Publikationsserver der Universitätsbibliothek Marburg

Titel:Evolution von Zwei-Komponenten-Systemen in Shewanella oneidensis MR-1. Die Histidinkinase ArcS und der Antwortregulator SO_4444,Zwei Komponenten, Zwei Modelle.
Autor:Lassak, Jürgen
Weitere Beteiligte: Buckel, Wolfgang (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0053
DOI: https://doi.org/10.17192/z2011.0053
URN: urn:nbn:de:hebis:04-z2011-00536
DDC: Biowissenschaften, Biologie
Titel (trans.):Evolution of two component systems in Shewanella oneidensis MR-1
Publikationsdatum:2011-02-09
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
SO_0577, Evolution, Sauerstoff, Zwei-Komponenten-Systeme, Two component signal transduction, Evolution, Sauerstoff, Arc, Evolution, Arc, SO_0577, SO_0577, Zwei-Komponenten-Systeme, Arc

Zusammenfassung:
Die Eroberung neuer Lebensräume und die Anpassung an verschiedenste Umweltbedingungen können durch Organismen ein und derselben Familie erfolgen. Die entstehende Artenvielfalt resultiert primär nicht auf Grund von Veränderungen im genetischen Bauplan sondern vielmehr aus der Diversifikation der regulatorischen Signaltransduktionssysteme welche diesen Bauplan umsetzten. Unter diesen Systemen ist die Zwei-Komponenten-Signaltransduktion (TCS) von zentraler Bedeutung für die koordinierte Antwort auf umweltbedingte Veränderungen nicht nur in Bakterien sondern auch in Archaeen, Protisten und Pilzen. Prototypischerweise reagiert eine Rezeptorhistidinkinase auf ein extrazelluläres Signal und leitet dieses durch Transphosphorylierung auf einen zytoplasmatischen Antwortregulator weiter, welcher seinerseits als Transkriptionfaktor agiert. Dabei können orthologe Transkriptionsfaktoren für die Expression völlig unterschiedlicher Gene verantwortlich sein und es eröffnen sich Spielräume für die Anpassung an unterschiedlichste Umweltbedingungen. Shewanella Spezies sind Gram-negative, fakultativ anaerobe Alteromonaden. Die 48 bisher bekannten Arten haben nicht nur marine und limnische Habitate erobert, sondern man findet sie auch als Symbionten und Pathogene vor allem von Fischen. Die Besiedlung so unterschiedlicher ökologischer Nischen schlägt sich auch in der Diversität der Regulationssysteme nieder. So variieren allein die bekannten Zahlen von TCS-Proteinen innerhalb der Shewanellaceae von 67 in S. denitrificans OS217 bis 116 in S. sediminis HAW-EB3. Der Antwortregulator SO_4444 gehört dabei zu den TCS-Proteinen, die sich ausschließlich in einigen wenigen Shewanellen finden (S. baltica OS223 und S. oneidensis MR-1). Phylogenetische Untersuchungen des genetischen Kontextes von SO_4444 legen den Schluss nahe, dass der Antwortregulator zusammen mit einer Hybrid-Histidinkinase SO_4445 und weiteren fünf Genen durch lateralen Gentransfer aus Aermonas sp. aquiriert wurde. Deletionen und Insertionen in SO_4444 führen, verglichen mit dem Wildtyp, zu einer Beeinträchtigung der Biofilmbildung sowohl unter statischen Bedingungen als auch in einem hydrodynamischen Flusskammersystem. Eine Erhöhung des intrazellulären Levels an an zyklischem Guanosinmonophosphat (c-di-GMP) durch das Einbringen einer Guanylatzyklase aus Vibrio cholerae (VCA_0956) und die resultierende partielle Wiederherstellung des Wildtypphänotyps deuten auf eine Abhängigkeit des ∆SO_4444-Biofilmphänotyps von dem Signalmolekül. Darüber hinaus zeigen weitere Untersuchungen im genetischen Kontext von SO_4444 ebenso für die Hybrid-Histidinkinase SO_4445 einen deutlichen Einfluss auf den Biofilm. Interessanterweise unterscheidet sich dieser sowohl in Quantität und Morphologie. Zudem führt die Deletion beider Gene zu einem der Einzeldeletion ∆SO_4445 vergleichbaren Phänotyp. Damit lassen sowohl die differentiellen Phänotypen in ∆SO_4444 und ∆SO_4445, als auch das Verhalten des Doppel-Dletionsstamms keine offensichtlichen Schlüsse zu, ob oder wie die beiden Komponenten zusammenarbeiten. Jedoch zeigen unsere Untersuchungen deutlich, dass horizontaler Gentransfer von TCS-Elementen Einfluss auf ein bestehendes regulatorisches Netzwerk ausüben kann, und sich damit sowohl die Möglichkeit bietet das sensorische Potential eines Organismus zu erweitern als auch bestehende Regulationsmechanismen zu verfeinern oder neue zu etablieren. Im Gegensatz zu SO_4444 ist die Hybridsensorkinase ArcS (SO_0577) eine Autapomorphie aller Shewanellen und damit Bestandteil des Kernsatzes an TCS-Proteinen. Unsere Untersuchungen in S. oneidensis MR 1 konnten das Protein als korrespondierende Kinase zum Antwortregulator ArcA identifizieren. Die Anoxische Redoxkontrolle (Arc) regelt in Escherichia coli u.a. die Anpassung an einen wechselnden Sauerstoffgehalt in der Umwelt. Hierbei misst die Sensorkinase ArcB den Redox-Status des Chinon-Pools der Membran und leitet die Information über ein Phosphorelaissystem an ArcA weiter. Identifiziert man ein Pendant zum E. coli ArcA in Shewanella leicht durch eindeutige Sequenzähnlichkeiten (81% Sequenzidentität für S. oneidensis), so führt ein Abgleich von ArcB (E. coli) mit dem Shewanella Proteom zu keinem eindeutigen Ergebnis. Nur das Histidin-Phosphotransfer-Protein HptA zeigt signifikante Homologien zum C-Terminus von ArcB. Interessanterweise liegt hptA im gleichen genetischen Kontext wie das E. coli arcB. Diese Tatsache spricht entweder für Deletion oder Translokation des die Kinase kodierenden Genabschnitts. Phänotypische Vergleiche der Deletionstämme ΔarcS, ΔhptA und ΔarcA mit S. oneidensis Wildtyp offenbaren auffällige Übereinstimmungen der Mutanten bezogen auf Wachstum, Biofilmbildung und. Dabei zeigten zugehörige Doppel- und Tripple-Deletionen nie kumulative Effekte. Mehr noch in vitro Interaktionsstudien an aufgereinigten Proteinen zeigen Phosphotransfer zwischen ArcS, HptA und ArcA. Damit rekonstituiert sich das atypische Arc-der Shewanellaceae aus ArcS, HptA und ArcA. ArcS weicht in seiner modularen Struktur stark von der bekannter ArcB-Proteine ab und weist auch keinerlei signifikante Sequenzhomologien zu ArcB auf. Damit bildet ArcS einen phylogenetisch distinkten Arm von „ArcB“-Proteinen. Doch dieser auffälligen strukturellen und phylogenetischen Unterschiede zum Trotz ist es möglich, Deletionen in arcB (E. coli) und arcS und/oder hptA (S. oneidensis MR-1) zu kreuzkomplementieren. Zusammengefasst stützt dies die These einer Trunkierung der sensorischen Komponente ArcB und Rekrutierung der alternativen Sensorkinase ArcS als funktionalen Ersatz. Weiterführende in vitro und in vivo Untersuchungen an den katalytischen Resten ArcS-HKH731, ArcS-RecID1017 und ArcS-RecIID1162 deuten aber darauf hin, dass obwohl ArcS und ArcB funktional konvergieren, der Regulationsmechanismus fundamental unterscheidet. Vergleichende Analysen zwischen ArcB (E. coli)- und ArcS-Sensorik indizieren zudem eine Veränderung im Signalspektrum ebenso wie in der Signalaufnahme und Signalweiterleitung. Das Shewanella Arc-System steht damit ebenso beispielhaft wie der Antwortregulator SO_4444 für den evolutionären Wandel von TCS-Schaltkreisen, der es diesen Bakterien mit ermöglicht in verschiedenste Lebensräume vorzudringen und sich dort erfolgreich zu behaupten.

Bibliographie / References

  1. Gralnick, J. A., C. T. Brown, and D. K. Newman. 2005. Anaerobic regulation by an atypical Arc system in Shewanella oneidensis. Mol Microbiol 56:1347-57.
  2. Gralnick, J. A., H. Vali, D. P. Lies, and D. K. Newman. 2006. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proceedings of the National Academy of Sciences of the United States of America 103:4669-4674.
  3. Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y. H. Rogers, and H. O. Smith. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66-74.
  4. Dale, J. R., R. Wade, and T. J. DiChristina. 2007. A conserved histidine in cytochrome c maturation permease CcmB of Shewanella putrefaciens is required for anaerobic growth below a threshold standard redox potential. Journal of Bacteriology 189:1036-1043. Quellen 125
  5. Georgellis, D., O. Kwon, P. De Wulf, and E. C. C. Lin. 1998. Signal decay through a reverse phosphorelay in the arc two-component signal transduction system. Journal of Biological Chemistry 273:32864-32869.
  6. Karlsson, et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520-62.
  7. Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293-300.
  8. Gassman. 1998. Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. American Mineralogist 83:1426-1443.
  9. Hinman, and S. M. Li. 1998. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica Et Cosmochimica Acta 62:3239-3257.
  10. Gödeke, J., K. Paul, J. Lassak, and K. M. Thormann. 2010. Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. The ISME Journal.
  11. Ferrieres, L., and D. J. Clarke. 2003. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Molecular Microbiology 50:1665-1682.
  12. Romine, A. Y. Obraztsova, K. H. Nealson, and A. L. Osterman. 2006. Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. Journal of Biological Chemistry 281:29872-29885.
  13. Hochberg, Y. 1988. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800-802.
  14. Berkner, S., D. Grogan, S. V. Albers, and G. Lipps. 2007. Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res 35:e88.
  15. Zhang, W., and L. Shi. 2005. Distribution and evolution of multiple-step phosphorelay in prokaryotes: lateral domain recruitment involved in the formation of hybrid-type histidine kinases. Microbiology 151:2159-73.
  16. Igo, M. M., A. J. Ninfa, and T. J. Silhavy. 1989. A bacterial environmental sensor that functions as a protein kinase and stimulates transcriptional activation. Genes Dev 3:598-605.
  17. Danese, P. N., W. B. Snyder, C. L. Cosma, L. J. Davis, and T. J. Silhavy. 1995. The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev 9:387-98. 45.
  18. Rajewsky, N., N. D. Socci, M. Zapotocky, and E. D. Siggia. 2002. The evolution of DNA regulatory regions for proteo-gamma bacteria by interspecies comparisons. Genome Res 12:298- 308.
  19. Rasmussen, A. A., S. Wegener-Feldbrugge, S. L. Porter, J. P. Armitage, and L. Sogaard- Andersen. 2006. Four signalling domains in the hybrid histidine protein kinase RodK of Myxococcus xanthus are required for activity. Mol Microbiol 60:525-34.
  20. Chen, Y. E., C. G. Tsokos, E. G. Biondi, B. S. Perchuk, and M. T. Laub. 2009. Dynamics of two Phosphorelays controlling cell cycle progression in Caulobacter crescentus. J Bacteriol 191:7417-29.
  21. Bowman, J. P., S. A. McCammon, D. S. Nichols, J. H. Skerratt, S. M. Rea, P. D. Nichols, and T. A. McMeekin. 1997. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040-7.
  22. Duerig, A., S. Abel, M. Folcher, M. Nicollier, T. Schwede, N. Amiot, B. Giese, and U. Jenal. 2009. Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23:93-104.
  23. Fronzes, R., H. Remaut, and G. Waksman. 2008. Architectures and biogenesis of non- flagellar protein appendages in Gram-negative bacteria. EMBO J 27:2271-80.
  24. Hershberg, R., and H. Margalit. 2006. Co-evolution of transcription factors and their targets depends on mode of regulation. Genome Biol 7:R62.
  25. Devreese, S. N. Savvides, and B. Vergauwen. 2010. The 285 kDa Bap/RTX hybrid cell surface protein (SO4317) of Shewanella oneidensis MR-1 is a key mediator of biofilm formation. Research in Microbiology 161:144-152.
  26. Zhou, and W. Verstraete. 2006. AggA is required for aggregation and increased biofilm formation of a hyper-aggregating mutant of Shewanella oneidensis MR-1. Microbiology-Sgm 152:721-729.
  27. Shi, X. Q., S. Wegener-Feldbrugge, S. Huntley, N. Hamann, R. Hedderich, and L. Sogaard- Andersen. 2008. Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. Journal of Bacteriology 190:613-624.
  28. Sambrook, J., and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, third ed. Cold Spring Harbor Laboratory Press.
  29. Caccavo, F., R. P. Blakemore, and D. R. Lovley. 1992. A Hydrogen-Oxidizing, Fe(Iii)- Reducing Microorganism from the Great Bay Estuary, New-Hampshire. Applied and Environmental Microbiology 58:3211-3216.
  30. Compan, I., and D. Touati. 1994. Anaerobic activation of arcA transcription in Escherichia coli: roles of Fnr and ArcA. Mol Microbiol 11:955-64.
  31. Choi, K. H., J. B. Gaynor, K. G. White, C. Lopez, C. M. Bosio, R. R. Karkhoff-Schweizer, and H. P. Schweizer. 2005. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2:443-8.
  32. Derby, H., and B. Hammer. 1931. Bacteriology of butter. IV. Bacteriological studies of surface taint butter. IOWA Agricultural Experiment Station Research Bulletin 145:387–416.
  33. Anantharaman, V., and L. Aravind. 2000. Cache -a signaling domain common to animal Ca2+ channel subunits and a class of prokaryotic chemotaxis receptors. Trends in Biochemical Sciences 25:535-537.
  34. Binnenkade, L. 2010. Characterization of an atypical Arc two-component regulatory system in Shewanella oneidensis MR-1: a bacterial two-hybrid analysis. 21. Borneman, A. R., T. A. Gianoulis, Z. D. Zhang, H. Yu, J. Rozowsky, M. R. Seringhaus, L.
  35. Fischer, C., C. Geourjon, C. Bourson, and J. Deutscher. 1996. Cloning and characterization of the Bacillus subtilis prkA gene encoding a novel serine protein kinase. Gene 168:55-60. 61. Flemming, H. C., and J. Wingender. 2010. The biofilm matrix. Nat Rev Microbiol 8:623-33. 62.
  36. Rhodius, V. A., W. C. Suh, G. Nonaka, J. West, and C. A. Gross. 2006. Conserved and variable functions of the sigma(E) stress response in related genomes. Plos Biology 4:43-59. 192. Rodionov, D. A. 2007. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chemical Reviews 107:3467-3497.
  37. Fass, E., and E. A. Groisman. 2009. Control of Salmonella pathogenicity island-2 gene expression. Curr Opin Microbiol 12:199-204.
  38. Botsford, J. L., and J. G. Harman. 1992. Cyclic-Amp in Prokaryotes. Microbiological Reviews 56:100-122.
  39. Romling, U., and D. Amikam. 2006. Cyclic di-GMP as a second messenger. Current Opinion in Microbiology 9:218-228.
  40. Beavo, J. A., and L. L. Brunton. 2002. Cyclic nucleotide research -still expanding after half a century. Nature Reviews Molecular Cell Biology 3:710-718.
  41. Unden, G. 1988. Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of E. coli and their fnr-independent expression. Arch Microbiol 150:499-503. Quellen 133
  42. Gescher, J. S., C. D. Cordova, and A. M. Spormann. 2008. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. Molecular Microbiology 68:706-719.
  43. Y. Wang, M. Gerstein, and M. Snyder. 2007. Divergence of transcription factor binding sites across related yeast species. Science 317:815-9.
  44. Drury, L. S., and R. S. Buxton. 1985. DNA sequence analysis of the dye gene of Escherichia coli reveals amino acid homology between the dye and OmpR proteins. J Biol Chem 260:4236- 42.
  45. Babu, M. M., S. A. Teichmann, and L. Aravind. 2006. Evolutionary dynamics of prokaryotic transcriptional regulatory networks. Journal of Molecular Biology 358:614-633.
  46. Dermitzakis, E. T., and A. G. Clark. 2002. Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol 19:1114-21. 51. Disabato, G., and W. P. Jencks. 1961. Mechanism and Catalysis of Reactionsof Acyl Phosphates .2. Hydrolysis. Journal of the American Chemical Society 83:4400-&.
  47. Hsing, W., and T. J. Silhavy. 1997. Function of conserved histidine-243 in phosphatase activity of EnvZ, the sensor for porin osmoregulation in Escherichia coli. J Bacteriol 179:3729-35.
  48. Abel, T., and T. Maniatis. 1989. Gene regulation. Action of leucine zippers. Nature 341:24-5.
  49. Nealson, and C. M. Fraser. 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nature Biotechnology 20:1118-1123.
  50. J. Rose, B. Mau, S. Zhou, D. C. Schwartz, J. D. Fetherston, L. E. Lindler, R. R. Brubaker, G. V. Plano, S. C. Straley, K. A. McDonough, M. L. Nilles, J. S. Matson, F. R. Blattner, and R. D. Perry. 2002. Genome sequence of Yersinia pestis KIM. J Bacteriol 184:4601-11. 48.
  51. Salmon, K., S. P. Hung, K. Mekjian, P. Baldi, G. W. Hatfield, and R. P. Gunsalus. 2003. Global gene expression profiling in Escherichia coli K12 -The effects of oxygen availability and FNR. Journal of Biological Chemistry 278:29837-29855.
  52. Price, M. N., P. S. Dehal, and A. P. Arkin. 2008. Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli. Genome Biol 9:R4. 186.
  53. Smith, T. F., and M. S. Waterman. 1981. Identification of common molecular subsequences. J Mol Biol 147:195-7.
  54. Bouhenni, R., A. Gehrke, and D. Saffarini. 2005. Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon. Applied and Environmental Microbiology 71:4935-4937.
  55. Thormann, K. M., R. M. Saville, S. Shukla, and A. M. Spormann. 2005. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 187:1014-21. 224. Tuch, B. B., D. J. Galgoczy, A. D. Hernday, H. Li, and A. D. Johnson. 2008. The evolution of combinatorial gene regulation in fungi. PLoS Biol 6:e38. 225. Ulrich, L. E., E. V. Koonin, and I. B. Zhulin. 2005. One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52-6.
  56. Thormann, K. M., R. M. Saville, S. Shukla, D. A. Pelletier, and A. M. Spormann. 2004. Initial Phases of biofilm formation in Shewanella oneidensis MR-1. J Bacteriol 186:8096-104.
  57. Burbulys, D., K. A. Trach, and J. A. Hoch. 1991. Initiation of Sporulation in Bacillus subtilis Is Controlled by a Multicomponent Phosphorelay. Cell 64:545-552.
  58. Deretic, V., J. H. Leveau, C. D. Mohr, and N. S. Hibler. 1992. In vitro phosphorylation of AlgR, a regulator of mucoidy in Pseudomonas aeruginosa, by a histidine protein kinase and effects of small phospho-donor molecules. Mol Microbiol 6:2761-7.
  59. Georgellis, D., A. S. Lynch, and E. C. Lin. 1997. In vitro phosphorylation study of the arc two- component signal transduction system of Escherichia coli. J Bacteriol 179:5429-35.
  60. Wielinga, B., M. M. Mizuba, C. M. Hansel, and S. Fendorf. 2001. Iron promoted reduction of chromate by dissimilatory iron-deducing bacteria. Environmental Science & Technology 35:522-527.
  61. Wang, F., P. Wang, M. Chen, and X. Xiao. 2004. Isolation of extremophiles with the detection and retrieval of Shewanella strains in deep-sea sediments from the west Pacific. Extremophiles 8:165-8.
  62. Coleman, M., R. Pearce, E. Hitchin, F. Busfield, J. W. Mansfield, and I. S. Roberts. 1990. Molecular cloning, expression and nucleotide sequence of the rcsA gene of Erwinia amylovora, encoding a positive regulator of capsule expression: evidence for a family of related capsule activator proteins. J Gen Microbiol 136:1799-806.
  63. Guest, J. R., and D. J. Shaw. 1981. Molecular cloning of menaquinone biosynthetic genes of Escherichia coli K12. Mol Gen Genet 181:379-83.
  64. Wuichet, K., and I. B. Zhulin. 2003. Molecular evolution of sensory domains in cyanobacterial chemoreceptors. Trends in Microbiology 11:200-203.
  65. Beliaev, A. S., D. A. Saffarini, J. L. McLaughlin, and D. Hunnicutt. 2001. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR- 1. Molecular Microbiology 39:722-730.
  66. Alon, U. 2007. Network motifs: theory and experimental approaches. Nature Reviews Genetics 8:450-461.
  67. Balch, W. E., and R. S. Wolfe. 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol 32:781-91.
  68. Stewart, V. 2003. Nitrate-and nitrite-responsive sensors NarX and NarQ of proteobacteria. Biochemical Society Transactions 31:1-10.
  69. Woese, C. R. 2002. On the evolution of cells. Proc Natl Acad Sci U S A 99:8742-7. 240.
  70. Ponting, C. P., and L. Aravind. 1997. PAS: a multifunctional domain family comes to light. Curr Biol 7:R674-7. 184. Pospiech, A., and B. Neumann. 1995. A versatile quick-prep of genomic DNA from gram- positive bacteria. Trends Genet 11:217-8.
  71. Zhulin, I. B., B. L. Taylor, and R. Dixon. 1997. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci 22:331-3.
  72. Hess, J. F., K. Oosawa, N. Kaplan, and M. I. Simon. 1988. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53:79-87.
  73. Brettar, I., E. R. Moore, and M. G. Hofle. 2001. Phylogeny and Abundance of Novel Denitrifying Bacteria Isolated from the Water Column of the Central Baltic Sea. Microb Ecol 42:295-305. 28. Buckland, R., and F. Wild. 1989. Leucine zipper motif extends. Nature 338:547. 29.
  74. Venkateswaran, K., D. P. Moser, M. E. Dollhopf, D. P. Lies, D. A. Saffarini, B. J. MacGregor, D. B. Ringelberg, D. C. White, M. Nishijima, H. Sano, J. Burghardt, E. Stackebrandt, and K. H. Nealson. 1999. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49 Pt 2:705-24. 229. Venkateswaran, K., D. P. Moser, M. E. Dollhopf, D. P. Lies, D. A. Saffarini, B. J. MacGregor, D. B. Ringelberg, D. C. White, M. Nishijima, H. Sano, J. Burghardt, E. Stackebrandt, and K. H. Nealson. 1999. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. International Journal of Systematic Bacteriology 49:705-724.
  75. Wright, G. D., T. R. Holman, and C. T. Walsh. 1993. Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 32:5057-63.
  76. Georgellis, D., O. Kwon, and E. C. C. Lin. 2001. Quinones as the redox signal for the Arc two- component system of bacteria. Science 292:2314-2316.
  77. Farrenkopf, A. M., M. E. Dollhopf, S. NiChadhain, G. W. Luther, and K. H. Nealson. 1997. Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR-4. Marine Chemistry 57:347-354.
  78. Hurley, J. H., A. M. Dean, J. L. Sohl, D. E. Koshland, Jr., and R. M. Stroud. 1990. Regulation of an enzyme by phosphorylation at the active site. Science 249:1012-6. 89.
  79. Gottesman, S., P. Trisler, and A. Torrescabassa. 1985. Regulation of capsular polysaccharide synthesis in Escherichia coli K-12 -Characterization of 3 regulatory genes. Journal of Bacteriology 162:1111-1119.
  80. Silverman, P. M., E. Wickersham, and R. Harris. 1991. Regulation of the F-Plasmid Tray promoter in Escherichia coli by host and plasmid factors. Journal of Molecular Biology 218:119-128.
  81. Dorman, C. J. 2009. Regulatory integration of horizontally-transferred genes in bacteria. Front Biosci 14:4103-12.
  82. Davila. 1997. Sequence, localization and characteristics of the replicator region of the symbiotic plasmid of Rhizobium etli. Microbiology 143 ( Pt 8):2825-31.
  83. Venkateswaran, K., M. E. Dollhopf, R. Aller, E. Stackebrandt, and K. H. Nealson. 1998. Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 48 Pt 3:965-72.
  84. Gao, H., A. Obraztova, N. Stewart, R. Popa, J. K. Fredrickson, J. M. Tiedje, K. H. Nealson, and J. Zhou. 2006. Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int J Syst Evol Microbiol 56:1911-6.
  85. Zhao, J. S., D. Manno, C. Beaulieu, L. Paquet, and J. Hawari. 2005. Shewanella sediminis sp nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-trinitro-degrading bacterium from marine sediment. International Journal of Systematic and Evolutionary Microbiology 55:1511- 1520.
  86. Forst, S. A., and D. L. Roberts. 1994. Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. Res Microbiol 145:363-73.
  87. Stock, J. B., A. M. Stock, and J. M. Mottonen. 1990. Signal Transduction in Bacteria. Nature 344:395-400.
  88. Aiyar, A., Y. Xiang, and J. Leis. 1996. Site-directed mutagenesis using overlap extension PCR. Methods Mol Biol 57:177-91.
  89. Campbell, N. A., and R. J. B. 2003. Biologie, vol. 6. Spektrum Akademischer Verlag. 33. Carpentier, W., K. Sandra, I. De Smet, A. Brige, L. De Smet, and J. Van Beeumen. 2003. Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Applied and Environmental Microbiology 69:3636-3639.
  90. Piggot, P. J., and D. W. Hilbert. 2004. Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579-86.
  91. Zhang, Z., and W. A. Hendrickson. 2010. Structural characterization of the predominant family of histidine kinase sensor domains. J Mol Biol 400:335-53.
  92. Stewart, V., J. Parales, and S. M. Merkel. 1989. Structure of Genes Narl and Narx of the Nar (Nitrate Reductase) Locus in Escherichia coli K-12. Journal of Bacteriology 171:2229-2234. 213. Stock, A. M., V. L. Robinson, and P. N. Goudreau. 2000. Two-component signal transduction. Annual Review of Biochemistry 69:183-215.
  93. Ashby, M. K. 2004. Survey of the number of two-component response regulator genes in the complete and annotated genome sequences of prokaryotes. Fems Microbiology Letters 231:277- 281.
  94. Baumann, L., P. Baumann, R. D. Allen, and M. Mandel. 1972. Taxonomy of Aerobic Marine Eubacteria. Journal of Bacteriology 110:402-408.
  95. Theunissen, S., B. Vergauwen, L. De Smet, J. Van Beeumen, P. Van Gelder, and S. N. Savvides. 2009. The agglutination protein AggA from Shewanella oneidensis MR-1 is a TolC- like protein and forms active channels in vitro. Biochem Biophys Res Commun 386:380-5. 221. Thormann, K. M., S. Duttler, R. M. Saville, M. Hyodo, S. Shukla, Y. Hayakawa, and A. M. Spormann. 2006. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 188:2681-91.
  96. Saltikov, C. W., A. Cifuentes, K. Venkateswaran, and D. K. Newman. 2003. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ Microbiol 69:2800-9.
  97. Castanie-Cornet, M. P., H. Treffandier, A. Francez-Charlot, C. Gutierrez, and K. Cam. 2007. The glutamate-dependent acid resistance system in Escherichia coli: essential and dual role of the His-Asp phosphorelay RcsCDB/AF. Microbiology 153:238-46.
  98. Yaku, H., and T. Mizuno. 1997. The membrane-located osmosensory kinase, EnvZ, that contains a leucine zipper-like motif functions as a dimer in Escherichia coli. Febs Letters 417:409-413.
  99. Fredrickson, J. K., M. F. Romine, A. S. Beliaev, J. M. Auchtung, M. E. Driscoll, T. S. Gardner, K. H. Nealson, A. L. Osterman, G. Pinchuk, J. L. Reed, D. A. Rodionov, J. L. M. Rodrigues, D. A. Saffarini, M. H. Serres, A. M. Spormann, I. B. Zhulin, and J. M. Tiedje. 2008. Towards environmental systems biology of Shewanella. Nature Reviews Microbiology 6:592-603.
  100. Core, L., and M. Perego. 2003. TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis. Mol Microbiol 49:1509-22.
  101. Winfield, M. D., T. Latifi, and E. A. Groisman. 2005. Transcriptional regulation of the 4- amino-4-deoxy-L-arabinose biosynthetic genes in Yersinia pestis. Journal of Biological Chemistry 280:14765-14772.
  102. Tanford, C. 1984. Twenty questions concerning the reaction cycle of the sarcoplasmic reticulum calcium pump. CRC Crit Rev Biochem 17:123-51.
  103. Stock, J. B., M. G. Surette, M. Levit, and P. Park. 1995. Two component Signal Transduction Systems: Structure-Function Relationships and Mechanisms of Catalysis. . ASM press, Washington D.C.
  104. Zhao, J. S., D. Manno, C. Leggiadro, D. O'Neil, and J. Hawari. 2006. Shewanella halifaxensis sp. nov., a novel obligately respiratory and denitrifying psychrophile. Int J Syst Evol Microbiol 56:205-12.
  105. Brandon, L., S. Dorus, W. Epstein, K. Altendorf, and K. Jung. 2000. Modulation of KdpD phosphatase implicated in the physiological expression of the kdp ATPase of Escherichia coli. Mol Microbiol 38:1086-92.
  106. Allen, P., C. A. Hart, and J. R. Saunders. 1987. Isolation from Klebsiella and characterization of two rcs genes that activate colanic acid capsular biosynthesis in Escherichia coli. J Gen Microbiol 133:331-40.
  107. Hau, H. H., and J. A. Gralnick. 2007. Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237-58.
  108. Gao, H., X. Wang, Z. K. Yang, T. Palzkill, and J. Zhou. 2008. Probing regulon of ArcA in Shewanella oneidensis MR-1 by integrated genomic analyses. BMC Genomics 9:42.
  109. Hengge, R. 2009. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263-73.
  110. Beliaev, A. S., and D. A. Saffarini. 1998. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. Journal of Bacteriology 180:6292- 6297.
  111. McKinley, and J. K. Fredrickson. 2000. Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens. Applied and Environmental Microbiology 66:2451-2460.
  112. Schmidt, A. J., D. A. Ryjenkov, and M. Gomelsky. 2005. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: Enzymatically active and inactive EAL domains. Journal of Bacteriology 187:4774-4781.
  113. Beliaev, A. S., D. K. Thompson, M. W. Fields, L. Y. Wu, D. P. Lies, K. H. Nealson, and J. Z. Zhou. 2002. Microarray transcription profiling of a Shewanella oneidensis etrA mutant. Journal of Bacteriology 184:4612-4616.
  114. Delong, E. F., D. G. Franks, and A. A. Yayanos. 1997. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105-8. 47.
  115. Welch, R. A., V. Burland, G. Plunkett, 3rd, P. Redford, P. Roesch, D. Rasko, E. L. Buckles, S. R. Liou, A. Boutin, J. Hackett, D. Stroud, G. F. Mayhew, D. J. Rose, S. Zhou, D. C. Schwartz, N. T. Perna, H. L. Mobley, M. S. Donnenberg, and F. R. Blattner. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99:17020-4.
  116. Zhulin, I. B., A. N. Nikolskaya, and M. Y. Galperin. 2003. Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in Bacteria and Archaea. Journal of Bacteriology 185:285-294.
  117. Ryan, R. P., Y. Fouhy, J. F. Lucey, L. C. Crossman, S. Spiro, Y. W. He, L. H. Zhang, S. Heeb, M. Camara, P. Williams, and J. M. Dow. 2006. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proceedings of the National Academy of Sciences of the United States of America 103:6712- 6717.
  118. Serres, M. H., and M. Riley. 2006. Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: Predictions versus experiments. Journal of Bacteriology 188:4601-4609.
  119. Saffarini, D. A., R. Schultz, and A. Beliaev. 2003. Involvement of cyclic AMP (CAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. Journal of Bacteriology 185:3668-3671.
  120. Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith. 1995. Tight Regulation, Modulation, and High-Level Expression by Vectors Containing the Arabinose P-Bad Promoter. Journal of Bacteriology 177:4121-4130.
  121. Virlogeux, I., H. Waxin, C. Ecobichon, J. O. Lee, and M. Y. Popoff. 1996. Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsB through tviA is involved in regulation of Vi antigen synthesis. J Bacteriol 178:1691-8.
  122. Cruz-Garcia, C., A. E. Murray, J. A. Klappenbach, V. Stewart, and J. M. Tiedje. 2007. Respiratory nitrate ammonification by Shewanella oneidensis MR-1. Journal of Bacteriology 189:656-662.
  123. Doniger, S. W., and J. C. Fay. 2007. Frequent gain and loss of functional transcription factor binding sites. PLoS Comput Biol 3:e99. 54.
  124. Price, M. N., P. S. Dehal, and A. P. Arkin. 2007. Orthologous transcription factors in bacteria have different functions and regulate different genes. Plos Computational Biology 3:1739-1750.
  125. Sengupta, N., K. Paul, and R. Chowdhury. 2003. The global regulator ArcA modulates expression of virulence factors in Vibrio cholerae. Infect Immun 71:5583-9.
  126. Roggiani, M., and D. Dubnau. 1993. ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA. J Bacteriol 175:3182-7. 194.
  127. Dailey, F. E., and H. C. Berg. 1993. Change in direction of flagellar rotation in Escherichia coli mediated by acetate kinase. J Bacteriol 175:3236-9.
  128. Sawers, G., and B. Suppmann. 1992. Anaerobic Induction of Pyruvate Formate-Lyase Gene- Expression Is Mediated by the ArcA and Fnr Proteins. Journal of Bacteriology 174:3474-3478.
  129. Dong, J. M., J. S. Taylor, D. J. Latour, S. Iuchi, and E. C. Lin. 1993. Three overlapping lct genes involved in L-lactate utilization by Escherichia coli. J Bacteriol 175:6671-8.
  130. Silverman, P. M., S. Rother, and H. Gaudin. 1991. Arc and Sfr functions of the Escherichia coli K-12 arcA gene-product are genetically and physiologically separable. Journal of Bacteriology 173:5648-5652.
  131. Wolfe, A. J., and K. L. Visick. 2008. Get the message out: cyclic-Di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol 190:463-75.
  132. Pinchuk, G. E., D. A. Rodionov, C. Yang, X. Q. Li, A. L. Osterman, E. Dervyn, O. V. Geydebrekht, S. B. Reed, M. F. Romine, F. R. Collart, J. H. Scott, J. K. Fredrickson, and A. S. Beliaev. 2009. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proceedings of the National Academy of Sciences of the United States of America 106:2874-2879.
  133. Ashby, M. K. 2006. Distribution, structure and diversity of "bacterial" genes encoding two- component proteins in the Euryarchaeota. Archaea 2:11-30.
  134. Boukhalfa, H., G. A. Icopini, S. D. Reilly, and M. P. Neu. 2007. Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. Applied and Environmental Microbiology 73:5897-5903.
  135. Charania, M. A., K. L. Brockman, Y. Zhang, A. Banerjee, G. E. Pinchuk, J. K. Fredrickson, A. S. Beliaev, and D. A. Saffarini. 2009. Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1. J Bacteriol 191:4298-306.
  136. Camilli, A., and B. L. Bassler. 2006. Bacterial small-molecule signaling pathways. Science 311:1113-1116.
  137. Tamayo, R., J. T. Pratt, and A. Camilli. 2007. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131-48.
  138. Bekker, M., S. Alexeeva, W. Laan, G. Sawers, J. T. de Mattos, and K. Hellingwerf. 2010. The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the Ubiquinone and the Menaquinone pool. Journal of Bacteriology 192:746-754.
  139. Weiss, V., and B. Magasanik. 1988. Phosphorylation of nitrogen regulator I (NRI) of Escherichia coli. Proc Natl Acad Sci U S A 85:8919-23.
  140. Shroff, N. P., M. A. Charania, and D. A. Saffarini. 2010. ArcB1, a homolog of Escherichia coli ArcB, regulates dimethyl sulfoxide reduction in Shewanella oneidensis MR-1. J Bacteriol 192:3227-30.
  141. Wuichet, K., B. J. Cantwell, and I. B. Zhulin. 2010. Evolution and phyletic distribution of two-component signal transduction systems. Curr Opin Microbiol 13:219-25.
  142. Rabin, R. S., L. A. Collins, and V. Stewart. 1992. In vivo requirement of integration host factor for nar (nitrate reductase) operon expression in Escherichia coli K-12. Proc Natl Acad Sci U S A 89:8701-5.
  143. Georgellis, D., O. Kwon, E. C. Lin, S. M. Wong, and B. J. Akerley. 2001. Redox signal transduction by the ArcB sensor kinase of Haemophilus influenzae lacking the PAS domain. J Bacteriol 183:7206-12.
  144. Taylor, B. L., and I. B. Zhulin. 1999. PAS domains: Internal sensors of oxygen, redox potential, and light. Microbiology and Molecular Biology Reviews 63:479-+.
  145. Hanahan, D. 1983. Studies on transformation of Escherichia coli with Plasmids. Journal of Molecular Biology 166:557-580.
  146. Skerker, J. M., B. S. Perchuk, A. Siryaporn, E. A. Lubin, O. Ashenberg, M. Goulian, and M. T. Laub. 2008. Rewiring the specificity of two-component signal transduction systems. Cell 133:1043-1054.
  147. Bignell, C., and C. M. Thomas. 2001. The bacterial ParA-ParB partitioning proteins. J Biotechnol 91:1-34.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten