Publikationsserver der Universitätsbibliothek Marburg

Titel:Analyse biologischer Effekte eines Fibroblasten-Wachstumsfaktor-bindenden Proteins (FGF-BP) in Tumoren über verschiedene Knockdown-Strategien
Autor:Schulze, Daniel
Weitere Beteiligte: Kissel, Thomas (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0123
DOI: https://doi.org/10.17192/z2011.0123
URN: urn:nbn:de:hebis:04-z2011-01232
DDC: Medizin
Titel (trans.):Analysis of biological effects of fibroblast growth factor-binding protein (FGF-BP) through different knockdown strategies
Publikationsdatum:2011-08-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Rezeptor-Tyrosinkinasen, Krebs, RNS-Interferenz, Fibroblastenwachstumsfaktor, fibroblast growth factor-binding protein (FGF-BP), Colonkrebs, Apoptosis, Fibroblasten-Wachstumsfaktor-bindendes Protein (FGF-BP), Hammerkopf-Ribozym

Zusammenfassung:
Fibroblasten Wachstumsfaktoren (FGFs) spielen eine bedeutende Rolle bei der Zellproliferation und -differenzierung. Bei neoplastischem Wachstum fungieren FGFs als potente Mitogene. Einige der tumorrelevanten FGFs binden jedoch mit hoher Affinität an eine oder mehrere Komponenten der extrazellulären Matrix (EZM) und die Freisetzung der FGFs aus der EZM stellt einen kritischen Schritt in der FGF-Bioaktivierung dar. Das FGF-bindende Protein FGF-BP ist ein sekretiertes Heparin-bindendes Protein, welches mit mehreren FGFs, wie FGF1, FGF2, FGF7, FGF10 sowie FGF22, spezifisch interagiert und diese aus ihrem extrazellulären Speicherort freisetzt. FGF-BP ist in verschiedenen Tumoren, insbesondere in der frühen Phase der Karzinogenese, hochreguliert. Die (Über-)expression von FGF-BP in Tumorzellen stellt einen limitierenden Faktor für die Etablierung solider Tumore dar. Im Rahmen dieser Dissertation wurden verschiedene Knockdown-Strategien exploriert um FGF-BP hinsichtlich seines Beitrags zu Proliferation und Apoptose sowie zum in vivo-Tumorwachstum zu untersuchen. Unter Verwendung von vektorbasierter RNAi wurden isogene Kolonkarzinom-Zelllinien mit permanent vermindertem FGF-BP-Level generiert. Es wurde gezeigt, dass die Reduktion der FGF-BP-Level sowohl antiproliferative Effekt als auch pro-apoptotische Effekte hervorruft. Die Herunterregulation von FGF-BP ging einher mit komplexen zellulären und molekularen Veränderungen, u.a. in der MAPK- und Apoptose-Signaltransduktion. Im Vergleich zu den parentalen Zellen wies der knockdown-Phänotyp erhöhte Spiegel an aktiviertem Bad und Bax auf, was zu einer gesteigerten Aktivität der Effektorcaspasen 3 und 7 führte. Gleichzeitig wurde in FGF-BP-herunterregulierten Zellen eine Suppression von Akt Kinasen, eine Aktivierung von SAPK/JNK und eine Induktion der GSK3β detektiert. Klone mit vermindertem FGF-BP-Gehalt akkumulierten vermehrt in der G0/G1-Phase des Zellzyklus und wiesen erhöhte Konzentrationen an aktiviertem p21WAF1/CIP auf. Darüber hinaus zeigten diese loss-of-function-Mutanten Alterationen im Redoxstatus auf, was sich in einer erniedrigten Katalasekonzentration sowie erhöhten Konzentrationen an HIF1α widerspiegelte. In einem Zervixkarzinom-Modell wurde mit Hilfe eines Ribozym-Targetings gezeigt, dass FGF-BP die Sensitivität gegenüber Chemotherapeutika beeinflusst. Synergistische Effekte eines Knockdowns und einer Antitumorbehandlung waren nachweisbar bei dem Topoisomerase I Inhibitor Irinotecan, nicht aber bei den Spindelgiften Docetaxel und Vinorelbin. In einem in vivo-Experiment gelang es, mit Hilfe einer auf Polyethylenimin (PEI) basierenden Applikation von therapeutischen Nukleinsäuren (FGF-BP-siRNAs) einen spezifischen FGF-BP-Knockdown sowie einen antitumoralen Effekt im Kolonkarzinom-Nacktmausmodell zu erzielen. Um neue Interaktionspartner für FGF-BP aufzufinden, wurden unterschiedliche full length- sowie Deletionsmutanten des Proteins kloniert und rekombinant exprimiert. Durch Protein-Protein-Interaktions-Analysen konnten weitere Liganden für FGF-BP innerhalb der FGF-Familie ermittelt werden (FGF4, FGF8). Darüber hinaus wurde das DNA-assoziierte High-Mobility Group A-Protein (HMGA) als neuer Bindepartner für FGF-BP identifiziert. Ferner zeigten in vitro-Untersuchungen eine Affinität von FGF-BP zu Nukleinsäuren. In Anwesenheit von genomischer DNA wies FGF-BP eine erhöhte Proteinstabilität auf. Diese Daten unterstützen die Hypothese eines erst kürzlich ermittelten und bislang noch nicht näher untersuchten intrazellulären Mechanismus von FGF-BP. Insgesamt konnte gezeigt werden, dass FGF-BP BP bei proliferativen sowie zytoprotektiven Vorgängen in ein komplexes molekulares Netzwerk eingebunden ist. Die in dieser Arbeit ermittelten Daten demonstrieren, dass eine gezielte Verminderung der FGF-BP-Expression das Ausmaß der zellulären Apoptose erhöht, eine anti-proliferative Wirkung hervorruft und das Tumorwachstum in vivo vermindert. Die beschriebenen Untersuchungen zur Chemoresistenz erlauben eine Abschätzung der selektiven Sensitivität von Tumorzellen gegenüber verschiedenen Chemotherapeutika in Abhängigkeit von der FGF-BP-Expression. Es kann somit gefolgert werden, dass FGF-BP ein vielversprechendes Zielmolekül (target) in der Antitumortherapie darstellt.

Bibliographie / References

  1. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227(5259): p. 680-5.
  2. Tao, H., et al., Purifying natively folded proteins from inclusion bodies using sarkosyl, Triton X-100, and CHAPS. Biotechniques, 2010. 48(1): p. 61-4.
  3. Sledz, C.A., et al., Activation of the interferon system by short-interfering RNAs. Nat Cell Biol, 2003. 5(9): p. 834-9.
  4. Kim, D.H., et al., Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotech- nol, 2005. 23(2): p. 222-6.
  5. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281- 97.
  6. Kuan, S.F., et al., Characterization of quantitative mucin variants from a human colon cancer cell line. Cancer Res, 1987. 47(21): p. 5715-24.
  7. He, Y., et al., Inhibition of human squamous cell carcinoma growth in vivo by epidermal growth factor receptor antisense RNA transcribed from the U6 promoter. J Natl Cancer Inst, 1998. 90(14): p. 1080-7.
  8. Khvorova, A., A. Reynolds, and S.D. Jayasena, Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003. 115(2): p. 209-16.
  9. Bertrand, J.R., et al., Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun, 2002. 296(4): p. 1000-4.
  10. Lee, Y., et al., MicroRNA genes are transcribed by RNA polymerase II. Embo J, 2004. 23(20): p. 4051- 60.
  11. Lowry, O.H., et al., Protein measurement with the Folin phenol reagent. J Biol Chem, 1951. 193(1): p. 265-75.
  12. Cross, D.A., et al., Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995. 378(6559): p. 785-9.
  13. Ng, E.W., et al., Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov, 2006. 5(2): p. 123-32.
  14. Brummelkamp, T.R., R. Bernards, and R. Agami, Stable suppression of tumorigenicity by virus- mediated RNA interference. Cancer Cell, 2002. 2(3): p. 243-7.
  15. Höbel, S. and A. Aigner, Polyethylenimine (PEI)/siRNA-mediated gene knockdown in vitro and in vivo. Methods Mol Biol, 2010. 623: p. 283-97.
  16. Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Ac- ids Res, 2001. 29(9): p. e45.
  17. Fojo, T. and M. Menefee, Mechanisms of multidrug resistance: the potential role of microtubule- stabilizing agents. Ann Oncol, 2007. 18 Suppl 5: p. v3-8.
  18. Roy, H.K., et al., AKT proto-oncogene overexpression is an early event during sporadic colon carcino- genesis. Carcinogenesis, 2002. 23(1): p. 201-5.
  19. De Veylder, L., et al., Increased leakiness of the tetracycline-inducible Triple-Op promoter in dividing cells renders it unsuitable for high inducible levels of a dominant negative CDC2aAt gene. J Exp Bot, 2000. 51(351): p. 1647-53.
  20. Sykes, J.A., et al., Some properties of a new epithelial cell line of human origin. J Natl Cancer Inst, 1970. 45(1): p. 107-22.
  21. Tom, B.H., et al., Human colon adenocarcinoma cells. II. Tumorigenic and organoid expression in vivo and in vitro. J Natl Cancer Inst, 1977. 58(5): p. 1507-12.
  22. Holen, T., et al., Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res, 2002. 30(8): p. 1757-66.
  23. Henriksen, J.R., et al., Comparison of RNAi efficiency mediated by tetracycline-responsive H1 and U6 promoter variants in mammalian cell lines. Nucleic Acids Res, 2007. 35(9): p. e67.
  24. Juliano, R., et al., Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleo- tides. Nucleic Acids Res, 2008. 36(12): p. 4158-71.
  25. Sakurai, K., et al., A role for human Dicer in pre-RISC loading of siRNAs. Nucleic Acids Res, 2010. 204.
  26. Hochheimer, A. and R. Tjian, Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev, 2003. 17(11): p. 1309-20.
  27. Macleod, K.F., et al., p53-dependent and independent expression of p21 during cell growth, differentia- tion, and DNA damage. Genes Dev, 1995. 9(8): p. 935-44.
  28. Paddison, P.J., et al., Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev, 2002. 16(8): p. 948-58.
  29. Yi, R., et al., Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA, 2005. 11(2): p. 220-6.
  30. Abaza, I. and F. Gebauer, Trading translation with RNA-binding proteins. Rna, 2008. 14(3): p. 404-9.
  31. Evan, G.I. and K.H. Vousden, Proliferation, cell cycle and apoptosis in cancer. Nature, 2001. 411(6835): p. 342-8.
  32. Schug, J., et al., Promoter features related to tissue specificity as measured by Shannon entropy. Ge- nome Biol, 2005. 6(4): p. R33.
  33. Liu, J., et al., Argonaute2 is the catalytic engine of mammalian RNAi. Science, 2004. 305(5689): p. 1437-41.
  34. Schwarz, D.S., et al., Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003. 115(2): p. 199-208.
  35. Fedele, M., et al., Human colorectal carcinomas express high levels of high mobility group HMGI(Y) proteins. Cancer Res, 1996. 56(8): p. 1896-901.
  36. Bandiera, A., et al., Expression of HMGI(Y) proteins in squamous intraepithelial and invasive lesions of the uterine cervix. Cancer Res, 1998. 58(3): p. 426-31.
  37. Crea, F., et al., Epigenetic mechanisms of irinotecan sensitivity in colorectal cancer cell lines. Mol Cancer Ther, 2009. 8(7): p. 1964-73.
  38. Harborth, J., et al., Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev, 2003. 13(2): p. 83-105.
  39. Martinez, J., et al., Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 2002. 110(5): p. 563-74.
  40. Elbashir, S.M., et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammal- ian cells. Nature, 2001. 411(6836): p. 494-8.
  41. Salmena, L., A. Carracedo, and P.P. Pandolfi, Tenets of PTEN tumor suppression. Cell, 2008. 133(3): p. 403-14.
  42. Li, J., N.W. Shworak, and M. Simons, Increased responsiveness of hypoxic endothelial cells to FGF2 is mediated by HIF-1alpha-dependent regulation of enzymes involved in synthesis of heparan sulfate FGF2-binding sites. J Cell Sci, 2002. 115(Pt 9): p. 1951-9.
  43. Sambrook, J., Molecular Cloning: A Laboratory Manual. 2006: Cold Spring Harbor Laboratory Press. 245.
  44. 11 Curriculum vitae Persönliche Daten Name: Daniel Schulze Geburtstag: 05.04.1979
  45. Marshall, N.J., C.J. Goodwin, and S.J. Holt, A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul, 1995. 5(2): p. 69-84.
  46. Pham, J.W., et al., A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Droso- phila. Cell, 2004. 117(1): p. 83-94.
  47. Moser, A.R., H.C. Pitot, and W.F. Dove, A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science, 1990. 247(4940): p. 322-4.
  48. Han, Z., et al., Akt1/protein kinase B alpha is involved in gastric cancer progression and cell prolifera- tion. Dig Dis Sci, 2008. 53(7): p. 1801-10.
  49. Datta, S.R., et al., Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death ma- chinery. Cell, 1997. 91(2): p. 231-41.
  50. Martinez, J., et al., Analysis of mammalian gene function using small interfering RNAs. Nucleic Acids Res Suppl, 2003(3): p. 333.
  51. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p. 402-8.
  52. Chen, X., Analysis of the High-Mobility-Group A1 Protein as a Putative Novel Binding Partner for Fibroblast Growth Factor Binding Protein-1. 2006, Philipps-Universität Marburg: Diplom-Arbeit Fachbereich Pharmakologie und Toxikologie.
  53. Yaginuma, Y. and H. Westphal, Analysis of the p53 gene in human uterine carcinoma cell lines. Cancer Res, 1991. 51(24): p. 6506-9.
  54. Rosini, P., et al., Androgen receptor expression induces FGF2, FGF-binding protein production, and FGF2 release in prostate carcinoma cells: role of FGF2 in growth, survival, and androgen receptor down-modulation. Prostate, 2002. 53(4): p. 310-21.
  55. Hashimoto, F., et al., An improved method for separation of low-molecular-weight polypeptides by electrophoresis in sodium dodecyl sulfate-polyacrylamide gel. Anal Biochem, 1983. 129(1): p. 192-9.
  56. Gu, J., et al., A novel single tetracycline-regulative adenoviral vector for tumor-specific Bax gene ex- pression and cell killing in vitro and in vivo. Oncogene, 2002. 21(31): p. 4757-64.
  57. Gallo, D., et al., Anti-tumour activity of a panel of taxanes toward a cellular model of human cervical cancer. Cancer Chemother Pharmacol, 2000. 45(2): p. 127-32.
  58. Birmingham, A., et al., A protocol for designing siRNAs with high functionality and specificity. Nat Protoc, 2007. 2(9): p. 2068-78.
  59. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54.
  60. Malek, A., et al., A sensitive polymerase chain reaction-based method for detection and quantification of metastasis in human xenograft mouse models. Clin Exp Metastasis, 2010. 27(4): p. 261-71. 289. Thornberry, N.A. and Y. Lazebnik, Caspases: enemies within. Science, 1998. 281(5381): p. 1312-6. 290. Hengartner, M.O., The biochemistry of apoptosis. Nature, 2000. 407(6805): p. 770-6.
  61. Hamilton, A.J. and D.C. Baulcombe, A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999. 286(5441): p. 950-2.
  62. Brummelkamp, T.R., R. Bernards, and R. Agami, A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002. 296(5567): p. 550-3.
  63. Liaudet-Coopman, E.D., et al., A tetracycline-responsive promoter system reveals the role of a secreted binding protein for FGFs during the early phase of tumor growth. Biochem Biophys Res Commun, 1996. 229(3): p. 930-7.
  64. Wellstein, A., et al., Autocrine growth stimulation by secreted Kaposi fibroblast growth factor but not by endogenous basic fibroblast growth factor. Cell Growth Differ, 1990. 1(2): p. 63-71. 317. Hamburger, A.W., K.A. Lurie, and M.E. Condon, Stimulation of anchorage-independent growth of human tumor cells by interleukin 1. Cancer Res, 1987. 47(21): p. 5612-5. 318. Hamburger, A.W. and C.P. White, Autocrine growth factors for human tumor clonogenic cells. Int J Cell Cloning, 1985. 3(6): p. 399-406.
  65. Chen, J.H., X.C. Wang, and J.D. Sato, Bifunctional effects of heparin-binding protein HBp17 on DNA synthesis in cells. Cell Biol Int, 2001. 25(6): p. 567-70.
  66. Auslandssemester in Frankreich an der Université de Paris XI (Phytochemie, Biochemie) sowie 4-wöchiges Praktikum im Central-Hospital Claude-Bichat, Paris 2008 Zusatzqualifikation im Pharmarecht am FB Rechtswissenschaften, Philipps-Universität Marburg Beruflicher Werdegang 10/2003 – 10/2004 Pharmaziepraktikum in der Gregorius Apotheke, Aachen und im Klinikum Garmisch-Partenkirchen 2004 Approbation als Apotheker 01/2005 -05/2006
  67. Park, J.S. and G.R. Kunkel, Both RNA polymerase III and RNA polymerase II accurately initiate tran- scription from a human U6 promoter in vitro. Biochem Biophys Res Commun, 1995. 214(3): p. 934-40. 278. Editorial, Whither RNAi? Nat Cell Biol, 2003. 5(6): p. 489-90.
  68. Bechtel, W. and G. Bauer, Catalase protects tumor cells from apoptosis induction by intercellular ROS signaling. Anticancer Res, 2009. 29(11): p. 4541-57.
  69. Aigner, A., Cellular delivery in vivo of siRNA-based therapeutics. Curr Pharm Des, 2008. 14(34): p. 3603-19.
  70. Van Cutsem, E., et al., Cetuximab and chemotherapy as initial treatment for metastatic colorectal can- cer. N Engl J Med, 2009. 360(14): p. 1408-17.
  71. Mizuguchi, H. and T. Hayakawa, Characteristics of adenovirus-mediated tetracycline-controllable expression system. Biochim Biophys Acta, 2001. 1568(1): p. 21-9.
  72. Sonawane, N.D., F.C. Szoka, Jr., and A.S. Verkman, Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem, 2003. 278(45): p. 44826-31. 307.
  73. Bachis, A., et al., Chronic antidepressant treatments increase basic fibroblast growth factor and fibro- blast growth factor-binding protein in neurons. Neuropharmacology, 2008. 55(7): p. 1114-20.
  74. Meyer-Ficca, M.L., et al., Comparative analysis of inducible expression systems in transient transfec- tion studies. Anal Biochem, 2004. 334(1): p. 9-19.
  75. Miyagishi, M., M. Hayashi, and K. Taira, Comparison of the suppressive effects of antisense oligonu- cleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev, 2003. 13(1): p. 1-7.
  76. Ohkawa, J. and K. Taira, Control of the functional activity of an antisense RNA by a tetracycline- responsive derivative of the human U6 snRNA promoter. Hum Gene Ther, 2000. 11(4): p. 577-85. 337.
  77. Ringvall, M., et al., Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N- deacetylase/N-sulfotransferase-1. J Biol Chem, 2000. 275(34): p. 25926-30.
  78. Carlotti, F., et al., Development of an inducible suicide gene system based on human caspase 8. Cancer Gene Ther, 2005. 12(7): p. 627-39.
  79. Boyle, B.J., et al., Differential regulation of a fibroblast growth factor-binding protein by receptor- selective analogs of retinoic acid. Biochem Pharmacol, 2000. 60(11): p. 1677-84.
  80. Sherif, Z.A., et al., Downmodulation of bFGF-binding protein expression following restoration of p53 function. Cancer Gene Ther, 2001. 8(10): p. 771-82.
  81. Li, W.M. and W.B. Chen, Effect of FGF-BP on angiogenesis in squamous cell carcinoma. Chin Med J (Engl), 2004. 117(4): p. 621-3.
  82. Tassi, E., et al., Effects on neurite outgrowth and cell survival of a secreted fibroblast growth factor binding protein upregulated during spinal cord injury. Am J Physiol Regul Integr Comp Physiol, 2007. 293(2): p. R775-83.
  83. Donato, N.J., et al., EGF receptor and p21WAF1 expression are reciprocally altered as ME-180 cervi- cal carcinoma cells progress from high to low cisplatin sensitivity. Clin Cancer Res, 2000. 6(1): p. 193- 202.
  84. Tassi, E., et al., Enhancement of fibroblast growth factor (FGF) activity by an FGF-binding protein. J Biol Chem, 2001. 276(43): p. 40247-53.
  85. Kaighn, M.E., et al., Establishment and characterization of a human prostatic carcinoma cell line (PC- 3). Invest Urol, 1979. 17(1): p. 16-23.
  86. Noonberg, S.B., G.K. Scott, and C.C. Benz, Evidence of post-transcriptional regulation of U6 small nuclear RNA. J Biol Chem, 1996. 271(18): p. 10477-81. 340. van de Wetering, M., et al., Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep, 2003. 4(6): p. 609-15.
  87. Jung, Y.S., Y. Qian, and X. Chen, Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal, 2010. 22(7): p. 1003-12. 371. el-Deiry, W.S., et al., WAF1, a potential mediator of p53 tumor suppression. Cell, 1993. 75(4): p. 817- 25.
  88. Lipinski, C.A., et al., Experimental and computational approaches to estimate solubility and permeabil- ity in drug discovery and development settings. Adv Drug Deliv Rev, 2001. 46(1-3): p. 3-26. 298.
  89. Chatterjee-Kishore, M. and C.P. Miller, Exploring the sounds of silence: RNAi-mediated gene silencing for target identification and validation. Drug Discov Today, 2005. 10(22): p. 1559-65. 300.
  90. Yi, R., et al., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003. 17(24): p. 3011-6.
  91. Giering, J.C., et al., Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther, 2008. 16(9): p. 1630-6.
  92. Newman, D.R., et al., Fibroblast growth factor-binding protein and N-deacetylase/N-sulfotransferase-1 expression in type II cells is modulated by heparin and extracellular matrix. Am J Physiol Lung Cell Mol Physiol, 2007. 293(5): p. L1314-20.
  93. Van den Berghe, L., et al., FIF [fibroblast growth factor-2 (FGF-2)-interacting-factor], a nuclear puta- tively antiapoptotic factor, interacts specifically with FGF-2. Mol Endocrinol, 2000. 14(11): p. 1709- 24.
  94. Greer, E.L. and A. Brunet, FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene, 2005. 24(50): p. 7410-25.
  95. Chatterjee-Kishore, M., From genome to phenome--RNAi library screening and hit characterization using signaling pathway analysis. Curr Opin Drug Discov Devel, 2006. 9(2): p. 231-9.
  96. Willis, I.M., RNA polymerase III. Genes, factors and transcriptional specificity. Eur J Biochem, 1993. 212(1): p. 1-11.
  97. Kjellen, L., Glucosaminyl N-deacetylase/N-sulphotransferases in heparan sulphate biosynthesis and biology. Biochem Soc Trans, 2003. 31(2): p. 340-2.
  98. Pallerla, S.R., et al., Heparan sulfate Ndst1 gene function variably regulates multiple signaling path- ways during mouse development. Dev Dyn, 2007. 236(2): p. 556-63.
  99. Cereghino, J.L. and J.M. Cregg, Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev, 2000. 24(1): p. 45-66.
  100. Macauley-Patrick, S., et al., Heterologous protein production using the Pichia pastoris expression sys- tem. Yeast, 2005. 22(4): p. 249-70.
  101. Low, J., et al., High-content imaging analysis of the knockdown effects of validated siRNAs and an- tisense oligonucleotides. J Biomol Screen, 2007. 12(6): p. 775-88.
  102. Inoue, H., H. Nojima, and H. Okayama, High efficiency transformation of Escherichia coli with plas- mids. Gene, 1990. 96(1): p. 23-8.
  103. Chiappetta, G., et al., High level expression of the HMGI (Y) gene during embryonic development. On- cogene, 1996. 13(11): p. 2439-46.
  104. Vedvick, T., et al., High-level secretion of biologically active aprotinin from the yeast Pichia pastoris. J Ind Microbiol, 1991. 7(3): p. 197-201.
  105. Chlebova, K., et al., High molecular weight FGF2: the biology of a nuclear growth factor. Cell Mol Life Sci, 2009. 66(2): p. 225-35.
  106. Grosschedl, R., K. Giese, and J. Pagel, HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet, 1994. 10(3): p. 94-100.
  107. Dahlberg, J.E. and E. Lund, How does III x II make U6? Science, 1991. 254(5037): p. 1462-3. 346.
  108. Tom, B.H., et al., Human colonic adenocarcinoma cells. I. Establishment and description of a new line. In Vitro, 1976. 12(3): p. 180-91.
  109. Gregory, R.I., et al., Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 2005. 123(4): p. 631-40.
  110. Calvani, M., et al., Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angio- genesis in human endothelial cells. Blood, 2006. 107(7): p. 2705-12.
  111. Xie, B., et al., Identification of the fibroblast growth factor (FGF)-interacting domain in a secreted FGF-binding protein by phage display. J Biol Chem, 2006. 281(2): p. 1137-44.
  112. Blum, H., H. Beier, and H. Gross, Improved silver staining of plant proteins, RNA and DNA in poly- acrylamide gels. Electrophoresis, 1987. 8(2): p. 93-99.
  113. Sioud, M., Induction of inflammatory cytokines and interferon responses by double-stranded and sin- gle-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol, 2005. 348(5): p. 1079-90.
  114. Harris, V.K., et al., Induction of the angiogenic modulator fibroblast growth factor-binding protein by epidermal growth factor is mediated through both MEK/ERK and p38 signal transduction pathways. J Biol Chem, 2000. 275(15): p. 10802-11.
  115. Püttmann-Cyrus, S., Induzierte Expression von Toxingenen in Tumorzellen. 2002, Dissertation Fachbereich Biologie; Westfälische Wilhelms-Universität Münster. 323. Baron, U. and H. Bujard, Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol, 2000. 327: p. 401-21.
  116. Garcia-Calvo, M., et al., Inhibition of human caspases by peptide-based and macromolecular inhibi- tors. J Biol Chem, 1998. 273(49): p. 32608-13.
  117. Nguyen, T.K., et al., Inhibition of MEK/ERK1/2 sensitizes lymphoma cells to sorafenib-induced apop- tosis. Leuk Res, 2010. 34(3): p. 379-86.
  118. Kim, D.H., et al., Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol, 2004. 22(3): p. 321-5.
  119. Ellington, A.D. and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Na- ture, 1990. 346(6287): p. 818-22.
  120. Liaudet-Coopman, E.D., G.J. Berchem, and A. Wellstein, In vivo inhibition of angiogenesis and induc- tion of apoptosis by retinoic acid in squamous cell carcinoma. Clin Cancer Res, 1997. 3(2): p. 179-84.
  121. Zhu, N., et al., KLF5 Interacts with p53 in regulating survivin expression in acute lymphoblastic leuke- mia. J Biol Chem, 2006. 281(21): p. 14711-8.
  122. Chen, C., et al., KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. Int J Cancer, 2006. 118(6): p. 1346-55.
  123. Zhao, Y., et al., Kruppel-like factor 5 modulates p53-independent apoptosis through Pim1 survival kinase in cancer cells. Oncogene, 2008. 27(1): p. 1-8.
  124. Rao, S., et al., Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53. Oncogene, 1998. 17(18): p. 2393-402.
  125. Long, H.J., 3rd, Management of metastatic cervical cancer: review of the literature. J Clin Oncol, 2007. 25(20): p. 2966-74.
  126. Dhanasekaran, D.M.J.G.L., MAPKs: function, regulation, role in cancer and therapeutic targeting MAPKs. Oncogene, 2007. 26: p. 3097-99.
  127. Zhang, W. and H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res, 2002. 12(1): p. 9-18.
  128. Briones, V.R., et al., Mechanism of fibroblast growth factor-binding protein 1 repression by TGF-beta. Biochem Biophys Res Commun, 2006. 345(2): p. 595-601.
  129. Arnold, F.H., Metal-affinity separations: a new dimension in protein processing. Biotechnology (N Y), 1991. 9(2): p. 151-6.
  130. Schoensiegel, F., et al., MIA (melanoma inhibitory activity) promoter mediated tissue-specific suicide gene therapy of malignant melanoma. Cancer Gene Ther, 2004. 11(6): p. 408-18.
  131. Harris, V.K., et al., Mitogen-induced expression of the fibroblast growth factor-binding protein is tran- scriptionally repressed through a non-canonical E-box element. J Biol Chem, 2000. 275(50): p. 39801. 312. Herschman, H.R., Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem, 1991. 60: p. 281-319.
  132. Ameres, S.L., J. Martinez, and R. Schroeder, Molecular basis for target RNA recognition and cleavage by human RISC. Cell, 2007. 130(1): p. 101-12.
  133. Gebauer, F. and M.W. Hentze, Molecular mechanisms of translational control. Nat Rev Mol Cell Biol, 2004. 5(10): p. 827-35.
  134. Heinzelmann, S. and G. Bauer, Multiple protective functions of catalase against intercellular apoptosis- inducing ROS signaling of human tumor cells. Biol Chem, 2010. 391(6): p. 675-93.
  135. Schulze, D., Nanosystems for the delivery of RNAi. Therapeutic Ribonucleic Acids in Brain Tumors, ed. G.R. V. A. Erdmann, J. Barciszewski. 2009: Springer-Verlag Berlin-Heidelberg.
  136. Leibovitz, A., et al., New human cancer cell culture lines. I. SW-13, small-cell carcinoma of the adrenal cortex. J Natl Cancer Inst, 1973. 51(2): p. 691-7.
  137. Lund, E., et al., Nuclear export of microRNA precursors. Science, 2004. 303(5654): p. 95-8. 357.
  138. Reeves, R., Nuclear functions of the HMG proteins. Biochim Biophys Acta, 2010. 1799(1-2): p. 3-14.
  139. Studium der Pharmazie, Philipps-Universität Marburg 2001 6-wöchiges Praktikum " Protein-Reinigung " (Aventis-Behring)
  140. Harris, V.K., et al., Phorbol ester-induced transcription of a fibroblast growth factor-binding protein is modulated by a complex interplay of positive and negative regulatory promoter elements. J Biol Chem, 1998. 273(30): p. 19130-9.
  141. Brus, C., Physicochemical and biological properties of Polyethylenimine based delivery systems for Oligonucleotides and ribozymes, in Dissertation Fachbereich Pharmazie. 2004, Philipps-Universität Marburg. 200.
  142. Höbel, S., et al., Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with Bevacizumab. J Gene Med, 2010. 12(3): p. 287-300.
  143. Coleman, A.B., Positive and negative regulation of cellular sensitivity to anti-cancer drugs by FGF-2. Drug Resist Updat, 2003. 6(2): p. 85-94.
  144. Geisbert, T.W., et al., Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet, 2010. 375(9729): p. 1896-905.
  145. Clare, J.J., et al., Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene, 1991. 105(2): p. 205-12. 295.
  146. Boonstra, J., Progression through the G1-phase of the on-going cell cycle. J Cell Biochem, 2003. 90(2): p. 244-52.
  147. Pai, S.I., et al., Prospects of RNA interference therapy for cancer. Gene Ther, 2006. 13(6): p. 464-77.
  148. Simmen, K.A., et al., Proximal sequence element factor binding and species specificity in vertebrate U6 snRNA promoters. J Mol Biol, 1992. 223(4): p. 873-84.
  149. Garcia-Calvo, M., et al., Purification and catalytic properties of human caspase family members. Cell Death Differ, 1999. 6(4): p. 362-9.
  150. Altucci, L., et al., RAR and RXR modulation in cancer and metabolic disease. Nat Rev Drug Discov, 2007. 6(10): p. 793-810.
  151. Reynolds, A., et al., Rational siRNA design for RNA interference. Nat Biotechnol, 2004. 22(3): p. 326- 30.
  152. Liaudet-Coopman, E.D. and A. Wellstein, Regulation of gene expression of a binding protein for fibro- blast growth factors by retinoic acid. J Biol Chem, 1996. 271(35): p. 21303-8.
  153. Violette, S., et al., Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer, 2002. 98(4): p. 498-504.
  154. Suzuki, A., et al., Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene, 1998. 17(8): p. 931-9.
  155. Czubayko, F., A.T. Riegel, and A. Wellstein, Ribozyme-targeting elucidates a direct role of pleiotro- phin in tumor growth. J Biol Chem, 1994. 269(33): p. 21358-63.
  156. Urban-Klein, B., et al., RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther, 2005. 12(5): p. 461-6.
  157. Kurreck, J., RNA interference: from basic research to therapeutic applications. Angew Chem Int Ed Engl, 2009. 48(8): p. 1378-98.
  158. Elbashir, S.M., W. Lendeckel, and T. Tuschl, RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev, 2001. 15(2): p. 188-200.
  159. Grzelinski, M., et al., RNA interference-mediated gene silencing of pleiotrophin through polyethylen- imine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gene Ther, 2006. 17(7): p. 751-66.
  160. Medina, M.F. and S. Joshi, RNA-polymerase III-driven expression cassettes in human gene therapy. Curr Opin Mol Ther, 1999. 1(5): p. 580-94.
  161. Kunkel, G.R., RNA polymerase III transcription of genes that lack internal control regions. Biochim Biophys Acta, 1991. 1088(1): p. 1-9.
  162. Ray, P.E., et al., Role of fibroblast growth factor-binding protein in the pathogenesis of HIV-associated hemolytic uremic syndrome. Am J Physiol Regul Integr Comp Physiol, 2006. 290(1): p. R105-13. 159.
  163. Pellegrini, L., Role of heparan sulfate in fibroblast growth factor signalling: a structural view. Curr Opin Struct Biol, 2001. 11(5): p. 629-34.
  164. Fusco, A. and M. Fedele, Roles of HMGA proteins in cancer. Nat Rev Cancer, 2007. 7(12): p. 899-910.
  165. Dunn, E.A. and S.D. Rader, Secondary structure of U6 small nuclear RNA: implications for spli- ceosome assembly. Biochem Soc Trans, 2010. 38(4): p. 1099-104.
  166. Campisi, J., Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell, 2005. 120(4): p. 513-22.
  167. Ling, Y.H., N.J. Donato, and R. Perez-Soler, Sensitivity to topoisomerase I inhibitors and cisplatin is associated with epidermal growth factor receptor expression in human cervical squamous carcinoma ME180 sublines. Cancer Chemother Pharmacol, 2001. 47(6): p. 473-80.
  168. Harris, V.K., et al., Serum induction of the fibroblast growth factor-binding protein (FGF-BP) is medi- ated through ERK and p38 MAP kinase activation and C/EBP-regulated transcription. Oncogene, 2001. 20(14): p. 1730-8.
  169. Yuan, J., et al., shRNA transcribed by RNA Pol II promoter induce RNA interference in mammalian cell. Mol Biol Rep, 2006. 33(1): p. 43-9.
  170. Kappel, S., et al., Silencing of mammalian genes by tetracycline-inducible shRNA expression. Nat Pro- toc, 2007. 2(12): p. 3257-69.
  171. Haseloff, J. and W.L. Gerlach, Simple RNA enzymes with new and highly specific endoribonuclease activities. 1988. Biotechnology, 1992. 24: p. 264-9.
  172. Chomczynski, P. and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate- phenol-chloroform extraction. Anal Biochem, 1987. 162(1): p. 156-9.
  173. Frangioni, J.V. and B.G. Neel, Solubilization and purification of enzymatically active glutathione S- transferase (pGEX) fusion proteins. Anal Biochem, 1993. 210(1): p. 179-87.
  174. Heil, F., et al., Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Sci- ence, 2004. 303(5663): p. 1526-9.
  175. Staatsangehörigkeit: Deutsch Geburtsort: Marburg Schule und Studium 1985 -1998
  176. Kim, D.H. and J.J. Rossi, Strategies for silencing human disease using RNA interference. Nat Rev Genet, 2007. 8(3): p. 173-184.
  177. Suzuki, A., et al., Survivin initiates procaspase 3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene, 2000. 19(10): p. 1346-53.
  178. Gluzman, Y., SV40-transformed simian cells support the replication of early SV40 mutants. Cell, 1981. 23(1): p. 175-82.
  179. Mitchell, M.T., G.M. Hobson, and P.A. Benfield, TATA box-mediated polymerase III transcription in vitro. J Biol Chem, 1992. 267(3): p. 1995-2005.
  180. Berridge, M.V., P.M. Herst, and A.S. Tan, Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev, 2005. 11: p. 127-52.
  181. Hopkins, A.L. and C.R. Groom, The druggable genome. Nat Rev Drug Discov, 2002. 1(9): p. 727-30. 297.
  182. Vaughn, J.L., et al., The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidop- tera; Noctuidae). In Vitro, 1977. 13(4): p. 213-7.
  183. Zhao, D., et al., The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res, 2010. 70(11): p. 4728-38.
  184. Beer, H.D., et al., The fibroblast growth factor binding protein is a novel interaction partner of FGF-7, FGF-10 and FGF-22 and regulates FGF activity: implications for epithelial repair. Oncogene, 2005. 24(34): p. 5269-77.
  185. Goutelle, S., et al., The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol, 2008. 22(6): p. 633-48. 282. Hagenbusch, J., Rekombinante Expression und Untersuchungen zur Funktion eines Fibroblasten- Wachstumsfaktor-bindenden Proteins (FGF-BP). 2010, Philipps-Universität Marburg: Dissertation Fachbereich Pharmakologie und Toxikologie.
  186. Stoppler, H., et al., The human papillomavirus (HPV) 16 E6 oncoprotein leads to an increase in gene expression of the angiogenic switch molecule FGF-BP in non-immortalized human keratinocytes. On- cogene, 2001. 20(50): p. 7430-6.
  187. Bertout, J.A., S.A. Patel, and M.C. Simon, The impact of O2 availability on human cancer. Nat Rev Cancer, 2008. 8(12): p. 967-75.
  188. Witzgall, R., et al., The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc Natl Acad Sci U S A, 1994. 91(10): p. 4514-8.
  189. Fang, J.Y. and B.C. Richardson, The MAPK signalling pathways and colorectal cancer. Lancet Oncol, 2005. 6(5): p. 322-7.
  190. Harper, J.W., et al., The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 1993. 75(4): p. 805-16.
  191. Beurel, E. and R.S. Jope, The paradoxical pro-and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol, 2006. 79(4): p. 173-89.
  192. Mizuguchi, H. and T. Hayakawa, The tet-off system is more effective than the tet-on system for regulat- ing transgene expression in a single adenovirus vector. J Gene Med, 2002. 4(3): p. 240-7. 327.
  193. Iyer, V.R., et al., The transcriptional program in the response of human fibroblasts to serum. Science, 1999. 283(5398): p. 83-7.
  194. Smrekar, B., et al., Tissue-dependent factors affect gene delivery to tumors in vivo. Gene Ther, 2003. 10(13): p. 1079-88.
  195. Rao, M.K. and M.F. Wilkinson, Tissue-specific and cell type-specific RNA interference in vivo. Nat Protoc, 2006. 1(3): p. 1494-501.
  196. Gossen, M., et al., Transcriptional activation by tetracyclines in mammalian cells. Science, 1995. 268(5218): p. 1766-9.
  197. Davis, M.G. and E.S. Huang, Transfer and expression of plasmids containing human cytomegalovirus immediate-early gene 1 promoter-enhancer sequences in eukaryotic and prokaryotic cells. 1988. 10(1): p. 6-12.
  198. Datto, M.B., et al., Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci U S A, 1995. 92(12): p. 5545-9. 376.
  199. Schagger, H. and G. von Jagow, Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem, 1987. 166(2): p. 368-79.
  200. Liu, X.H., et al., Up-regulation of a fibroblast growth factor binding protein in children with renal diseases. Kidney Int, 2001. 59(5): p. 1717-28.
  201. McDonnell, K., et al., Vascular leakage in chick embryos after expression of a secreted binding protein for fibroblast growth factors. Lab Invest, 2005. 85(6): p. 747-55.
  202. Amann, E., J. Brosius, and M. Ptashne, Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene, 1983. 25(2-3): p. 167-78.
  203. Hurtado Pico, A., et al., Viral and nonviral factors causing nonspecific replication of tumor-and tissue- specific promoter-dependent oncolytic adenoviruses. Mol Ther, 2005. 11(4): p. 563-77.
  204. Grimm, D., et al., Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA path- ways. Nature, 2006. 441(7092): p. 537-41.
  205. Jesnowski, R., J. Naehring, and K. Wolf, A rapid and reliable method for PCR-based amplification of chromosomal and mitochondrial DNA from intact yeast cells. Curr Genet, 1995. 27(4): p. 318-9. 254.
  206. Mittal, V., Improving the efficiency of RNA interference in mammals. Nat Rev Genet, 2004. 5(5): p. 355-65.
  207. Valencia-Sanchez, M.A., et al., Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 2006. 20(5): p. 515-24.
  208. Bernstein, E., et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001. 409(6818): p. 363-6.
  209. Gietz, R.D., and Schiestl, R. H., Transforming Yeast with DNA. in Methods in Molecular Biology, (Ev- ans, I. H., ed.) Totowa, NJ, 1996: Humana Press 260. Scorer, C.A., et al., Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnology (N Y), 1994. 12(2): p. 181-4.
  210. Fire, A., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998. 391(6669): p. 806-11.
  211. Jung, H., H.A. Seong, and H. Ha, Critical role of cysteine residue 81 of macrophage migration inhibi- tory factor (MIF) in MIF-induced inhibition of p53 activity. J Biol Chem, 2008. 283(29): p. 20383-96.
  212. Zhou, H., X.G. Xia, and Z. Xu, An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Res, 2005. 33(6): p. e62. 360.
  213. Donze, O. and D. Picard, RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res, 2002. 30(10): p. e46.
  214. Elbashir, S.M., et al., Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J, 2001. 20(23): p. 6877-88.
  215. Chiu, Y.L. and T.M. Rana, siRNA function in RNAi: a chemical modification analysis. Rna, 2003. 9(9): p. 1034-48.
  216. Bohnsack, M.T., K. Czaplinski, and D. Gorlich, Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna, 2004. 10(2): p. 185-91.
  217. Sohail, M., et al., A simple and cost-effective method for producing small interfering RNAs with high efficacy. Nucleic Acids Res, 2003. 31(7): p. e38.
  218. Rychahou, P.G., et al., Targeted molecular therapy of the PI3K pathway: therapeutic significance of PI3K subunit targeting in colorectal carcinoma. Ann Surg, 2006. 243(6): p. 833-42; discussion 843-4.
  219. Grunweller, A., et al., Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2'-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res, 2003. 31(12): p. 3185-93.
  220. Kappel, S., et al., Tumor inhibition by genomically integrated inducible RNAi-cassettes. Nucleic Acids Res, 2006. 34(16): p. 4527-36.
  221. Heron-Milhavet, L., et al., Only Akt1 is required for proliferation, while Akt2 promotes cell cycle exit through p21 binding. Mol Cell Biol, 2006. 26(22): p. 8267-80.
  222. Liau, S.S., et al., Overexpression of HMGA1 promotes anoikis resistance and constitutive Akt activation in pancreatic adenocarcinoma cells. Br J Cancer, 2007. 96(6): p. 993-1000.
  223. Aguirre-Ghiso, J.A., Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer, 2007. 7(11): p. 834-46.
  224. Rychahou, P.G., et al., Akt2 overexpression plays a critical role in the establishment of colorectal can- cer metastasis. Proc Natl Acad Sci U S A, 2008. 105(51): p. 20315-20.
  225. Rigou, P., et al., The antiapoptotic protein AAC-11 interacts with and regulates Acinus-mediated DNA fragmentation. Embo J, 2009. 28(11): p. 1576-88.
  226. Manning, B.D. and L.C. Cantley, AKT/PKB signaling: navigating downstream. Cell, 2007. 129(7): p. 1261-74.
  227. Khan, A.A., et al., Transfection of small RNAs globally perturbs gene regulation by endogenous mi- croRNAs. Nat Biotechnol, 2009. 27(6): p. 549-55.
  228. Williams, A.H., et al., MicroRNA-206 delays ALS progression and promotes regeneration of neuro- muscular synapses in mice. Science, 2009. 326(5959): p. 1549-54.
  229. Seong, H.A., et al., Reciprocal negative regulation of PDK1 and ASK1 signaling by direct interaction and phosphorylation. J Biol Chem, 2009. 285(4): p. 2397-414.
  230. Chendrimada, T.P., et al., TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 2005. 436(7051): p. 740-4.
  231. Los, M., et al., Switching Akt: from survival signaling to deadly response. Bioessays, 2009. 31(5): p. 492-5.
  232. Nogueira, V., et al., Akt determines replicative senescence and oxidative or oncogenic premature se- nescence and sensitizes cells to oxidative apoptosis. Cancer Cell, 2008. 14(6): p. 458-70. 393.
  233. Lobo, S.M., S. Ifill, and N. Hernandez, cis-acting elements required for RNA polymerase II and III transcription in the human U2 and U6 snRNA promoters. Nucleic Acids Res, 1990. 18(10): p. 2891-9.
  234. Campbell, F.E., Jr. and D.R. Setzer, Transcription termination by RNA polymerase III: uncoupling of polymerase release from termination signal recognition. Mol Cell Biol, 1992. 12(5): p. 2260-72. 277.
  235. Greene, L.A. and A.S. Tischler, Establishment of a noradrenergic clonal line of rat adrenal pheochro- mocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A, 1976. 73(7): p. 2424- 8.
  236. Simmen, K.A., et al., TFIID is required for in vitro transcription of the human U6 gene by RNA poly- merase III. Embo J, 1991. 10(7): p. 1853-62.
  237. Testa, J.R. and A. Bellacosa, AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A, 2001. 98(20): p. 10983-5.
  238. Kim, A.H., et al., Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol, 2001. 21(3): p. 893-901.
  239. Sanger, F., S. Nicklen, and A.R. Coulson, DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 1977. 74(12): p. 5463-7.
  240. Grunweller, A. and R.K. Hartmann, RNA interference as a gene-specific approach for molecular medi- cine. Curr Med Chem, 2005. 12(26): p. 3143-61. 301. zu finden unter: http://www.wiley.co.uk/genmed/clinical/.
  241. Boshart, M., et al., A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell, 1985. 41(2): p. 521-30.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten