Publikationsserver der Universitätsbibliothek Marburg

Titel:Elucidation of mechanism of disease resistance and persistence in chronic myeloid leukemia.
Autor:Kumari, Ashu
Weitere Beteiligte: Burchert, Andreas (Prof Dr. )
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0459
URN: urn:nbn:de:hebis:04-z2011-04590
DOI: https://doi.org/10.17192/z2011.0459
DDC: Medizin
Titel (trans.):Erläuterung der Mechanismen zur Krankheitsresistenz und Persistenz bei chronischer myeloischer Leukämie
Publikationsdatum:2011-08-10
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Imatinib mesylate, Chronisch-myeloische Leukämie, Imatinib mesilat, Chronisch-myeloische Leukämie, chronic mayeloid leukemia, Resistenz, Imatinib mesilat, resistance, Resistenz

Summary:
Chronic myeloid leukemia (CML) is a clonal disorder of the hematopoietic stem cell caused by the BCR-ABL receptor tyrosine kinase. Imatinib mesylate (IM) is an inhibitor of BCR-ABL and has been approved for the treatment of CML. IM is well tolerated and highly efficacious as it induces stable long-term remissions in the vast majority of patients. Despite its efficacy, a still unresolved issue associated with IM therapy is IM resistance in progressed phases of CML and long-term disease persistence. It has been shown that BCR-ABL mRNA and BCR-ABL-positive progenitor and stem cells remain detectable after years of therapy. Based on the BCR-ABL expression analysis and short term IM exposure experiments of IM-naïve, first diagnosis CML precursor cells it has been suggested that BCR-ABL over-expression contributes to a major extend to the incapability of IM to kill and eradicate primitive precursors and CML stem cells. Interestingly, the BCR-ABL expression level in actual persisting CML precursor clones, and the impact of long term IM therapy on the eradication of CML precursors from different bone marrow compartments was never been thoroughly investigated. Here we studied a putative novel IM persistence mechanism by directly investigating in residual BCR-ABL-positive progenitor and stem cell clones in chronic phase CML patients in major molecular remission (MMR) under IM. We could first show that IM not only eliminates BCR-ABL positive cells from both primitive (stem cell containing) and more mature bone marrow precursor compartments but also that, in contrast to the currently proposed model, persisting primitive and mature BCR-ABL positive colony forming clones (CFU) expressed significantly less BCR-ABL than CML CFU isolated from initial diagnosis patients. Indeed, lower BCR-ABL expression reduces IM sensitivity of primary bone marrow progenitors engineered to express BCR-ABL. Whereas high BCR-ABL expression level increased IM responsiveness but also the frequency of BCR-ABL kinase mutation development as the most important IM resistance mechanism. This would explain the low propensity of secondary IM resistance in patients, which do achieve a good molecular remission with IM. Another regulator of BCR-ABL kinase point mutation development has been identified with ICSBP, an interferon regulated gene that was previously found by our group to be downregulated in CML. Lack of ICSBP expression in murine myeloid 32D-BA cells conferred BCR-ABL independent IM resistance and limits the development kinase point mutations. Together, here we described two novel and clinically relevant mechanisms of CML persistence and resistance under IM, which may provide a novel perspective for reassessing treatment strategies aiming at eradicating residual disease in CML and to overcome IM resistance.

Bibliographie / References

  1. Gabriele, L., Phung, J., Fukumoto, J., Segal, D., Wang, I. M., Giannakakou, P., Giese, N. A., Ozato, K., and Morse, H. C., 3rd (1999). Regulation of apoptosis in myeloid cells by interferon consensus sequence-binding protein. J Exp Med 190, 411-421.
  2. le Coutre, P., Tassi, E., Varella-Garcia, M., Barni, R., Mologni, L., Cabrita, G., Marchesi, E., Supino, R., and Gambacorti-Passerini, C. (2000). Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood 95, 1758-1766.
  3. Zhu, A. J., and Watt, F. M. (1999). beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 126, 2285-2298.
  4. Holtschke, T., Lohler, J., Kanno, Y., Fehr, T., Giese, N., Rosenbauer, F., Lou, J., Knobeloch, K. P., Gabriele, L., Waring, J. F., et al. (1996). Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307-317.
  5. Weisz, A., Kirchhoff, S., and Levi, B. Z. (1994). IFN consensus sequence binding protein (ICSBP) is a conditional repressor of IFN inducible promoters. Int Immunol 6, 1125-1131.
  6. Jiang, X., Saw, K. M., Eaves, A., and Eaves, C. (2007a). Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst 99, 680-693.
  7. Ortmann, C. A., Burchert, A., Holzle, K., Nitsche, A., Wittig, B., Neubauer, A., and Schmidt, M. (2005). Down-regulation of interferon regulatory factor 4 gene expression in leukemic cells due to hypermethylation of CpG motifs in the promoter region. Nucleic Acids Res 33, 6895-6905.
  8. Andreas Burchert. Low BCR-ABL expression levels in hematopoietic precursor cells enable persistence of chronic myeloid leukemia under imatinib. (Revision under Blood journal)
  9. Jorgensen, H. G., Allan, E. K., Jordanides, N. E., Mountford, J. C., and Holyoake, T. L. (2007). Nilotinib exerts equipotent antiproliferative effects to IM and does not induce apoptosis in CD34+ CML cells. Blood 109, 4016-4019.
  10. Graham, S. M., Jorgensen, H. G., Allan, E., Pearson, C., Alcorn, M. J., Richmond, L., and Holyoake, T. L. (2002). Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99, 319-325.
  11. Hochhaus, A., Kreil, S., Corbin, A., La Rosee, P., Lahaye, T., Berger, U., Cross, N. C., Linkesch, W., Druker, B. J., Hehlmann, R., et al. (2001). Roots of clinical resistance to STI-571 cancer therapy. Science 293, 2163.
  12. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86, 726-736.
  13. El-Ouriaghli, F., Sloand, E., Mainwaring, L., Fujiwara, H., Keyvanfar, K., Melenhorst, J. J., Rezvani, K., Sconocchia, G., Solomon, S., Hensel, N., and Barrett, A. J. (2003). Clonal dominance of chronic myelogenous leukemia is associated with diminished sensitivity to the antiproliferative effects of neutrophil elastase. Blood 102, 3786-3792.
  14. Engler, J. R., Frede, A., Saunders, V. A., Zannettino, A. C., Hughes, T. P., and White, D. L. Chronic myeloid leukemia CD34+ cells have reduced uptake of imatinib due to low OCT-1 activity. Leukemia 24, 765-770.
  15. P. (2003). Frequency of major molecular responses to IM or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 349, 1423-1432.
  16. Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47, 6658-6661.
  17. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M. A., and Dick, J. E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645-648.
  18. Smith, J. M., Katz, S., and Mayer, B. J. (1999). Activation of the Abl tyrosine kinase in vivo by Src homology 3 domains from the Src homology 2/Src homology 3 adaptor Nck. J Biol Chem 274, 27956-27962.
  19. From University of Allahabad, Allahabad Awards and Honor: Scholarship by the Department of Biotechnology (DBT), Government of India. (Sep 2005-March 2007).
  20. From Center for Biotechnology, University of Allahabad, Allahabad Bachelor of Science (Botany, Chemistry) (First Class-67.9 %) 1997-2000
  21. Schwieger, M., Lohler, J., Friel, J., Scheller, M., Horak, I., and Stocking, C. (2002). AML1-ETO inhibits maturation of multiple lymphohematopoietic References lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 196, 1227-1240.
  22. von Bubnoff, N., Schneller, F., Peschel, C., and Duyster, J. (2002). BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome- positive leukaemia to STI571: a prospective study. Lancet 359, 487-491.
  23. Koptyra, M., Falinski, R., Nowicki, M. O., Stoklosa, T., Majsterek, I., Nieborowska-Skorska, M., Blasiak, J., and Skorski, T. (2006). BCR/ABL kinase References induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 108, 319-327.
  24. von Bubnoff, N., Manley, P. W., Mestan, J., Sanger, J., Peschel, C., and Duyster, J. (2006). Bcr-Abl resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the Abl kinase inhibitor nilotinib (AMN107). Blood 108, 1328-1333.
  25. Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 108, 286-291.
  26. Konopka, J. B., Watanabe, S. M., Singer, J. W., Collins, S. J., and Witte, O. N. (1985). Cell lines and clinical isolates derived from Ph1-positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration. Proc Natl Acad Sci U S A 82, 1810-1814.
  27. Nowell, P. C., and Hungerford, D. A. (1960). Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25, 85-109.
  28. Fialkow, P. J., Jacobson, R. J., and Papayannopoulou, T. (1977). Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 63, 125-130.
  29. Jiang, X., Zhao, Y., Smith, C., Gasparetto, M., Turhan, A., Eaves, A., and Eaves, C. (2007b). Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 21, 926-935.
  30. Gorre, M. E., Mohammed, M., Ellwood, K., Hsu, N., Paquette, R., Rao, P. N., and Sawyers, C. L. (2001). Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876-880.
  31. Klinische Forschergruppe 210 (KFO210), Comprehensive cancer center, Marburg (Poster presentation, March 2008)
  32. Oda, T., Heaney, C., Hagopian, J. R., Okuda, K., Griffin, J. D., and Druker, B. J. (1994). Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 269, 22925-22928.
  33. Johansson, B., Fioretos, T., and Mitelman, F. (2002). Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 107, 76-94.
  34. Schittenhelm, M. M., Shiraga, S., Schroeder, A., Corbin, A. S., Griffith, D., Lee, F. Y., Bokemeyer, C., Deininger, M. W., Druker, B. J., and Heinrich, M. C. (2006). Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res 66, 473-481.
  35. Guo, J. Q., Wang, J. Y., and Arlinghaus, R. B. (1991). Detection of BCR-ABL proteins in blood cells of benign phase chronic myelogenous leukemia patients. Cancer Res 51, 3048-3051.
  36. Moravcova, J., Zmekova, V., Klamova, H., Voglova, J., Faber, E., Michalova, K., Rabasova, J., and Jarosova, M. (2004). Differences and similarities in kinetics of BCR-ABL transcript levels in CML patients treated with imatinib mesylate for chronic or accelerated disease phase. Leuk Res 28, 415-419.
  37. Differential requirement of IFN consensus sequence binding protein for the production of IL-12 and induction of Th1-type cells in response to IFN-gamma. J Immunol 162, 807-812.
  38. Mahon, F. X., Rea, D., Guilhot, J., Guilhot, F., Huguet, F., Nicolini, F., Legros, L., Charbonnier, A., Guerci, A., Varet, B., et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11, 1029-1035.
  39. Lombardo, L. J., Lee, F. Y., Chen, P., Norris, D., Barrish, J. C., Behnia, K., Castaneda, S., Cornelius, L. A., Das, J., Doweyko, A. M., et al. (2004). Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2- methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual
  40. Rudkin, C. T., Hungerford, D. A., and Nowell, P. C. (1964). DNA Contents of Chromosome Ph1 and Chromosome 21 in Human Chronic Granulocytic Leukemia. Science 144, 1229-1231.
  41. E-Mail: kumaria@staff.uni-marburg.de Education: Masters of Science (Biotechnology) (First Class-74.25 %) 2002-2004
  42. Epigenetic silencing of the interferon regulatory factor ICSBP/IRF8 in human multiple myeloma. Exp Hematol 36, 1673-1681. References Tshuikina, M., Nilsson, K., and Oberg, F. (2008b). Positive histone marks are associated with active transcription from a methylated ICSBP/IRF8 gene. Gene 410, 259-267.
  43. Nelson, N., Kanno, Y., Hong, C., Contursi, C., Fujita, T., Fowlkes, B. J., O'Connell, E., Hu-Li, J., Paul, W. E., Jankovic, D., et al. (1996). Expression of IFN regulatory factor family proteins in lymphocytes. Induction of Stat-1 and IFN consensus sequence binding protein expression by T cell activation. J Immunol 156, 3711-3720.
  44. J. (1990). Functional characterization of individual human hematopoietic stem References Retention but significant reduction of BCR-ABL transcript in hematopoietic stem References Bonnet, D., and Dick, J. E. (1997). Human acute myeloid leukemia is organized as References achievement of complete molecular response in a Ph(+) CML patient treated References 354825) targets an earlier progenitor population than imatinib in primary CML References acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344, 1038-1042.
  45. Ashu kumari, Cornia brendel and Andreas Burchert, Genetics of kinase inhibitor resistance and persistence in bcr abl positive leukemias. (Poster presentation)
  46. Sallmyr, A., Fan, J., and Rassool, F. V. (2008). Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 270, 1-9.
  47. Scholarship by the Department of Biotechnology (DBT), Government of India for Master of Science in Biotechnology (2002-2004).
  48. Jamieson, C. H., Ailles, L. E., Dylla, S. J., Muijtjens, M., Jones, C., Zehnder, J. L., Gotlib, J., Li, K., Manz, M. G., Keating, A., et al. (2004). Granulocyte- macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351, 657-667.
  49. Holtz, M., Forman, S. J., and Bhatia, R. (2007). Growth factor stimulation reduces residual quiescent chronic myelogenous leukemia progenitors remaining after IM treatment. Cancer Res 67, 1113-1120.
  50. R., Nayar, R., Laraya, P., Minden, M., Keating, A., et al. (1998). High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood 91, 2406-2414.
  51. Weisz, A., Marx, P., Sharf, R., Appella, E., Driggers, P. H., Ozato, K., and Levi, B. Z. (1992). Human interferon consensus sequence binding protein is a negative regulator of enhancer elements common to interferon-inducible genes. J Biol Chem 267, 25589-25596.
  52. Rousselot, P., Huguet, F., Rea, D., Legros, L., Cayuela, J. M., Maarek, O., Blanchet, O., Marit, G., Gluckman, E., Reiffers, J., et al. (2007). Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 109, 58-60.
  53. Michor, F., Hughes, T. P., Iwasa, Y., Branford, S., Shah, N. P., Sawyers, C. L., References Ottmann, O. G., Druker, B. J., Sawyers, C. L., Goldman, J. M., Reiffers, J., Silver, References Rousselot, P., Huguet, F., Rea, D., Legros, L., Cayuela, J. M., Maarek, O., Blanchet, O., Marit, G., Gluckman, E., Reiffers, J., et al. (2007). IM mesylate References kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT References Skorski, T., Kanakaraj, P., Nieborowska-Skorska, M., Ratajczak, M. Z., Wen, S.
  54. References Gaiger, A., Henn, T., Horth, E., Geissler, K., Mitterbauer, G., Maier- Dobersberger, T., Greinix, H., Mannhalter, C., Haas, O. A., Lechner, K., and Lion, T. (1995). Increase of bcr-abl chimeric mRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression. Blood 86, 2371-2378.
  55. Talpaz, M., Kantarjian, H., Kurzrock, R., Trujillo, J. M., and Gutterman, J. U. (1991). Interferon-alpha produces sustained cytogenetic responses in chronic myelogenous leukemia. Philadelphia chromosome-positive patients. Ann Intern Med 114, 532-538.
  56. Jorgensen, H. G., Copland, M., Allan, E. K., Jiang, X., Eaves, A., Eaves, C., and Holyoake, T. L. (2006). Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by IM mesylate. Clin Cancer Res 12, 626-633.
  57. O'Hare, T., Walters, D. K., Stoffregen, E. P., Jia, T., Manley, P. W., Mestan, J., Cowan-Jacob, S. W., Lee, F. Y., Heinrich, M. C., Deininger, M. W., and Druker, B. J. (2005). In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 65, 4500-4505.
  58. Sica, A. (2009). Is it possible to discontinue imatinib mesylate therapy in Chronic Myeloid Leukemia patients with undetectable BCR/ABL? A case report and a review of the literature. Leuk Res 33, 1079-1081.
  59. Holyoake, T., Jiang, X., Eaves, C., and Eaves, A. (1999). Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94, 2056-2064.
  60. Schmidt, M., Nagel, S., Proba, J., Thiede, C., Ritter, M., Waring, J. F., Rosenbauer, F., Huhn, D., Wittig, B., Horak, I., and Neubauer, A. (1998). Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood 91, 22-29.
  61. References Rowley, J. D. (1973). Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290-293.
  62. Mahon, F. X., Belloc, F., Lagarde, V., Chollet, C., Moreau-Gaudry, F., Reiffers, J., Goldman, J. M., and Melo, J. V. (2003). MDR1 gene overexpression confers resistance to IM mesylate in leukemia cell line models. Blood 101, 2368-2373.
  63. Ren, R. (2005). Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5, 172-183.
  64. Hochhaus, A., Kreil, S., Corbin, A. S., La Rosee, P., Muller, M. C., Lahaye, T., Hanfstein, B., Schoch, C., Cross, N. C., Berger, U., et al. (2002). Molecular and chromosomal mechanisms of resistance to IM (STI571) therapy. Leukemia 16, 2190-2196.
  65. Verstegen, M. M., Cornelissen, J. J., Terpstra, W., Wagemaker, G., and Wognum, A. W. (1999). Multilineage outgrowth of both malignant and normal hemopoietic progenitor cells from individual chronic myeloid leukemia patients in immunodeficient mice. Leukemia 13, 618-628.
  66. Shah, N. P., Nicoll, J. M., Nagar, B., Gorre, M. E., Paquette, R. L., Kuriyan, J., and Sawyers, C. L. (2002). Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117-125.
  67. No correlation between the proliferative status of Bcr-Abl positive cell lines and the proapoptotic activity of IM mesylate (Gleevec/Glivec). Hematol J 4, 413-419.
  68. Sirard, C., Lapidot, T., Vormoor, J., Cashman, J. D., Doedens, M., Murdoch, B., Jamal, N., Messner, H., Addey, L., Minden, M., et al. (1996). Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 87, 1539-1548.
  69. White, D. L., Saunders, V. A., Dang, P., Engler, J., Zannettino, A. C., Cambareri, A. C., Quinn, S. R., Manley, P. W., and Hughes, T. P. (2006). OCT-1-mediated influx is a key determinant of the intracellular uptake of IM but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to IM. Blood 108, 697-704.
  70. Ashu Kumari, Cornelia Brendel, Thorsten Volkmann, Sonja Tajstra, Andreas Neubauer, and Andreas Burchert. Persisting chronic myeloid leukemia stem and progenitor cells from patients in major molecular remission under imatinb are characterized by low bcr/abl expression. Blood (ASH Annual Meeting Abstracts), Dec 2009; 2207
  71. N., and Fruman, D. A. (2004). Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells. Blood 103, 4268- 4275.
  72. Sharf, R., Meraro, D., Azriel, A., Thornton, A. M., Ozato, K., Petricoin, E. F., Larner, A. C., Schaper, F., Hauser, H., and Levi, B. Z. (1997). Phosphorylation events modulate the ability of interferon consensus sequence binding protein to interact with interferon regulatory factors and to bind DNA. J Biol Chem 272, 9785-9792.
  73. Varnum-Finney, B., Xu, L., Brashem-Stein, C., Nourigat, C., Flowers, D., Bakkour, S., Pear, W. S., and Bernstein, I. D. (2000). Pluripotent, cytokine- dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6, 1278-1281.
  74. Varnum-Finney, B., Xu, L., Brashem-Stein, C., Nourigat, C., Flowers, D., Bakkour, S., Pear, W. S., and Bernstein, I. D. (2000). Pluripotent, cytokine- References dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6, 1278-1281.
  75. Meraro, D., Hashmueli, S., Koren, B., Azriel, A., Oumard, A., Kirchhoff, S., Hauser, H., Nagulapalli, S., Atchison, M. L., and Levi, B. Z. (1999). Protein- protein and DNA-protein interactions affect the activity of lymphoid-specific IFN regulatory factors. J Immunol 163, 6468-6478.
  76. Meraro, D., Hashmueli, S., Koren, B., Azriel, A., Oumard, A., Kirchhoff, S., Hauser, H., Nagulapalli, S., Atchison, M. L., and Levi, B. Z. (1999). Protein- References protein and DNA-protein interactions affect the activity of lymphoid-specific IFN regulatory factors. J Immunol 163, 6468-6478.
  77. Publications and presentation:
  78. Qualified " National Eligibility Test for Junior Research Fellowship (NET- CSIR-JRF) " , June .2004. Qualified Graduate Aptitude Test in Engineering (GATE) 2004 conducted by Indian Institute of Technology (IIT), Delhi in Life Sciences. Curriculum Vitae Qualified " National Eligibility Test for Junior Research Fellowship (NET- CSIR-JRF) " , Dec.2003.
  79. Transregio meeting: Keystone Symposium: " Ras-dependent pathway in human cancer " Bistumshaus Schloss Hirschberg, Germany April 2009. Oral presentation: A simple novel mechanism of disease persistence in chronic myeloid leukemia.
  80. Politis, A. D., Ozato, K., Coligan, J. E., and Vogel, S. N. (1994). Regulation of IFN-gamma-induced nuclear expression of IFN consensus sequence binding protein in murine peritoneal macrophages. J Immunol 152, 2270-2278.
  81. Hantschel, O., and Superti-Furga, G. (2004). Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 5, 33-44. References Heisterkamp, N., Jenster, G., ten Hoeve, J., Zovich, D., Pattengale, P. K., and Groffen, J. (1990). Acute leukaemia in bcr/abl transgenic mice. Nature 344, 251- 253.
  82. D. (2007b). Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 7, 345-356.
  83. Mahon, F. X., Deininger, M. W., Schultheis, B., Chabrol, J., Reiffers, J., Goldman, J. M., and Melo, J. V. (2000). Selection and characterization of BCR- ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 96, 1070-1079.
  84. Haferlach, C., Bacher, U., Schnittger, S., Weiss, T., Kern, W., and Haferlach, T. Similar patterns of chromosome abnormalities in CML occur in addition to the Philadelphia chromosome with or without tyrosine kinase inhibitor treatment.
  85. Hochhaus, A., O'Brien, S. G., Guilhot, F., Druker, B. J., Branford, S., Foroni, L., Goldman, J. M., Muller, M. C., Radich, J. P., Rudoltz, M., et al. (2009). Six-year follow-up of patients receiving IM for the first-line treatment of chronic myeloid leukemia. Leukemia 23, 1054-1061.
  86. Selected for Shyma Prasad Mukhrjee Fellowship (SPM) test 2005, for top 20% of NET qualified candidates of the preceding year by Human Resource Development Group-Council of Scientific & Industrial Research (HRD-CSIR).
  87. Schindler, T., Bornmann, W., Pellicena, P., Miller, W. T., Clarkson, B., and Kuriyan, J. (2000). Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938-1942.
  88. Structural organization of the bcr gene and its role in the Ph' translocation. Nature 315, 758-761.
  89. Elmaagacli, A. H., Beelen, D. W., Opalka, B., Seeber, S., and Schaefer, U. W. (2000). The amount of BCR-ABL fusion transcripts detected by the real-time quantitative polymerase chain reaction method in patients with Philadelphia chromosome positive chronic myeloid leukemia correlates with the disease stage.
  90. Faderl, S., Talpaz, M., Estrov, Z., O'Brien, S., Kurzrock, R., and Kantarjian, H. M. (1999). The biology of chronic myeloid leukemia. N Engl J Med 341, 164-172.
  91. Senechal, K., Halpern, J., and Sawyers, C. L. (1996). The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene. J Biol Chem 271, 23255-23261.
  92. Taipale, J., and Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349-354.
  93. The human hematopoietic stem cell in vitro and in vivo. Blood Cells 18, 301-307.
  94. Melo, J. V. (1996). The molecular biology of chronic myeloid leukaemia.
  95. Kurzrock, R., Gutterman, J. U., and Talpaz, M. (1988). The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med 319, 990-998.
  96. E., Kish, K., Lee, F. Y., Borzillerri, R., Lombardo, L. J., et al. (2006). The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res 66, 5790-5797.
  97. Thomas, J., Wang, L., Clark, R. E., and Pirmohamed, M. (2004). Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104, 3739-3745.
  98. von Bubnoff, N., Veach, D. R., van der Kuip, H., Aulitzky, W. E., Sanger, J., Seipel, P., Bornmann, W. G., Peschel, C., Clarkson, B., and Duyster, J. (2005). A cell-based screen for resistance of Bcr-Abl-positive leukemia identifies the mutation pattern for PD166326, an alternative Abl kinase inhibitor. Blood 105, 1652-1659.
  99. References Ilaria, R. L., Jr., and Van Etten, R. A. (1996). P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 271, 31704-31710.
  100. Holtz, M. S., Forman, S. J., and Bhatia, R. (2005). Nonproliferating CML CD34+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli. Leukemia 19, 1034-1041.
  101. Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105-111.
  102. Hubbard, S. R. (1997). Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. Embo J 16, 5572-5581.
  103. Radich, J. P., Dai, H., Mao, M., Oehler, V., Schelter, J., Druker, B., Sawyers, C., Shah, N., Stock, W., Willman, C. L., et al. (2006). Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A 103, 2794-2799.
  104. Weisberg, E., Catley, L., Wright, R. D., Moreno, D., Banerji, L., Ray, A., Manley, P. W., Mestan, J., Fabbro, D., Jiang, J., et al. (2007a). Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leukemias. Blood 109, 2112-2120.
  105. L. (2003). Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci U S A 100, 10002-10007.
  106. Press, R. D., Love, Z., Tronnes, A. A., Yang, R., Tran, T., Mongoue-Tchokote, S., Mori, M., Mauro, M. J., Deininger, M. W., and Druker, B. J. (2006). BCR-ABL mRNA levels at and after the time of a complete cytogenetic response (CCR) predict the duration of CCR in imatinib mesylate-treated patients with CML. Blood 107, 4250-4256.
  107. Sawyers, C. L., McLaughlin, J., and Witte, O. N. (1995). Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene. J Exp Med 181, 307-313.
  108. Weisberg, E., Manley, P., Mestan, J., Cowan-Jacob, S., Ray, A., and Griffin, J. D. (2006). AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 94, 1765-1769.
  109. Ottmann, O. G., Druker, B. J., Sawyers, C. L., Goldman, J. M., Reiffers, J., Silver, R. T., Tura, S., Fischer, T., Deininger, M. W., Schiffer, C. A., et al. (2002). A References phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 100, 1965-1971.
  110. The interferon consensus sequence binding protein (ICSBP/IRF8) activates transcription of the FANCF gene during myeloid differentiation. J Biol Chem 284, 33242-33254.
  111. Gregory, M. A., Phang, T. L., Neviani, P., Alvarez-Calderon, F., Eide, C. A., O'Hare, T., Zaberezhnyy, V., Williams, R. T., Druker, B. J., Perrotti, D., and Degregori, J. Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl. Cancer Cell 18, 74-87.
  112. Veals, S. A., Santa Maria, T., and Levy, D. E. (1993). Two domains of ISGF3 gamma that mediate protein-DNA and protein-protein interactions during transcription factor assembly contribute to DNA-binding specificity. Mol Cell Biol 13, 196-206.
  113. Nelson, N., Marks, M. S., Driggers, P. H., and Ozato, K. (1993). Interferon consensus sequence-binding protein, a member of the interferon regulatory factor family, suppresses interferon-induced gene transcription. Mol Cell Biol 13, 588- 599.
  114. BCR/ABL promotes accumulation of chromosomal aberrations induced by oxidative and genotoxic stress. Leukemia 22, 1969-1972.
  115. Puil, L., Liu, J., Gish, G., Mbamalu, G., Bowtell, D., Pelicci, P. G., Arlinghaus, R., and Pawson, T. (1994). Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. Embo J 13, 764-773.
  116. Feller, S. M., Knudsen, B., and Hanafusa, H. (1994). c-Abl kinase regulates the protein binding activity of c-Crk. Embo J 13, 2341-2351.
  117. Quintas-Cardama, A., and Cortes, J. (2009). Molecular biology of bcr-abl1- positive chronic myeloid leukemia. Blood 113, 1619-1630.
  118. C. (1992). Rapid decline of chronic myeloid leukemic cells in long-term culture due to a defect at the leukemic stem cell level. Proc Natl Acad Sci U S A 89, 6192-6196.
  119. Raitano, A. B., Halpern, J. R., Hambuch, T. M., and Sawyers, C. L. (1995). The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci U S A 92, 11746-11750.
  120. Talpaz, M., Shah, N. P., Kantarjian, H., Donato, N., Nicoll, J., Paquette, R., Cortes, J., O'Brien, S., Nicaise, C., Bleickardt, E., et al. (2006). Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354, 2531-2541.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten