Publikationsserver der Universitätsbibliothek Marburg

Titel:Physical aspects of bacterial cell division
Autor:Schmidt, Mischa
Weitere Beteiligte: Lenz, Peter (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0075
URN: urn:nbn:de:hebis:04-z2011-00750
DOI: https://doi.org/10.17192/z2011.0075
DDC: Biowissenschaften, Biologie
Titel (trans.):Physikalische Aspekte bakterieller Zellteilungsprozesse
Publikationsdatum:2011-03-17
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Zellteilung, Fluktuierende Umweltbedingungen, Zell zu Zell Variationen, Escherichia coli, Phänotyp, Fluctuating environment, Cellular noise, Caulobacter crescentus

Summary:
The growth behavior of a bacterial population is determined by the growth and the division of its individual cells. The properties of the population can be understood as ensemble averages over the properties of the single cells. At the same environmental conditions, these averages have sharp values and exhibit minimal variation between different measurements. However, on the single cell level many biological processes, such as gene expression, are intrinsically noisy. This leads to strong deviations in composition and properties of individual cells belonging to the same population. Recent experimental findings classify the magnitude of these single cell variations, and show that some cellular properties are influenced more by noise than others. For example, the positioning of cell division is very precise compared to other growth properties, which are very diverse. This leads to the question if the population can draw advantages from manually regulating the noise under the respective conditions. To answer this question the influence of single cell noise on the population as a whole has to be observed. In this thesis, properties and strategies related to bacterial growth and division are discussed. In the observed biological systems, macroscopic properties are deduced from individual properties on the microscopic level. First, the mechanisms are observed that cells use to determine the position of cell division on a molecular level. The simulation of diffusion and reactions of individual proteins determines the behavior on the cellular level. Secondly, the growth of the whole bacterial population is simulated by following the growth and division of single cells. In both systems, the influence of microscopic fluctuations on the complete system is discussed.

Bibliographie / References

  1. Kovarova-Kovar, K. and Egli, T. (1998). Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev, 62(3):646–66.
  2. Maughan, H. and Nicholson, W. (2004). Stochastic processes influence stationary-phase deci- sions in Bacillus subtilis. J Bacteriol, 186(7):2212–4.
  3. Mohl, D. A. and Gober, J. W. (1997). Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell, 88(5):675–84.
  4. Anderson, D. E., Gueiros-Filho, F. J., and Erickson, H. P. (2004). Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J. Bacteriol., 186:5775–5781.
  5. Howard, M., Rutenberg, A. D., and de Vet, S. (2001). Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys Rev Lett, 87(27 Pt 1):278102.
  6. Bibliography Jenal, U. and Stephens, C. (2002). The Caulobacter cell cycle: timing, spatial organization and checkpoints. Curr. Opin. Microbiol., 5:558–563.
  7. Rothfield, L., Shih, Y., and King, G. (2001). Polar explorers: membrane proteins that determine division site placement. Cell, 106(1):13–6.
  8. Veening, J., Smits, W., Hamoen, L., and Kuipers, O. (2006). Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media. J Appl Microbiol, 101(3):531–41.
  9. Smits, W., Kuipers, O., and Veening, J. (2006). Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol, 4(4):259–71.
  10. Meacci, G. and Kruse, K. (2005). Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins. Phys Biol, 2(2):89–97.
  11. de Boer, P., Crossley, R., and Rothfield, L. (1989). A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell, 56(4):641–9.
  12. Kruse, K. (2002). A dynamic model for determining the middle of Escherichia coli. Biophys J, 82(2):618–27.
  13. Driever, W. and Nuesslein-Volhard, C. (1988). A gradient of bicoid protein in Drosophila embryos. Cell, 54:83–93.
  14. Chen, Y., Bjornson, K., Redick, S. D., and Erickson, H. P. (2005). A rapid fluorescence assay for FtsZ assembly indicates cooperative assembly with a dimer nucleus. Biophys. J., 88:505–514.
  15. Moseley, J. B., Mayeux, A., Paoletti, A., and Nurse, P. (2009). A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature, 459(7248):857–60.
  16. Weiss, D. S. (2004). Bacterial cell division and the septal ring. Mol. Microbiol., 54:588–597.
  17. Balaban, N., Merrin, J., Chait, R., Kowalik, L., and Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305(5690):1622–5.
  18. Menu, F., Roebuck, J. P., and Viala, M. (2000). Bet-Hedging diapause strategies in stochastic environments. Am. Nat., 155:724–734.
  19. Quardokus, E. M. and Brun, Y. V. (2003). Cell cycle timing and developmental checkpoints in Caulobacter crescentus. Curr. Opin. Microbiol., 6:541–549.
  20. Thanbichler, M. and Shapiro, L. (2006a). Chromosome organization and segregation in bacte- ria. J. Struct. Biol., 156:292–303.
  21. Rueda, S., Vicente, M., and Mingorance, J. (2003). Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the Escherichia coli cell cycle. J. Bacteriol., 185:3344–3351.
  22. Dajkovic, A., Pichoff, S., Lutkenhaus, J., and Wirtz, D. (2010). Cross-linking FtsZ polymers into coherent Z rings. Mol. Microbiol., 78:651–668.
  23. Errington, J., Daniel, R., and Scheffers, D. (2003). Cytokinesis in bacteria. Microbiol Mol Biol Rev, 67(1):52–65.
  24. Kerr, R. A., Levine, H., Sejnowski, T. J., and Rappel, W.-J. (2006). Division accuracy in a stochastic model of Min oscillations in Escherichia coli. Proc Natl Acad Sci USA, 103(2):347– 52.
  25. Jensen, R. B., Wang, S. C., and Shapiro, L. (2002). Dynamic localization of proteins and DNA during a bacterial cell cycle. Nat. Rev. Mol. Cell Biol., 3:167–176.
  26. Bremer, H., Dennis, P., and Neidhart, F. (1996). Escherichia coli and Salmonella: Cellular and Molecular Biology, chapter Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate, pages 1553–1569. ASM Press, Washington DC.
  27. Lu, C., Stricker, J., and Erickson, H. P. (1998). FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima–quantitation, GTP hydrolysis, and assembly. Cell Motil. Cytoskeleton, 40:71–86.
  28. Bi, E. F. and Lutkenhaus, J. (1991). FtsZ ring structure associated with division in Escherichia coli. Nature, 354(6349):161–4.
  29. Gillespie, D. (1976). General method for numerically simulating stochastic time evolution of coupled chemical-reactions. J Comput Phys, 22:403–434.
  30. Powell, E. (1956). Growth rate and generation time of bacteria, with special reference to continuous culture. J Gen Microbiol, 15(3):492–511.
  31. Philippi, T. and Seger, J. (1989). Hedging ones evolutionary bets, revisited. Trends in Ecology & Evolution, 4(2):41–44.
  32. Lin, D. C. and Grossman, A. D. (1998). Identification and characterization of a bacterial chromosome partitioning site. Cell, 92(5):675–85.
  33. Davidson, C. J. and Surette, M. G. (2008). Individuality in bacteria. Annu. Rev. Genet., 42:253–268.
  34. Lendenmann, U. and Egli, T. (1995). Is Escherichia coli growing in glucose-limited chemostat culture able to utilize other sugars without lag? Microbiology, 141:71–78.
  35. Wartlick, O., Kicheva, A., and González-Gaitán, M. (2009). Morphogen gradient formation. Cold Spring Harb Perspect Biol, 1(3):a001255.
  36. Spudich, J. and Koshland, D. (1976). Non-genetic individuality: chance in the single cell. Nature, 262(5568):467–71.
  37. Levin, B. (2004). Noninherited resistance to antibiotics. Science, 305(5690):1578–9.
  38. Trueba, F. (1982). On the precision and accuracy achieved by Escherichia coli cells at fission about their middle. Arch Microbiol, 131(1):55–9.
  39. Bibliography Cohen, D. (1966). Optimizing reproduction in a randomly varying environment. J. Theor. Biol., 12:119–129.
  40. Easter, J. and Gober, J. W. (2002). ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol. Cell, 10(2):427–34.
  41. Kussell, E. and Leibler, S. (2005). Phenotypic diversity, population growth, and information in fluctuating environments. Science, 309(5743):2075–8.
  42. Neidhardt, F. C., Ingraham, J. L., and Schaechter, M. (1990). Physiology of the bacterial cell. Sinauer Associates.
  43. Martin, S. G. and Berthelot-Grosjean, M. (2009). Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature, 459(7248):852–6.
  44. Romberg, L., Simon, M., and Erickson, H. P. (2001). Polymerization of Ftsz, a bacterial homolog of tubulin. Is assembly cooperative? J. Biol. Chem., 276:11743–11753.
  45. Bibliography Pla, J., Sanchez, M., Palacios, P., Vicente, M., and Aldea, M. (1991). Preferential cytoplasmic location of FtsZ, a protein essential for Escherichia coli septation. Mol. Microbiol., 5:1681– 1686.
  46. Atlas, R. M. (1997). Principles of Microbiology. Wm. C. Brown Publishers.
  47. Figge, R. M., Easter, J., and Gober, J. W. (2003). Productive interaction between the chromo- some partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Mol Microbiol, 47(5):1225–37.
  48. Stricker, J., Maddox, P., Salmon, E. D., and Erickson, H. P. (2002). Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc. Natl. Acad. Sci. U.S.A., 99:3171–3175.
  49. Hu, Z., Saez, C., and Lutkenhaus, J. (2003). Recruitment of MinC, an inhibitor of Z-ring formation, to the membrane in Escherichia coli : role of MinD and MinE. J Bacteriol, 185(1):196–203.
  50. Ozbudak, E., Thattai, M., Kurtser, I., Grossman, A., and van Oudenaarden, A. (2002). Reg- ulation of noise in the expression of a single gene. Nat Genet, 31(1):69–73.
  51. Cano, R. J. and Borucki, M. K. (1995). Revival and identification of bacterial spores in 25-to 40-million-year-old Dominican amber. Science, 268:1060–1064.
  52. Ephrussi, A. and Johnston, D. S. (2004). Seeing is believing: the bicoid morphogen gradient matures. Cell, 116(2):143–52.
  53. McGrath, P. T., Viollier, P., and McAdams, H. H. (2004). Setting the pace: mechanisms tying Caulobacter cell-cycle progression to macroscopic cellular events. Curr. Opin. Microbiol., 7:192–197.
  54. Xie, X. S., Choi, P. J., Li, G. W., Lee, N. K., and Lia, G. (2008). Single-molecule approach to molecular biology in living bacterial cells. Annu Rev Biophys, 37:417–444.
  55. Margolin, W. (2001). Spatial regulation of cytokinesis in bacteria. Curr Opin Microbiol, 4(6):647–52.
  56. Elowitz, M., Levine, A., Siggia, E., and Swain, P. (2002). Stochastic gene expression in a single cell. Science, 297(5584):1183–6.
  57. Leonard, T. A., Butler, P. J., and Lowe, J. (2004). Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol. Microbiol., 53:419–432.
  58. Funnell, B. E. (1991). The P1 plasmid partition complex at parS. The influence of Escherichia coli integration host factor and of substrate topology. J. Biol. Chem., 266:14328–14337.
  59. Koch, A. (1983). The protein burden of lac operon products. J Mol Evol, 19(6):455–62.
  60. Megerle, J., Fritz, G., Gerland, U., Jung, K., and Radler, J. (2008). Timing and dynamics of single cell gene expression in the arabinose utilization system. Biophys J, 95(4):2103–15.
  61. Hu, Z. and Lutkenhaus, J. (1999). Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol. Microbiol., 34:82–90.
  62. Woldringh, C., Mulder, E., Huls, P., and Vischer, N. (1991). Toporegulation of bacterial division according to the nucleoid occlusion model. Res Microbiol, 142(2-3):309–20.
  63. Hu, Z., Gogol, E. P., and Lutkenhaus, J. (2002). Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc Natl Acad Sci USA, 99(10):6761–6.
  64. Corbin, B. D., Yu, X. C., and Margolin, W. (2002). Exploring intracellular space: function of the Min system in round-shaped Escherichia coli . EMBO J., 21:1998–2008.
  65. Shih, Y. L., Fu, X., King, G. F., Le, T., and Rothfield, L. (2002). Division site placement in E.coli : mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. EMBO J., 21:3347–3357.
  66. Thattai, M. and van Oudenaarden, A. (2004). Stochastic gene expression in fluctuating envi- ronments. Genetics, 167(1):523–30.
  67. Touhami, A., Jericho, M., and Rutenberg, A. D. (2006). Temperature dependence of MinD oscillation in Escherichia coli : running hot and fast. J Bacteriol, 188(21):7661–7.
  68. Shih, Y., Le, T., and Rothfield, L. (2003). Division site selection in Escherichia coli involves dynamic redistribution of min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci U S A, 100(13):7865–70.
  69. Jensen, R. B. and Shapiro, L. (1999). The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Proc Natl Acad Sci USA, 96(19):10661–6.
  70. Donachie, W. and Begg, K. (1989). Cell length, nucleoid separation, and cell division of rod- shaped and spherical cells of Escherichia coli. J Bacteriol, 171(9):4633–9.
  71. Kubitschek, H. (1986). Increase in cell mass during the division cycle of Escherichia coli B/rA. J Bacteriol, 168(2):613–8.
  72. Koppes, L., Woldringh, C., and Nanninga, N. (1978). Size variations and correlation of different cell cycle events in slow-growing Escherichia coli. J Bacteriol, 134(2):423–33.
  73. Pierucci, O. (1978). Dimensions of Escherichia coli at various growth rates: model for envelope growth. J Bacteriol, 135(2):559–74.
  74. Huang, K. C., Meir, Y., and Wingreen, N. S. (2003). Dynamic structures in Escherichia coli : spontaneous formation of MinE rings and MinD polar zones. Proc Natl Acad Sci USA, 100(22):12724–8.
  75. De Robertis, E. M. (2006). Spemann's organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol, 7(4):296–302.
  76. Toro, E., Hong, S.-H., McAdams, H. H., and Shapiro, L. (2008). Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc Natl Acad Sci USA, 105(40):15435–40.
  77. Guberman, J., Fay, A., Dworkin, J., Wingreen, N., and Gitai, Z. (2008). PSICIC: noise and asymmetry in bacterial division revealed by computational image analysis at sub-pixel res- olution. PLoS Comput Biol, 4(11):e1000233.
  78. Chen, Y. and Erickson, H. P. (2005). Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer. J. Biol. Chem., 280:22549– 22554.
  79. Fuller, B. G., Lampson, M. A., Foley, E. A., Rosasco-Nitcher, S., Le, K. V., Tobelmann, P., Brautigan, D. L., Stukenberg, P. T., and Kapoor, T. M. (2008). Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature, 453(7198):1132–6.
  80. Cooper, S. and Helmstetter, C. E. (1968). Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol., 31:519–540.
  81. Ecker, R. and Kokaisl, G. (1969). Synthesis of protein, ribonucleic acid, and ribosomes by individual bacterial cells in balanced growth. J Bacteriol, 98(3):1219–26.
  82. Errington, J. (1993). Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev, 57(1):1–33.
  83. Harry, E. J. (2001). Bacterial cell division: regulating Z-ring formation. Mol. Microbiol., 40:795–803.
  84. Viollier, P. H., Thanbichler, M., McGrath, P. T., West, L., Meewan, M., McAdams, H. H., and Shapiro, L. (2004). Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci USA, 101(25):9257–62.
  85. Bernhardt, T. and de Boer, P. (2005). SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol Cell, 18(5):555– 64.
  86. ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth. J. Bacteriol., 186:6983–6998.
  87. Deich, J., Judd, E. M., McAdams, H. H., and Moerner, W. E. (2004). Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proc Nat Acad Sci USA, 101:15921–15926.
  88. Meinhardt, H. and de Boer, P. A. (2001). Pattern formation in Escherichia coli : a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc Natl Acad Sci USA, 98(25):14202–7.
  89. Raskin, D. M. and de Boer, P. A. (1999). Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci USA, 96(9):4971–6.
  90. Thanbichler, M. and Shapiro, L. (2006b). MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell, 126(1):147–62.
  91. Shah, D., Zhang, Z., Khodursky, A., Kaldalu, N., Kurg, K., and Lewis, K. (2006). Persisters: a distinct physiological state of E. coli. BMC Microbiol, 6:53.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten