Publikationsserver der Universitätsbibliothek Marburg

Titel: Molekulare Mechanismen während der Anheftung und Biofilmbildung in Shewanella oneidensis MR-1 - Die Tücken des Besiedelns -
Autor: Gödeke, Julia
Weitere Beteiligte: Bremer, Erhard (Prof. Dr.)
Erscheinungsjahr: 2011
URI: https://archiv.ub.uni-marburg.de/diss/z2011/0466
DOI: https://doi.org/10.17192/z2011.0466
URN: urn:nbn:de:hebis:04-z2011-04668
DDC: 570 Biowissenschaften, Biologie
Titel(trans.): Molecular Mechanisms during Attachment and Biofilm Formation in Shewanella oneidensis MR-1- Pitfalls of Colonization -

Dokument

Schlagwörter:
detachment, Nuklease, Shewanella, Shewanella, Biofilm, nuclease, lysis, Bakteriophagen, phage, Lyse <Biologie>

Zusammenfassung:
Grenzflächenbesiedlung durch robuste Bakteriengemeinschaften – sogenannten Biofilmen – stellt die ubiquitär verbreitete Lebensform von Mikroorganismen dar, um einer Vielzahl von Stressfaktoren zu widerstehen. Das Entwicklungsprogramm solcher Biofilme lässt sich in mehrere distinkte Schritte unterteilen, wobei zu Anfang eine zunächst transiente Anheftung Oberflächen- assoziierter Zellen steht, auf die eine irreversible Interaktion mit dem Substratum folgt. Nach der Bildung von Mikrokolonien entstehen im weiteren Verlauf drei-dimensionale Strukturen, die als charakteristisches Merkmal für Biofilme gelten. Das dissimilatorisch Metallionen-reduzierende Bakterium Shewanella oneidensis MR-1 bildet Biofilme unter statischen wie hydrodynamischen Bedingungen aus. Die Ausprägungsformen des Biofilms unterscheiden sich jedoch stark in Abgängigkeit von den vorherrschenden Bedingungen. So bildet S. oneidensis MR-1 unter statischen Bedingungen eine eher lockere netzartige Biofilmstruktur, durch die sich Zellen bewegen können. Hydrodynamische Bedingungen haben zur Folge, dass sich turmartige Strukturen, welche vornehmlich durch klonales Wachstum entstehen, ausbilden, die von einer dichtgepackten, widerstandsfähigen Matrix zusammengehalten werden. Um zelluläre Prozesse während der Oberflächen-Anheftung in Abhängigkeit der vorherrschenden Bedingung mit Hilfe von Transkriptom-Analysen zu identifizieren, wurde ein System zur Isolierung von Oberflächen-assoziierten Zellen in einem hydrodynamischen Umfeld etabliert. Die Transkriptom-Analysen adhärierter Zellen unter statischen und hydrodynamischen Bedingungen zeigten, dass die initiale Anheftung dieses Organismus, als erster Schritt in die Richtung eines sessilen Lebensstils im Biofilm, weitreichende Veränderungen des Transkriptoms nach sich zieht. Dabei lässt sich zwischen einer allgemeinen, jedoch umweltabhängigen Anpassung, die vor allem eine Reduzierung der Motilität und – unter statischen Bedingungen – eine rapide wie effiziente Umstellung auf anaeroben Stoffwechsel beinhaltet, und einer Substrat-spezifischen Adaption unterscheiden. So hat beispielsweise eine Anheftung an eine Eisen(hydr)oxid-Oberfläche zur Folge, dass – wahrscheinlich aufgrund des Überangebots an Elektronenakzeptoren – besonders Transportsysteme und Cytochrome reprimiert, dagegen stressabhängige Sigmafaktoren induziert werden. Im weiteren Verlauf der Anheftung und Biofilmentwicklung produzieren die S. oneidensis MR-1 Zellen eine Biofilm-Matrix, die zu einem entscheidenden Teil aus extrazellulärer DNA (eDNA) besteht. Als strukturgebendes Element spielt die eDNA in Biofilmen sowohl unter statischen, als auch unter hydrodynamischen Bedingungen eine wichtige Rolle. Die Herkunft dieser eDNA konnte auf zelllytische Prozesse – ausgelöst durch Phagen-induzierte Lyse einer Subpopulation von Zellen – zurückgeführt werden. Die durch die lytische Aktivität der drei Shewanella-eigenen Prophagen (MuSo1, MuSo2 und LambdaSo) freigesetzte DNA ist bereits in den ersten Schritten der Anheftung essenziell. Eine Mutante, in der alle drei Prophagen deletiert wurden, wies massive Defekte in allen Stadien der Biofilmbildung auf. Mutanten-Analysen und Infektionsstudien zeigten des Weiteren, dass nur die Prophagen MuSo2 und LambdaSo in den lytischen Lebenszyklus konvertieren und infektiöse Viruspartikel assemblieren können. Um die dynamische Besiedelung einer Oberfläche zu gewährleisten, gehen einige Zellen während aller Entwicklungsstufen der Biofilmbildung zu einem erneut planktonischen Lebensstil über. Dieser kontrollierte Übergang scheint unter anderem auch die Fähigkeit zur Degradierung von Komponenten der Biofilm-Matrix – insbesondere eDNA – vorauszusetzen. Zwei Kandidaten für solche DNA-degradierenden Prozesse stellen die extrazellulären Endonukleasen ExeM und ExeS dar, die vermutlich sowohl die Akkumulation, als auch das Ablösen von Biofilm-Biomasse aktiv mitgestalten, und zusätzlich – zumindest bei ExeM – in der Verwertbarkeit von DNA als Phosphatquelle eine Rolle spielen.

Summary:
Microbes in nature are commonly found in surface-associated communities, now often referred to as biofilms, leading to drastically altered properties compared to planktonic cells. The biofilm formation is strongly dependent on the environmental conditions such as nutrient and oxygen supply. Its developmental program can be divided into several phases. Initial attachment marks the onset of a bacterial life style switch, where single cells attach to a substratum initially in a transiently associated manner before becoming permanently immobilized. The permanent attachment sets the base for subsequent production of extracellular polymeric substances (biofilm matrix) and biofilm formation. However, signals and regulatory events underlying these initial processes are still mostly unknown. The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 forms biofilms in hydrodynamic and static systems, reflecting different natural habitats. Under static conditions, biofilm development occurs entirely different from hydrodynamically-grown biofilm as the cells form a flexible sturdy network of cells without the characteristic three-dimensional structures that are typical for flow-cell cultured biofilms. To identify genetic requirements for the cellular attachment – as first step in the biofilm formation – in different environments through transcriptome analyses, a novel system for harvesting surface-attached cells under hydrodynamic conditions was successfully established. The microarray analyses of attached cells in static and hydrodynamic environments revealed that transition between the planktonic compartment and the surface leads to dramatic changes in the expression profile of the surface-associated cells. While reduction of motility and rapid adaption to changes in oxygen levels represent an ubiquitous stage-specific genetic requirement, the initial attachment of the cells can also entail substrate-specific genetic responses. Therefore, the attachment to the redox-active substratum iron (hydr)oxide results in a drastically reduced synthesis of cytochromes and transporters, but leads to the induction of stress-dependent sigma factors. Hence, the genetic changes in initially attached S. oneidensis MR-1 cells improve the adaptation to the sessile life style. Following initial attachment, S. oneidensis MR-1 cells start forming biofilm structures and are encased in a self-produced sticky biofilm matrix with extracellular DNA (eDNA) as a major component. The eDNA not only serves as structural component in all stages of biofilm formation under static and hydrodynamic conditions, but is also required for proper attachment of the cells in different environments. The release of eDNA during early and later stages of biofilm formation is mediated via cell lysis of a subpopulation of biofilm cells through the lytic activity of the three S. oneidensis MR-1 prophages, MuSo1, MuSo2 and LambdaSo. However, mutant analyses and infection studies revealed that only LambdaSo and MuSo2 form infectious phage particles. A mutant lacking all three prophages is defective in all stages of biofilm formation. Thus, the prophage-mediated lysis result in the release of crucial attachment- and biofilm-promoting factors, in particular eDNA. In addition to the function of eDNA, the role of two extracellular endonucleases, ExeM and ExeS, was analyzed. While ExeM is involved in degrading external DNA as sole source of phosphorus, ExeS does not seem to have a function in utilizing DNA in S. oneidensis MR-1. However, both nucleases are likely to be involved in degrading eDNA within the matrix of biofilms. This process is essential for detachment events in biofilms giving rise to viable planktonic cells capable of attaching to non-occupied areas on the surface of the habitat.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten