Publikationsserver der Universitätsbibliothek Marburg

Titel:Multisensorische Repräsentation von Eigenbewegung im menschlichen Gehirn
Autor:von Hopffgarten, Anna
Weitere Beteiligte: Bremmer, Frank (Prof.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0114
DOI: https://doi.org/10.17192/z2011.0114
URN: urn:nbn:de:hebis:04-z2011-01145
DDC:500 Naturwissenschaften
Titel (trans.):Multisensory Self-Motion Representation in the Human Brain
Publikationsdatum:2011-06-28
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Optischer Fluss, Funktionelle NMR-Tomographie, Multisensory Integration, Eigenbewegung, Self-Motion, optic flow, Multisensorik

Zusammenfassung:
Wenn wir uns durch den Raum bewegen, erhalten wir visuelle, propriozeptive, vestibuläre, auditive und bisweilen auch taktile Informationen über die Position, Geschwindigkeit und Beschleunigung unseres Körpers. Nur eine erfolgreiche Integration dieser Signale ermöglicht uns eine kohärente Wahrnehmung unserer Eigenbewegung. Zwar liefern die Informationen aller Sinnesmodalitäten zusammen die zuverlässigste Repräsentation, jedoch konnte gezeigt werden, dass auch visuelle, vestibuläre oder propriozeptive Signale allein ausreichen, um etwa die Distanzen von Vorwärtsbewegungen abzuschätzen. Das Ziel meiner Arbeit war es, herauszufinden, welche Rolle auditive Reize für die Wahrnehmung von Eigenbewegung spielen und wo im menschlichen Gehirn audiovisuelle Eigenbewegungssignale verarbeitet werden. Diesen Fragen ging ich mit Hilfe psychophysikalischer Untersuchungen sowie funktioneller Magnetresonanztomographie (fMRT) auf den Grund. In einer ersten Studie untersuchte ich, ob auditive Eigenbewegungsinformationen dazu genutzt werden können, die Distanzen simulierter Vorwärtsbewegungen zu reproduzieren. Dazu präsentierte ich meinen Probanden eine visuell simulierte Eigenbewegung über eine Ebene (passive Fahrt), die von einem Ton begleitet wurde, dessen Frequenz proportional zur simulierten Fahrtgeschwindigkeit war. Die Aufgabe der Probanden war es, die Distanz der Strecke mit Hilfe eines Joysticks zu reproduzieren (aktive Fahrt). Während dieser aktiven Fahrt erhielten die Teilnehmer entweder audio-visuelle, nur visuelle oder rein auditive Bewegungssignale. Es zeigte sich, dass die Probanden die Distanzen am zuverlässigsten reproduzierten, wenn sie ausschließlich den Ton hörten, und am schlechtesten, wenn sie nur visuelle Informationen erhielten. In einem Folgeexperiment war ohne das Wissen der Teilnehmer bei einigen aktiven Fahrten das Verhältnis zwischen Geschwindigkeit und Tonhöhe reskaliert, d.h., die Tonfrequenz war entweder höher (positive Reskalierung) oder tiefer (negative Reskalierung) als während der passiven Fahrten (Catch Trials). Ich stellte fest, dass die Leistung der Probanden durch die Reskalierung gestört wurde: War die Tonfrequenz tiefer, fuhren sie schneller und weiter, während sie bei einer positiven Reskalierung langsamer und kürzere Distanzen fuhren als in den Durchgängen ohne Reskalierung. Ich schließe daraus, dass während Eigenbewegung die Tonfrequenz als Geschwindigkeitshinweis dienen kann und dazu genutzt wird, Distanzen abzuschätzen und zu reproduzieren. Während Eigenbewegungen wird eine Bildbewegung auf der Netzhaut erzeugt – auch optischer Fluss genannt –, die bei starrer Blickrichtung Informationen über die Eigenbewegungsrichtung und -geschwindigkeit liefert. Diese Verschiebung löst jedoch reflexive, kompensatorische Augenbewegungen aus, die dazu dienen, das Bild auf der Netzhaut zu stabilisieren. Ich stellte in einer zweiten Studie fest, dass auch simulierte Vorwärtsbewegungen über eine Ebene, wie sie in Studie I durchgeführt wurden, solche reflexiven Augenbewegungen auslösen. Sie setzen sich aus langsamen Folge- und schnellen Rückstellbewegungen zusammen. Ich konnte zeigen, dass Probanden die Geschwindigkeit der Augenfolgebewegungen exakter kontrollieren können, wenn sie ihre Fahrtgeschwindigkeit aktiv mit einem Joystick steuern, als wenn sie passiv über die Ebene bewegt werden. Möglicherweise unterstützt das propriozeptive Feedback der Joystickauslenkung während der aktiven Fahrten die Kontrolle der Augenbewegungen. Außerdem stellte ich fest, dass Probanden ihre Augen auch in Richtung der Bewegung der Ebene bewegen, wenn sie diese nicht sehen, sondern nur auditive Geschwindigkeitshinweise erhalten. In einer dritten Studie untersuchte ich mittels fMRT, welche Regionen des menschlichen Gehirns an der Verarbeitung audio-visueller Eigenbewegungssignale beteiligt sind. Da nur räumlich und zeitlich kongruente Informationen unterschiedlicher Sinnesmodalitäten optimal zu einer Gesamtwahrnehmung integriert werden können, überprüfte ich, ob und ggf. wie die Kongruenz der Reize die Hirnaktivität beeinflusst. Der visuelle Stimulus bestand aus einer im Wechsel expandierenden und kontrahierenden Punktewolke, die eine Vor- bzw. Rückwärtsbewegung des Betrachters simulierte. Als auditiver Reiz diente ein Sinuston, der in einer audio-visuell kongruenten Bedingung wie der visuelle Stimulus eine Vor- bzw. Rückwärtsbewegung simulierte. In einer audio-visuell inkongruenten Bedingung simulierte der auditive Reiz eine frontoparallele Bewegung, während der visuelle Stimulus eine Vor- bzw. Rückwärtsbewegung simulierte. Die bimodale Stimulation aktivierte im Unterschied zur unimodalen Stimulation unter anderem Bereiche des Präzentralen Sulcus, des Superioren Temporalen Sulcus sowie des Intraparietalen Sulcus. Verglichen mit der inkongruenten Stimulation aktivierte der kongruente Stimulus einen Bereich des Präzentralen Sulcus. Zusammengenommen konnte ich in meiner Arbeit zeigen, dass auditive Eigenbewegungsinformationen eine wichtige Rolle für die Einschätzung und Reproduktion von Distanzen spielen und im menschlichen Gehirn gemeinsam mit visuellen Eigenbewegungssignalen in einem parieto-frontalen Netzwerk verarbeitet werden. Räumlich kongruente Eigenbewegungssignale werden in einem Areal verarbeitet, bei dem es sich auf Grund der funktionalen und räumlichen Ähnlichkeit um ein Äquivalent der "Polysensory Zone" des Makakengehirns handeln könnte.

Bibliographie / References

  1. Lich, M. (2011). Visuelle Navigation: Dynamik der Wahrnehmung von Eigenbewe- gung. Dissertation, Philipps-Universitaet Marburg.
  2. Shams, L., Kamitani, Y., and Shimojo, S. (2000). Illusions. what you see is what you hear. Nature, 408(6814):788.
  3. Frenz, H., Bremmer, F., and Lappe, M. (2003). Discrimination of travel distances from 'situated' optic flow. Vision Res, 43(20):2173–2183.
  4. Lappe, M., Bremmer, F., Pekel, M., Thiele, A., and Hoffmann, K. P. (1996). Op- tic flow processing in monkey sts: a theoretical and experimental approach. J Neurosci, 16(19):6265–6285.
  5. Newsome, W. T. and Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (mt). J Neurosci, 8(6):2201– 2211.
  6. Wolbers, T., Wiener, J. M., Mallot, H. A., and Buechel, C. (2007). Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans. J Neurosci, 27(35):9408–9416.
  7. Philbeck, J. W. and Loomis, J. M. (1997). Comparison of two indicators of perceived egocentric distance under full-cue and reduced-cue conditions. J Exp Psychol Hum Percept Perform, 23(1):72–85.
  8. Thompson, P. (1981). Velocity after-effects: the effects of adaptation to moving stimuli on the perception of subsequently seen moving stimuli. Vision Res, 21(3): 337–345.
  9. Maunsell, J. H. and Essen, D. C. V. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. i. selectivity for stimulus direction, speed, and orientation. J Neurophysiol, 49(5):1127–1147.
  10. Friston, K. J., Holmes, A. P., Poline, J. B., Grasby, P. J., Williams, S. C., Frackowiak, R. S., and Turner, R. (1995). Analysis of fmri time-series revisited. Neuroimage, 2(1):45–53.
  11. The contributions of static visual cues, nonvisual cues, and optic flow in distance estimation. Perception, 33(1):49–65.
  12. Ernst, M. O. and Buelthoff, H. H. (2004). Merging the senses into a robust percept. Trends Cogn Sci, 8(4):162–169.
  13. Juergens, R. and Becker, W. (2006). Perception of angular displacement without landmarks: evidence for bayesian fusion of vestibular, optokinetic, podokinesthet- ic, and cognitive information. Exp Brain Res, 174(3):528–543.
  14. Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., and Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954):184–188.
  15. Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J., and Turner, R. (2002). Image distortion correction in fmri: A quantitative evaluation. Neuroim- age, 16(1):217–240.
  16. Burr, D. and Alais, D. (2006). Combining visual and auditory information. Prog Brain Res, 155:243–258.
  17. Loomis, J. M., Klatzky, R. L., Philbeck, J. W., and Golledge, R. G. (1998). As- sessing auditory distance perception using perceptually directed action. Percept Psychophys, 60(6):966–980.
  18. Kapralos, B., Zikovitz, D., Jenkin, M. R., and Harris, L. R. (2004). Auditory cues in the perception of self motion. AES 116th Convention, Berlin, Germany, 2004
  19. Petacchi, A., Laird, A. R., Fox, P. T., and Bower, J. M. (2005). Cerebellum and auditory function: an ale meta-analysis of functional neuroimaging studies. Hum Brain Mapp, 25(1):118–128.
  20. Multisensory integration of looming signals by rhesus monkeys. Neuron, 43(2): 177–181.
  21. Lappe, M. and Frenz, H. (2009). Visual estimation of travel distance during walking. Exp Brain Res, 199:369–375.
  22. O'Mara, S. M., Rolls, E. T., Berthoz, A., and Kesner, R. P. (1994). Neurons responding to whole-body motion in the primate hippocampus. J Neurosci, 14(11
  23. Cate, A. D., Herron, T. J., Yund, E. W., Stecker, G. C., Rinne, T., Kang, X., Petkov, C. I., Disbrow, E. A., and Woods, D. L. (2009). Auditory attention activates peripheral visual cortex. PLoS One, 4(2):e4645.
  24. Frenz, H., Lappe, M., Kolesnik, M., and Buehrmann, T. (2007). Estimation of travel distance from visual motion in virtual environments. ACM Trans. Appl. Percept., 4(1):Article 3.
  25. Larish, J. F. and Flach, J. M. (1990). Sources of optical information useful for per- ception of speed of rectilinear self-motion. J Exp Psychol Hum Percept Perform, 16(2):295–302.
  26. Macaluso, E., Frith, C. D., and Driver, J. (2000). Modulation of human visual cortex by crossmodal spatial attention. Science, 289(5482):1206–1208.
  27. Literaturverzeichnis Wichmann, F. A. and Hill, N. J. (2001). The psychometric function: I. fitting, sampling, and goodness of fit. Percept Psychophys, 63(8):1293–1313.
  28. Vidal, M. and Buelthoff, H. H. (2010). Storing upright turns: how visual and vestibular cues interact during the encoding and recalling process. Exp Brain Res, 200(1):37–49.
  29. Mishkin, M. and Ungerleider, L. G. (1982). Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res, 6(1):57–77.
  30. Soto-Faraco, S., Spence, C., and Kingstone, A. (2004). Cross-modal dynamic cap- ture: congruency effects in the perception of motion across sensory modalities. J Exp Psychol Hum Percept Perform, 30(2):330–345.
  31. Perry, R. J. and Zeki, S. (2000). The neurology of saccades and covert shifts in spatial attention: an event-related fmri study. Brain, 123 ( Pt 11):2273–2288.
  32. Lewis, J. W., Beauchamp, M. S., and DeYoe, E. A. (2000). A comparison of visual and auditory motion processing in human cerebral cortex. Cereb Cortex, 10(9): 873–888.
  33. Luna, B., Thulborn, K. R., Strojwas, M. H., McCurtain, B. J., Berman, R. A., Genovese, C. R., and Sweeney, J. A. (1998). Dorsal cortical regions subserving visually guided saccades in humans: an fmri study. Cereb Cortex, 8(1):40–47.
  34. Rudolph, K. and Pasternak, T. (1999). Transient and permanent deficits in motion perception after lesions of cortical areas mt and mst in the macaque monkey. Cereb Cortex, 9(1):90–100.
  35. Schlack, A., Sterbing-D'Angelo, S. J., Hartung, K., Hoffmann, K.-P., and Bremmer, F. (2005). Multisensory space representations in the macaque ventral intraparietal area. J Neurosci, 25(18):4616–4625.
  36. Tsakiris, M., Longo, M. R., and Haggard, P. (2010). Having a body versus moving your body: neural signatures of agency and body-ownership. Neuropsychologia, 48(9):2740–2749.
  37. Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron, 40(3):655–664.
  38. Fogassi, L., Gallese, V., Fadiga, L., Luppino, G., Matelli, M., and Rizzolatti, G. (1996). Coding of peripersonal space in inferior premotor cortex (area f4). J Neurophysiol, 76(1):141–157.
  39. Luppino, G., Murata, A., Govoni, P., and Matelli, M. (1999). Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas aip and vip) and the ventral premotor cortex (areas f5 and f4). Exp Brain Res, 128(1-2): 181–187.
  40. Literaturverzeichnis Merchant, H., Battaglia-Mayer, A., and Georgopoulos, A. P. (2001). Effects of optic flow in motor cortex and area 7a. J Neurophysiol, 86(4):1937–1954.
  41. Buechel, C., Josephs, O., Rees, G., Turner, R., Frith, C. D., and Friston, K. J. (1998). The functional anatomy of attention to visual motion. a functional mri study. Brain, 121 ( Pt 7):1281–1294.
  42. Mossio, M., Vidal, M., and Berthoz, A. (2008). Traveled distances: New insights into the role of optic flow. Vision Res, 48(2):289–303.
  43. Maier, J. X. and Ghazanfar, A. A. (2007). Looming biases in monkey auditory cortex. J Neurosci, 27(15):4093–4100.
  44. Sun, H.-J., Campos, J. L., and Chan, G. S. W. (2004). Multisensory integration in the estimation of relative path length. Exp Brain Res, 154(2):246–254.
  45. Multisensory integration in speed estimation during self-motion. Cyberpsychol Behav, 6(5):509–518.
  46. Literaturverzeichnis Ernst, M. O. and Banks, M. S. (2002). Humans integrate visual and haptic infor- mation in a statistically optimal fashion. Nature, 415(6870):429–433.
  47. Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., and Zilles, K. (2005). A new spm toolbox for combining probabilistic cytoarchi- tectonic maps and functional imaging data. Neuroimage, 25(4):1325–1335.
  48. Krekelberg, B., van Wezel, R. J. A., and Albright, T. D. (2006). Adaptation in macaque mt reduces perceived speed and improves speed discrimination. J Neu- rophysiol, 95(1):255–270.
  49. Petit, L., Dubois, S., Tzourio, N., Dejardin, S., Crivello, F., Michel, C., Etard, O., Denise, P., Roucoux, A., and Mazoyer, B. (1999). Pet study of the human foveal fixation system. Hum Brain Mapp, 8(1):28–43.
  50. Colby, C. L., Duhamel, J. R., and Goldberg, M. E. (1993). Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol, 69(3):902–914.
  51. Ettinger, U., Ffytche, D. H., Kumari, V., Kathmann, N., Reuter, B., Zelaya, F., and Williams, S. C. R. (2008). Decomposing the neural correlates of antisaccade eye movements using event-related fmri. Cereb Cortex, 18(5):1148–1159.
  52. Kumari, V., Gray, J. A., Geyer, M. A., Ffytche, D., Soni, W., Mitterschiffthaler, M. T., Vythelingum, G. N., Simmons, A., Williams, S. C. R., and Sharma, T. Literaturverzeichnis (2003). Neural correlates of tactile prepulse inhibition: a functional mri study in normal and schizophrenic subjects. Psychiatry Res, 122(2):99–113.
  53. Frenz, H. and Lappe, M. (2005). Absolute travel distance from optic flow. Vision Res, 45(13):1679–1692.
  54. Falchier, A., Clavagnier, S., Barone, P., and Kennedy, H. (2002). Anatomical ev- idence of multimodal integration in primate striate cortex. J Neurosci, 22(13): 5749–5759.
  55. Literaturverzeichnis Graziano, M. S., Reiss, L. A., and Gross, C. G. (1999). A neuronal representation of the location of nearby sounds. Nature, 397(6718):428–430.
  56. Essen, D. C. V. (2005). A population-average, landmark-and surface-based (pals) atlas of human cerebral cortex. Neuroimage, 28(3):635–662.
  57. May 8-11. Audio Engineering Society Convention Paper Presented at the 116th Convention May 8-11 Berlin, Germany.
  58. Waltregny, A., Trillet, F., and Geurts, A. (1977). Auditory evoked potentials record- ed from chronic implanted gyrus of heschl in man. Acta Neurochir (Wien), (Suppl 24):163–173.
  59. Zhang, T. and Britten, K. H. (2004). Clustering of selectivity for optic flow in the ventral intraparietal area. Neuroreport, 15(12):1941–1945.
  60. Hebb, D. O. (1968). Concerning imagery. Psychol Rev, 75(6):466–477.
  61. Uka, T. and DeAngelis, G. C. (2003). Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity. J Neurosci, 23(8):3515–3530.
  62. Welch, R. B., DuttonHurt, L. D., and Warren, D. H. (1986). Contributions of audition and vision to temporal rate perception. Percept Psychophys, 39(4):294– 300.
  63. Corbetta, M. and Shulman, G. L. (2002). Control of goal-directed and stimulus- driven attention in the brain. Nat Rev Neurosci, 3(3):201–215.
  64. Jezzard, P. and Balaban, R. S. (1995). Correction for geometric distortion in echo planar images from b0 field variations. Magn Reson Med, 34(1):65–73.
  65. Liu, J. and Newsome, W. T. (2005). Correlation between speed perception and neural activity in the middle temporal visual area. J Neurosci, 25(3):711–722.
  66. DeAngelis, G. C., Cumming, B. G., and Newsome, W. T. (1998). Cortical area mt and the perception of stereoscopic depth. Nature, 394(6694):677–680.
  67. Monen, J. and Brenner, E. (1994). Detecting changes in one's own velocity from the optic flow. Perception, 23(6):681–690.
  68. Felleman, D. J. and Essen, D. C. V. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1(1):1–47.
  69. Does the middle temporal area carry vestibular signals related to self-motion? J Neurosci, 29(38):12020–12030.
  70. Mourant, R. R., Rockwell, T. H., and Rackoff, N. J. (1969). Driver's eye movements and visual workload. Highway Res Rec, 292:1–10.
  71. Warren, W. H. and Hannon, D. J. (1990). Eye movements and optical flow. J Opt Soc Am A, 7(1):160–169.
  72. Wandell, B. A., (1995). Foundations of Vision. Sinauer Associates.
  73. Nagle, S. (2009). Frequency discrimination and (c)apd. The Hearing Journal, 62: 36.
  74. Mittelstaedt, M. and Mittelstaedt, H. (1980). Homing by path integration in a mammal. Naturwissenschaften, 67:566–567.
  75. Redlick, F. P., Jenkin, M., and Harris, L. R. (2001). Humans can use optic flow to estimate distance of travel. Vision Res, 41(2):213–219.
  76. Schlack, A., Hoffmann, K.-P., and Bremmer, F. (2002). Interaction of linear vestibu- lar and visual stimulation in the macaque ventral intraparietal area (vip). Eur J Neurosci, 16(10):1877–1886.
  77. Goldstein, A. G. (1957). Judgments of visual velocity as a function of length of observation time. J Exp Psychol, 54(6):457–461.
  78. Orban, G. A., Saunders, R. C., and Vandenbussche, E. (1995). Lesions of the supe- rior temporal cortical motion areas impair speed discrimination in the macaque monkey. Eur J Neurosci, 7(11):2261–2276.
  79. Graziano, M. S. and Gandhi, S. (2000). Location of the polysensory zone in the precentral gyrus of anesthetized monkeys. Exp Brain Res, 135(2):259–266.
  80. Britten, K. H. (2008). Mechanisms of self-motion perception. Annu Rev Neurosci, 31:389–410.
  81. Lappe, M. and Rauschecker, J. P. (1995). Motion anisotropies and heading detection. Biol Cybern, 72(3):261–277.
  82. Hietanen, J. K. and Perrett, D. I. (1996). Motion sensitive cells in the macaque su- perior temporal polysensory area: response discrimination between self-generated and externally generated pattern motion. Behav Brain Res, 76(1-2):155–167.
  83. Multifactorial interactions involved in linear self-transport distance estimate: a place for time. Int J Psychophysiol, 53(1):21–28.
  84. Rolls, E. (2004). Multimodal neuronal convergence of taste, somatosensory, visual, olfactory and auditory inputs. In: Calvert, G., Spence, C., and Stein, B., (Eds.), The Handbook of Multisensory Processes, p. 311–331. MIT Press Cambridge.
  85. Shaikh, A. G., Meng, H., and Angelaki, D. E. (2004). Multiple reference frames for motion in the primate cerebellum. J Neurosci, 24(19):4491–4497.
  86. Foxe, J. J., Morocz, I. A., Murray, M. M., Higgins, B. A., Javitt, D. C., and Schroed- er, C. E. (2000). Multisensory auditory-somatosensory interactions in early corti- cal processing revealed by high-density electrical mapping. Brain Res Cogn Brain Res, 10(1-2):77–83.
  87. Kawano, K., Shidara, M., Watanabe, Y., and Yamane, S. (1994). Neural activity in cortical area mst of alert monkey during ocular following responses. J Neuro- physiol, 71(6):2305–2324.
  88. Seifritz, E., Neuhoff, J. G., Bilecen, D., Scheffler, K., Mustovic, H., Schaechinger, H., Elefante, R., and Salle, F. D. (2002). Neural processing of auditory looming in the human brain. Curr Biol, 12(24):2147–2151.
  89. Hood, J. (1975). Observation upon the role of the peripheral retina in the execution of eye movements. J Otolaryngol, 37:65–73.
  90. Miles, F. A. and Busettini, C. (1992). Ocular compensation for self-motion. visual mechanisms. Ann N Y Acad Sci, 656:220–232.
  91. Woo, M., Neider, J., Davis, T., and Shreiner, D., (1999). OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition. ISBN 0201604582.
  92. Shreiner, D., (1999). OpenGL Reference Manual: The Official Reference Document to OpenGL, Version 1.2. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition. ISBN 0201657651.
  93. Duffy, C. J. (2000). Optic flow analysis for self-movement perception. Int Rev Neurobiol, 44:199–218.
  94. Lappe, M. and Hoffmann, K. P. (2000). Optic flow and eye movements. Int Rev Neurobiol, 44:29–47.
  95. Fletcher, W. A., Hain, T. C., and Zee, D. S. (1990). Optokinetic nystagmus and af- ternystagmus in human beings: relationship to nonlinear processing of information about retinal slip. Exp Brain Res, 81(1):46–52.
  96. Warren, W. H., Morris, M. W., and Kalish, M. (1988). Perception of translational heading from optical flow. J Exp Psychol Hum Percept Perform, 14(4):646–660.
  97. Neuhoff, J. G. (1998). Perceptual bias for rising tones. Nature, 395(6698):123–124.
  98. McHenry, M. Q. and Angelaki, D. E. (2000). Primate translational vestibuloocular reflexes. ii. version and vergence responses to fore-aft motion. J Neurophysiol, 83 (3):1648–1661.
  99. Kowol, G., (2009). Projektive Geometrie und Cayley-Klein Geometrien der Ebene. Birkhaeuser, Basel. ISBN 978-3-7643-9902-3.
  100. Gescheider, G. A., (1997). Psychophysics: The Fundamentals. Lawrence Erlbaum Associates, 3rd edition.
  101. Pt 1):6511–6523.
  102. Yakusheva, T. A., Shaikh, A. G., Green, A. M., Blazquez, P. M., Dickman, J. D., and Angelaki, D. E. (2007). Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron, 54(6):973–985.
  103. George, M., Ketter, T., Parekh, P., Rosinsky, N., Ring, H., Casey, B., Trimble, M., Horwitz, M., Herschovitch, P., and Post, R. (1994). Regional brain activity when selecting a response despite interference: An h215o pet study of the stroop and an emotional stroop. Hum Brain Mapp, 1:194–209.
  104. Komatsu, H. and Wurtz, R. H. (1988). Relation of cortical areas mt and mst to pursuit eye movements. i. localization and visual properties of neurons. J Neurophysiol, 60(2):580–603.
  105. Grasso, R., Glasauer, S., Georges-Francois, P., and Israel, I. (1999). Replication of passive whole-body linear displacements from inertial cues. Ann N Y Acad Sci, 871:345–366.
  106. Duffy, C. J. and Wurtz, R. H. (1991). Sensitivity of mst neurons to optic flow stimuli. i. a continuum of response selectivity to large-field stimuli. J Neurophysiol, 65: 1329–1345.
  107. Snyder, L. H., Grieve, K. L., Brotchie, P., and Andersen, R. A. (1998). Sepa- rate body-and world-referenced representations of visual space in parietal cortex. Nature, 394(6696):887–891.
  108. Gellman, R. S., Carl, J. R., and Miles, F. A. (1990). Short latency ocular-following responses in man. Vis Neurosci, 5(2):107–122.
  109. Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D., and Leventhal, A. G. (1998). Signal timing across the macaque visual system. J Neurophysiol, 79(6):3272–3278.
  110. Ilg, U. J. (1997). Slow eye movements. Prog Neurobiol, 53(3):293–329.
  111. de'Sperati, C. and Santandrea, E. (2005). Smooth pursuit-like eye movements during mental extrapolation of motion: the facilitatory effect of drowsiness. Brain Res Cogn Brain Res, 25(1):328–338.
  112. Glasauer, S., Schneider, E., Grasso, R., and Ivanenko, Y. P. (2007). Space-time relativity in self-motion reproduction. J Neurophysiol, 97(1):451–461.
  113. Graziano, M. S. and Gross, C. G. (1998). Spatial maps for the control of movement. Curr Opin Neurobiol, 8(2):195–201.
  114. Spatial memory and path integration studied by self-driven passive linear dis- placement. i. basic properties. J Neurophysiol, 77(6):3180–3192.
  115. Perrone, J. A. and Thiele, A. (2001). Speed skills: measuring the visual speed analyzing properties of primate mt neurons. Nat Neurosci, 4(5):526–532.
  116. Warren, W. H. and Kurtz, K. J. (1992). The role of central and peripheral vision in perceiving the direction of self-motion. Percept Psychophys, 51(5):443–454.
  117. Holm-Jensen, S. and Peitersen, E. (1979). The significance of the target frequency and the target speed in optokinetic nystagmus (okn). Acta Otolaryngol, 88(1-2): 110–116.
  118. Schroeder, C. E. and Foxe, J. J. (2002). The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Brain Res Cogn Brain Res, 14(1):187–198.
  119. Stein, B. E., Meredith, M. A., and Wallace, M. T. (1993). The visually responsive neuron and beyond: multisensory integration in cat and monkey. Prog Brain Res, 95:79–90.
  120. Lappe, M., Jenkin, M., and Harris, L. R. (2007). Travel distance estimation from visual motion by leaky path integration. Exp Brain Res, 180(1):35–48.
  121. Papathanasiou, E. S., Papacostas, S. S., Charalambous, M., Eracleous, E., Thodi, C., and Pantzaris, M. (2006). Vertigo and imbalance caused by a small lesion in the anterior insula. Electromyogr Clin Neurophysiol, 46(3):185–192.
  122. Hess, B. J. M. and Angelaki, D. E. (2003). Vestibular contributions to gaze stability during transient forward and backward motion. J Neurophysiol, 90(3):1996–2004.
  123. Harris, L. R., Jenkin, M., and Zikovitz, D. C. (2000). Visual and non-visual cues in the perception of linear self-motion. Exp Brain Res, 135(1):12–21.
  124. Prokop, T., Schubert, M., and Berger, W. (1997). Visual influence on human locomotion. modulation to changes in optic flow. Exp Brain Res, 114(1):63–70.
  125. Visual selectivity for heading in monkey area mst. Exp Brain Res, 200(1):51–60.
  126. Bremmer, F., Klam, F., Duhamel, J.-R., Hamed, S. B., and Graf, W. (2002). Visual- vestibular interactive responses in the macaque ventral intraparietal area (vip).
  127. Calvert, G. A., Hansen, P. C., Iversen, S. D., and Brammer, M. J. (2001). Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the bold effect. Neuroimage, 14(2):427–438.
  128. Literaturverzeichnis Nielsen, F. A. (2003). The brede database: a small database for functional neu- roimaging. Neuroimage, 9th International Conference on Functional Mapping of the Human Brain, June 19–22, New York, NY.
  129. Meyer, G. F., Wuerger, S. M., Roehrbein, F., and Zetzsche, C. (2005). Low-level integration of auditory and visual motion signals requires spatial co-localisation.
  130. Smith, S. W., (1998). The Scientist and Engineer's Guide to Digital Signal Process- ing. California Technical Pub.
  131. Cohen, B., Matsuo, V., and Raphan, T. (1977). Quantitative analysis of the veloc- ity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol, 270(2):321–344.
  132. Cooke, D. F., Taylor, C. S. R., Moore, T., and Graziano, M. S. A. (2003). Complex movements evoked by microstimulation of the ventral intraparietal area. Proc Natl Acad Sci U S A, 100(10):6163–6168.
  133. Gu, Y., DeAngelis, G. C., and Angelaki, D. E. (2007). A functional link between area mstd and heading perception based on vestibular signals. Nat Neurosci, 10 (8):1038–1047.
  134. Literaturverzeichnis Priebe, N. J., Cassanello, C. R., and Lisberger, S. G. (2003). The neural represen- tation of speed in macaque area mt/v5. J Neurosci, 23(13):5650–5661.
  135. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., and Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci, 27(9):2349– 2356.
  136. Konen, C. S. and Kastner, S. (2008). Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. J Neurosci, 28(33):8361–8375.
  137. Liu, S. and Angelaki, D. E. (2009). Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception. J Neurosci, 29 (28):8936–8945.
  138. Lappe, M., Pekel, M., and Hoffmann, K. P. (1998). Optokinetic eye movements elicited by radial optic flow in the macaque monkey. J Neurophysiol, 79(3):1461– 1480.
  139. Niemann, T., Lappe, M., Buescher, A., and Hoffmann, K. P. (1999). Ocular responses to radial optic flow and single accelerated targets in humans. Vision Res, 39(7): 1359–1371.
  140. Law, I., Svarer, C., Holm, S., and Paulson, O. B. (1997). The activation pattern in normal humans during suppression, imagination and performance of saccadic eye movements. Acta Physiol Scand, 161(3):419–434.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten