimation of polarity at micelle-water interfaces. The Journal of Physical Chemistry 1977, 81 (23), 2176-2180.
  3. Kalyanasundaram, K.; Thomas, J. K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society 1977, 99 (7), 2039-2044.
  4. Soccio, M.; Lotti, N.; Finelli, L.; Gazzano, M.; Munari, A. Aliphatic poly(propylene dicarboxylate)s: Effect of chain length on thermal properties and crystallization kinetics. Polymer 2007, 48 (11), 3125-3136.
  5. Zana, R.; In, M.; Levy, H.; Duportail, G. Alkanediyl--α,ω-bis(dimethylalkylammonium bromide). 7. Fluorescence Probing Studies of Micelle Micropolarity and Microviscosity. Langmuir 1997, 13 (21), 5552-5557.
  6. Jin, J.; Wu, D.; Sun, P.; Liu, L.; Zhao, H. Amphiphilic Triblock Copolymer Bioconjugates with Biotin Groups at the Junction Points: Synthesis, Self- Assembly, and Bioactivity. Macromolecules 2011, 44 (7), 2016-2024.
  7. Cheng, S. Z. D.; Wunderlich, B. A study of crystallization of low-molecular-mass poly(ethylene oxide) from the melt. Macromolecules 1989, 22 (4), 1866-1873.
  8. Chen, C.; Yu, C. H.; Cheng, Y. C.; Yu, P. H. F.; Cheung, M. K. Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly(3- hydroxybutyrate) and poly(ethylene glycol) as drug carriers. Biomaterials 2006, 27 (27), 4804-4814.
  9. Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release 2001, 70 (1-2), 1-20.
  10. Winzenburg, G.; Schmidt, C.; Fuchs, S.; Kissel, T. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Advanced Drug Delivery Reviews 2004, 56 (10), 1453-1466.
  11. Hadjichristidis, N.; Pispas, S.; Floudas, G. Block Copolymers by Anionic Polymerization. In Block Copolymers, John Wiley & Sons, Inc.: 2002; pp 1-27.
  12. Hadjichristidis, N.; Pispas, S.; Floudas, G. Block Copolymers by Cationic Polymerization. In Block Copolymers, John Wiley & Sons, Inc.: 2002; pp 28-46.
  13. Hadjichristidis, N.; Pispas, S.; Floudas, G. Block Copolymers by Living Free Radical Polymerization. In Block Copolymers, John Wiley & Sons, Inc.: 2002; pp 47-64.
  14. Langer, R.; Peppas, N. Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews 1983, 23 (1), 61-126.
  15. Kim, K.; Yu, M.; Zong, X.; Chiu, J.; Fang, D.; Seo, Y. S.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M. Control of degradation rate and hydrophilicity in electrospun non-woven poly( D L ,-lactide) nanofiber scaffolds for biomedical applications. Biomaterials 2003, 24 (27), 4977-4985.
  16. Miyata, T.; Masuko, T. Crystallization behaviour of poly(tetramethylene succinate). Polymer 1998, 39 (6-7), 1399-1404.
  17. Loo, Y. L.; Register, R. A. Crystallization Within Block Copolymer Mesophases. In Developments in Block Copolymer Science and Technology, John Wiley & Sons, Ltd: 2004; pp 213-243.
  18. Osada, K.; Kataoka, K. Drug and Gene Delivery Based on Supramolecular Assembly of PEG-Polypeptide Hybrid Block Copolymers. In Peptide Hybrid Polymers, 202 ed.; Klok, H. A., Schlaad, H., Eds.; Springer Berlin / Heidelberg: 2006; pp 113- 153.
  19. Goodman I. Encyclopedia of polymer science and engineering. Wiley: 1988; pp 1-75.
  20. Yang, D. J.; Zhang, L. F.; Xu, L.; Xiong, C. D.; Ding, J.; Wang, Y. Z. Fabrication and characterization of hydrophilic electrospun membranes made from the block copolymer of poly(ethylene glycol-co-lactide). Journal of Biomedical Materials Research Part A 2007, 82A (3), 680-688.
  21. Vassiliou, A. A.; Papadimitriou, S. A.; Bikiaris, D. N.; Mattheolabakis, G.; Avgoustakis, K. Facile synthesis of polyester-PEG triblock copolymers and preparation of amphiphilic nanoparticles as drug carriers. Journal of Controlled Release 2010, 148 (3), 388-395.
  22. Matyjaszewski, K.; Xia, J. Fundamentals of Atom Transfer Radical Polymerization. In Handbook of Radical Polymerization, John Wiley & Sons, Inc.: 2002; pp 523- 628.
  23. Khoee, S.; Rahimi, H. B. Intermolecular interaction and morphology investigation of drug loaded ABA-triblock copolymers with different hydrophilic/lipophilic ratios. Bioorganic & Medicinal Chemistry 2010, 18 (20), 7283-7290.
  24. Rogers, M. E.; Long, T. E.; Turner, S. R. Introduction to Synthetic Methods in Step- Growth Polymers. In Synthetic Methods in Step-Growth Polymers, John Wiley & Sons, Inc.: 2003; pp 1-16.
  25. Voronov, A.; Kohut, A.; Peukert, W.; Voronov, S.; Gevus, O.; Tokarev, V. Invertible Architectures from Amphiphilic Polyesters. Langmuir 2006, 22 (5), 1946-1948.
  26. Robert M.Silverstein; Francis X.Webster; David J.Kiemle Spectrometric identification of organic compounds; 7th ed.; John Wiley & Sons: 2005.
  27. Taniguchi, I.; Nakano, S.; Nakamura, T.; El-Salmawy, A.; Miyamoto, M.; Kimura, Y. Mechanism of Enzymatic Hydrolysis of Poly(butylene succinate) and Poly(butylene succinate-co-L-lactate) with a Lipase from Pseudomonas cepacia. Macromol. Biosci. 2002, 2 (9), 447-455.
  28. Gِ öpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17 (2), 103-114.
  29. Dalton, P. D.; Lleixa Calvet, J.; Mourran, A.; Klee, D.; Möller, M. Melt electrospinning of poly-(ethylene glycol-block-ε-caprolactone). Biotechnology Journal 2006, 1 (9), 998-1006.
  30. Hamley, I. W. Melt phase behaviuor of block copolymers. In The Physics of Block Copolymers, Oxford University Press: 1998; p 24.
  31. Cheng, S. Z. D.; Wunderlich, B. Molecular segregation and nucleation of poly(ethylene oxide) crystallized from the melt. I. Calorimetric study. J. Polym. Sci. B Polym. Phys. 1986, 24 (3), 577-594.
  32. Nakahara, Y.; Kida, T.; Nakatsuji, Y.; Akashi, M. New Fluorescence Method for the Determination of the Critical Micelle Concentration by Photosensitive Monoazacryptand Derivatives. Langmuir 2005, 21 (15), 6688-6695.
  33. Langer, R. New methods of drug delivery. Science 1990, 249 (4976), 1527-1533.
  34. Hawker, C. J. Nitroxide-Mediated Living Radical Polymerizations. In Handbook of Radical Polymerization, John Wiley & Sons, Inc.: 2002; pp 463-521.
  35. Park, S. Y.; Bae, Y. H. Novel pH-sensitive polymers containing sulfonamide groups. Macromol. Rapid Commun. 1999, 20 (5), 269-273.
  36. Kang, S. I.; Bae, Y. H. pH-Induced solubility transition of sulfonamide-based polymers. Journal of Controlled Release 2002, 80 (1-3), 145-155.
  37. Kang, S. I.; Bae, Y. H. pH-Induced Volume-Phase Transition of Hydrogels Containing Sulfonamide Side Group by Reversible Crystal Formation. Macromolecules 2001, 34 (23), 8173-8178.
  38. Wilhelm, M.; Zhao, C. L.; Wang, Y.; Xu, R.; Winnik, M. A.; Mura, J. L.; Riess, G.; Croucher, M. D. Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 1991, 24 (5), 1033-1040.
  39. Chen, C.; Yu, C. H.; Cheng, Y. C.; Yu, P. H. F.; Cheung, M. K. Preparation and characterization of biodegradable nanoparticles based on amphiphilic poly(3- hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) triblock copolymer. European Polymer Journal 2006, 42 (10), 2211-2220.
  40. Li, R.; Li, X.; Xie, L.; Ding, D.; Hu, Y.; Qian, X.; Yu, L.; Ding, Y.; Jiang, X.; Liu, B. Preparation and evaluation of PEG-PCL nanoparticles for local tetradrine delivery. International Journal of Pharmaceutics 2009, 379 (1), 158-166.
  41. Guerra, G. D.; Cerrai, P.; Tricoli, M.; Maltinti, S. Release of 5-fluorouracil by biodegradable poly(ester-ether-ester)s. Part I: release by fused thin sheets. Journal of Materials Science: Materials in Medicine 2001, 12 (4), 313-317.
  42. Bandyopadhyay, P.; Ghosh, A. K. Reversible Fluorescence Quenching by Micelle Selective Benzophenone-Induced Interactions between Brij Micelles and Polyacrylic Acids: Implications for Chemical Sensors. The Journal of Physical Chemistry B 2010, 114 (35), 11462-11467.
  43. Gabarayeva, N. I.; Grigorjeva, V. V. Sporoderm ontogeny in Chamaedorea microspadix (Arecaceae): self-assembly as the underlying cause of development. Grana 2010, 49 (2), 91-114.
  44. Choi, Y. K.; Bae, Y. H.; Kim, S. W. Star-Shaped Poly(ether-ester) Block Copolymers: Synthesis, Characterization, and Their Physical Properties. Macromolecules 1998, 31 (25), 8766-8774.
  45. Alexandridis, P. Structural Polymorphism of Poly(ethylene oxide) êْ Poly(propylene oxide) Block Copolymers in Nonaqueous Polar Solvents. Macromolecules 1998, 31 (20), 6935-6942.
  46. Cohen, L.; Rocco, A. Study of the Crystallization Kinetics. Poly(ethylene oxide) and a blend of poly(ethylene oxide) and poly(bisphenol A-co-epichlorohydrin). Journal of Thermal Analysis and Calorimetry 2000, 59 (3), 625-632.
  47. Ding, M.; Zhang, M.; Yang, J.; Qiu, J. h. Study on the enzymatic degradation of PBS and its alcohol acid modified copolymer. Biodegradation 2011, 1-6.
  48. Kang, S. I.; Na, K.; Bae, Y. H. Sulfonamide-containing polymers: a new class of pH- sensitive polymers and gels. Macromol. Symp. 2001, 172 (1), 149-156.
  49. Wang, F.; Bronich, T. K.; Kabanov, A. V.; Rauh, R. D.; Roovers, J. Synthesis and Characterization of Star Poly(ε-caprolactone)-b-Poly(ethylene glycol) and Poly(l- lactide)-b-Poly(ethylene glycol) Copolymers: Evaluation as Drug Delivery Carriers. Bioconjugate Chemistry 2008, 19 (7), 1423-1429.
  50. Wang, L. c.; Chen, J. w.; Liu, H. l.; Chen, Z. q.; Zhang, Y.; Wang, C. y.; Feng, Z. g. Synthesis and evaluation of biodegradable segmented multiblock poly(ether ester) copolymers for biomaterial applications. Polym. Int. 2004, 53 (12), 2145-2154.
  51. Li, Y.; Kissel, T. Synthesis, characteristics and in vitro degradation of star-block copolymers consisting of L -lactide, glycolide and branched multi-arm poly(ethylene oxide). Polymer 1998, 39 (18), 4421-4427.
  52. Hong, S. W.; Ahn, C. H.; Huh, J.; Jo, W. H. Synthesis of a PEGylated Polymeric pH Sensor and Its pH Sensitivity by Fluorescence Resonance Energy Transfer. Macromolecules 2006, 39 (22), 7694-7700.
  53. Hadjichristidis, N.; Pispas, S.; Floudas, G. Synthesis of Block Copolymers by a Combination of Different Polymerization Methods. In Block Copolymers, John Wiley & Sons, Inc.: 2002; pp 91-113.
  54. Hwang, S. Y.; Jin, X. Y.; Yoo, E. S.; Im, S. S. Synthesis, physical properties and enzymatic degradation of poly (oxyethylene-b-butylene succinate) ionomers. Polymer 2011, 52 (13), 2784-2791.
  55. Gou, P. F.; Zhu, W. P.; Shen, Z. Q. Synthesis, Self-Assembly, and Drug-Loading Capacity of Well-Defined Cyclodextrin-Centered Drug-Conjugated Amphiphilic A14B7 Miktoarm Star Copolymers Based on Poly(ε-caprolactone) and Poly(ethylene glycol). Biomacromolecules 2010, 11 (4), 934-943.
  56. Junkers, T.; Lovestead, T. M.; Barner-Kowollik, C. The RAFT Process as a Kinetic Tool: Accessing Fundamental Parameters of Free Radical Polymerization. In Handbook of RAFT Polymerization, Wiley-VCH Verlag GmbH & Co. KGaA: 2008; pp 105- 149.
  57. Plage, B.; Schulten, H. R. Thermal degradation and mass-spectrometric fragmentation processes of polyesters studied by time/temperature-resolved pyrolysis-field ionization mass spectrometry. Macromolecules 1990, 23 (10), 2642-2648.
  58. Vacanti, C. A.; Vacanti, J. P.; Langer, R. Tissue Engineering Using Synthetic Biodegradable Polymers. In Polymers of Biological and Biomedical Significance, 540 ed.; American Chemical Society: 1993; pp 16-34.
  59. A.Romo-Uribe Hybrid -block copolymer nanocomposites. characterization of nanostructure by small-angle X-ray scattering (SAXS). REVISTA MEXICANA DE FI´SICA 2007, 53 (3), 171-178.
  60. R.van Dijkhuizen-Radersma, R.; Roosma, J. R.; Kaim, P.; Metairie, S.; Peters, F. L. A. M.; de Wijn, J.; Zijlstra, P. G.; de Groot, K.; Bezemer, J. M. Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications. Journal of Biomedical Materials Research Part A 2003, 67A (4), 1294-1304.
  61. R.van Dijkhuizen-Radersma, R.; Metairie, S.; Roosma, J. R.; de Groot, K.; Bezemer, J. M. Controlled release of proteins from degradable poly(ether-ester) multiblock copolymers. Journal of Controlled Release 2005, 101 (1-3), 175-186.
  62. Wang, F.; Bronich, T. K.; Kabanov, A. V.; Rauh, R. D.; Roovers, J. Synthesis and Evaluation of a Star Amphiphilic Block Copolymer from Poly(ε-caprolactone) and Poly(ethylene glycol) as a Potential Drug Delivery Carrier. Bioconjugate Chemistry 2005, 16 (2), 397-405.
  63. Sun, J.; Bubel, K.; Chen, F.; Kissel, T.; Agarwal, S.; Greiner, A. Nanofibers by Green Electrospinning of Aqueous Suspensions of Biodegradable Block Copolyesters for Applications in Medicine, Pharmacy and Agriculture. Macromol. Rapid Commun. 2010, 31 (23), 2077-2083.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten