Publikationsserver der Universitätsbibliothek Marburg

Titel:The Neuropeptide PACAP Mediates Stimulus-Transcription Coupling in Hypothalamic-Pituitary-Adrenocortical Axis and Sympathetic Nervous System - Implications for Acute and Chronic Stress Responses
Autor:Stroth, Nikolas
Weitere Beteiligte: Weihe, Eberhard (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0010
DOI: https://doi.org/10.17192/z2011.0010
URN: urn:nbn:de:hebis:04-z2011-00101
DDC: Naturwissenschaften
Titel (trans.):Das Neuropeptid PACAP vermittelt Stimulus-Transkriptions-Kopplung in Hypothalamus-Hypophysen-Nebennierenrinden-Achse und Sympathischem Nervensystem - Implikationen für Akute und Chronische Stressreaktionen
Publikationsdatum:2011-01-20
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Neuroendokrines System, Transkriptionsfaktor, Sympathetic Nervous System, PACAP, Neuropeptide, Corticoliberin, Stress, Stressreaktion, Neuropeptide, Sympathikus, PACAP, Stress, HPA axis
Referenziert von:

Summary:
Stress is a vital response of all organisms to the demands of life. By adjusting to stimuli from the outside world, and stimuli arising from its internal organs, the body is continually at work to ensure its proper function under a widely variable range of conditions. Thus, acute and adequate responses to such stimuli (stressors) are essential. However, when these responses are either insufficient or excessive, the well-being of the organism is at risk. Furthermore, if stress becomes chronic and the cost of continual adjustment rises, a plethora of illnesses can result. This phenomenon has grown into epidemic proportions, particularly in Western societies, with the physical and mental health of millions severely affected. Despite much research, the mechanisms underlying responses to stressors are still incompletely understood. Our experiments show that the neuropeptide PACAP is required for normal responses to acute stressor exposure. Expanding previous results from our laboratory, evidence is provided for PACAP-dependent regulation of the catecholaminergic system in the adrenal medulla during responses of the ANS. By inducing the expression of enzymes required for epinephrine biosynthesis (tyrosine hydroxylase, phenylethanolamine N-methyltransferase), as well as neuropeptides involved in modulation of adrenal secretory activity (galanin, Tac1, VIP), PACAP appears to provide a mechanism for plasticity during periods of high demand. Our data suggest that this PACAP-dependent stimulus-transcription coupling may proceed via stressor-specific mechanisms, as the induction of a number of transcription factors which are putatively responsible for the regulation of enzymes and neuropeptides (e.g. Egr1, Fos, Nur77) is PACAP-dependent in response to restraint, but not hypoglycemia. Furthermore, PACAP controls upregulation of transcripts encoding potential cytoprotectants (Ier3, Stc1) in the adrenal glands, in response to hypoglycemia and restraint. Most importantly, our present work is the first to show that the endogenous PACAPergic system is required for activation of the HPA axis in response to stressor exposure. This appears to be mediated at the central level, via PACAP-dependent stimulation of hypophysiotropic neurons, as restraint-induced upregulation of CRH mRNA in the PVN is completely abolished in PACAP-deficient mice. Consequently, restraint-induced secretion of ACTH and corticosterone is blunted, particularly when stressor exposure is prolonged, while serum concentrations of both hormones in untreated mice are equivalent to those in wild-types. These PACAP-dependent effects seem to involve PACAP-dependent stimulus-transcription coupling throughout the HPA axis, and possibly rely on inducible transcription factors from the Nr4a family of orphan nuclear receptors. Thus, rapid regulation of Nur77 (Nr4a1), Nurr1 (Nr4a2) and Nor1 (Nr4a3) in the PVN, pituitary gland and adrenal cortex occurs in a PACAP-dependent pattern. The fact that stressor-induced upregulation of transcripts encoding steroidogenic acute regulatory protein (StAR) and steroidogenic factor 1 (SF-1) is significantly attenuated in adrenal glands from PACAP-deficient mice provides a link between PACAP-dependent central control of the HPA axis and peripheral corticosterone production. Beyond the acute regulation of responses to stressor exposure, our results have implications for the understanding, and potentially the treatment, of disease states associated with chronic stress. In this regard, a crucial finding from the present work concerns stressor-induced corticosterone secretion. The initial phase is largely intact in PACAP-deficient animals, while more sustained secretion during prolonged stressor exposure becomes increasingly blunted. This suggests that chronic hypersecretion of glucocorticoids, such as during certain psychiatric illnesses, could be targeted by blockade of the PACAPergic system, without compromising acute HPA responses that are necessary for survival and health. As mentioned, our experiments suggest that PACAP is a central regulator of the HPA axis, controlling activation in response to stressors at the level of the hypothalamic PVN. Future work will address the exact signaling mechanisms employed during PACAP-dependent stress responses, in order to reveal potential avenues for therapeutic intervention. To further clarify the involvement of this neuropeptide in chronic stress-related diseases, the PACAP-deficient mouse model will continue to be used as a valuable tool in experiments concerning the behavioral, physiological, cellular and molecular mechanisms of stress.

Bibliographie / References

  1. Kiss, J. Z., Martos, J., and Palkovits, M. (1991). Hypothalamic paraventricular nucleus: a quantitative analysis of cytoarchitectonic subdivisions in the rat. J Comp Neurol 313, 563-573.
  2. Selye, H. (1936a). A Syndrome produced by Diverse Nocuous Agents. Nature 138, 32.
  3. Yao, M., and Denver, R. J. (2007). Regulation of vertebrate corticotropin-releasing factor genes. Gen Comp Endocrinol 153, 200-216.
  4. Murphy, E. P., and Conneely, O. M. (1997). Neuroendocrine regulation of the hypothalamic pituitary adrenal axis by the nurr1/nur77 subfamily of nuclear receptors. Molecular Endocrinology 11, 39-47.
  5. Sakurada, K., Ohshima-Sakurada, M., Palmer, T. D., and Gage, F. H. (1999). Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126, 4017-4026.
  6. Swanson, L. W., and Kuypers, H. G. (1980). The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194, 555-570.
  7. McCulloch, D. A., Lutz, E. M., Johnson, M. S., MacKenzie, C. J., and Mitchell, R. (2000). Differential activation of phospholipase D by VPAC and PAC1 receptors. Ann N Y Acad Sci 921, 175-185.
  8. Differential intracellular signaling through PAC1 isoforms as a result of alternative splicing in the first extracellular domain and the third intracellular loop. Mol Pharmacol 72, 103-111.
  9. Sapolsky, R. M., Romero, L. M., and Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21, 55-89.
  10. Stowasser, M., Gordon, R. D., Rutherford, J. C., Nikwan, N. Z., Daunt, N., and Slater, G. J. (2001). Diagnosis and management of primary aldosteronism. J Renin Angiotensin Aldosterone Syst 2, 156-169.
  11. Siegmund, A., and Wotjak, C. T. (2006). Toward an animal model of posttraumatic stress disorder. Ann N Y Acad Sci 1071, 324-334.
  12. Muller, M. B., Uhr, M., Holsboer, F., and Keck, M. E. (2004). Hypothalamic-pituitary-adrenocortical system and mood disorders: highlights from mutant mice. Neuroendocrinology 79, 1-12.
  13. Sewer, M. B., and Waterman, M. R. (2003). ACTH modulation of transcription factors responsible for steroid hydroxylase gene expression in the adrenal cortex. Microsc Res Tech 61, 300-307.
  14. Vollmer, R. R., Balcita-Pedicino, J. J., Debnam, A. J., and Edwards, D. J. (2000). Adrenal medullary catecholamine secretion patterns in rats evoked by reflex and direct neural stimulation. Clin Exp Hypertens 22, 705-715.
  15. Whitworth, E. J., Kosti, O., Renshaw, D., and Hinson, J. P. (2003). Adrenal neuropeptides: Regulation and interaction with ACTH and other adrenal regulators. Microscopy Research and Technique 61, 259-267.
  16. Ulrich-Lai, Y. M., and Engeland, W. C. (2002). Adrenal splanchnic innervation modulates adrenal cortical responses to dehydration stress in rats. Neuroendocrinology 76, 79-92.
  17. Wong, D. L., Tai, T. C., Wong-Faull, D. C., Claycomb, R., and Kvetnansky, R. (2008). Adrenergic responses to stress: transcriptional and post-transcriptional changes. Ann N Y Acad Sci 1148, 249-256.
  18. Sweat, M. L. (1955). Adrenocorticosteroids in peripheral and adrenal venous blood of man. J Clin Endocrinol Metab 15, 1043-1056.
  19. Nicot, A., Otto, T., Brabet, P., and Dicicco-Bloom, E. M. (2004). Altered social behavior in pituitary adenylate cyclase- activating polypeptide type I receptor-deficient mice. J Neurosci 24, 8786-8795.
  20. Wang, X., and Seed, B. (2003). A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res 31, e154.
  21. Ishiguro, H., Ohtsuki, T., Okubo, Y., Kurumaji, A., and Arinami, T. (2001). Association analysis of the pituitary adenyl cyclase activating peptide gene (PACAP) on chromosome 18p11 with schizophrenia and bipolar disorders. J Neural Transm 108, 849-854.
  22. Murakami, T., Oukouchi, H., Uno, Y., Ohtsuka, A., and Taguchi, T. (1989). Blood vascular beds of rat adrenal and accessory adrenal glands, with special reference to the corticomedullary portal system: a further scanning electron microscopic study of corrosion casts and tissue specimens. Arch Histol Cytol 52, 461-476.
  23. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24, 151-180.
  24. Wong, D. L., Anderson, L. J., and Tai, T. C. (2002). Cholinergic and peptidergic regulation of phenylethanolamine N- methyltransferase gene expression. Ann N Y Acad Sci 971, 19-26.
  25. Umemoto, S., Kawai, Y., Ueyama, T., and Senba, E. (1997). Chronic glucocorticoid administration as well as repeated stress affects the subsequent acute immobilization stress-induced expression of immediate early genes but not that of NGFI-A. Neuroscience 80, 763-773.
  26. Yamamoto, K., Hashimoto, H., Hagihara, N., Nishino, A., Fujita, T., Matsuda, T., and Baba, A. (1998). Cloning and characterization of the mouse pituitary adenylate cyclase-activating polypeptide (PACAP) gene. Gene 211, 63-69.
  27. Rhee, S. G., Yang, K. S., Kang, S. W., Woo, H. A., and Chang, T. S. (2005). Controlled elimination of intracellular H2O2: Regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification.
  28. Wurtman, R. J. (1966). Control of epinephrine synthesis in the adrenal medulla by the adrenal cortex: hormonal specificity and dose-response characteristics. Endocrinology 79, 608-614.
  29. Keller-Wood, M. E., and Dallman, M. F. (1984). Corticosteroid inhibition of ACTH secretion. Endocr Rev 5, 1-24.
  30. Ravni, A., Eiden, L. E., Vaudry, H., Gonzalez, B. J., and Vaudry, D. (2006). Cycloheximide treatment to identify components of the transitional transcriptome in PACAP-induced PC12 cell differentiation. J Neurochem 98, 1229-1241.
  31. Vigh, S., Arimura, A., Gottschall, P. E., Kitada, C., Somogyvari-Vigh, A., and Childs, G. V. (1993). Cytochemical characterization of anterior pituitary target cells for the neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP), using biotinylated ligands. Peptides 14, 59-65.
  32. Schiltz, J. C., Hoffman, G. E., Stricker, E. M., and Sved, A. F. (1997). Decreases in arterial pressure activate oxytocin neurons in conscious rats. Am J Physiol 273, R1474-1483.
  33. Shintani, N., Mori, W., Hashimoto, H., Imai, M., Tanaka, K., Tomimoto, S., Hirose, M., Kawaguchi, C., and Baba, A. (2002). Defects in reproductive functions in PACAP-deficient female mice. Regul Pept 109, 45-48.
  34. Impey, S., McCorkle, S. R., Cha-Molstad, H., Dwyer, J. M., Yochum, G. S., Boss, J. M., McWeeney, S., Dunn, J. J., Mandel, G., and Goodman, R. H. (2004). Defining the CREB regulon: A genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041-1054.
  35. Hashimoto, H., Hashimoto, R., Shintani, N., Tanaka, K., Yamamoto, A., Hatanaka, M., Guo, X., Morita, Y., Tanida, M., Nagai, K., et al. (2009). Depression-like behavior in the forced swimming test in PACAP-deficient mice: amelioration by the atypical antipsychotic risperidone. J Neurochem 110, 595-602.
  36. Hirsch, E., and Reinbach, H. (1913). Die Fesselungshyperglykämie und Fesselungsglykosurie des Kaninchens. Hoppe- Seylers Zeitschrift für physiologische Chemie 87, 122–141.
  37. Imaki, T., Shibasaki, T., Chikada, N., Harada, S., Naruse, M., and Demura, H. (1996). Different expression of immediate-early genes in the rat paraventricular nucleus induced by stress: relation to corticotropin-releasing factor gene transcription. Endocr J 43, 629-638.
  38. Umemoto, S., Kawai, Y., and Senba, E. (1994). Differential regulation of IEGs in the rat PVH in single and repeated stress models. Neuroreport 6, 201-204.
  39. Moncek, F., Kvetnansky, R., and Jezova, D. (2001). Differential responses to stress stimuli of Lewis and Fischer rats at the pituitary and adrenocortical level. Endocr Regul 35, 35-41.
  40. Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P. H., and Journot, L. (1993). Differential signal transduction by five splice variants of the PACAP receptor. Nature 365, 170-175.
  41. Shen, L., Guo, J., Santos-Berrios, C., and Wu, M. X. (2006). Distinct domains for anti-and pro-apoptotic activities of IEX-1. J Biol Chem 281, 15304-15311.
  42. Singewald, N., Schneider, C., and Philippu, A. (1993). Effects of blood pressure changes on the catecholamine release in the locus coeruleus of cats anaesthetized with pentobarbital or chloralose. Naunyn Schmiedebergs Arch Pharmacol 348, 242-248.
  43. Ishihama, T., Ago, Y., Shintani, N., Hashimoto, H., Baba, A., Takuma, K., and Matsuda, T. (2010). Environmental factors during early developmental period influence psychobehavioral abnormalities in adult PACAP-deficient mice. Behav Brain Res 209, 274-280.
  44. Miller, M. M., and McEwen, B. S. (2006). Establishing an agenda for translational research on PTSD. Ann N Y Acad Sci 1071, 294-312.
  45. Moller, K., and Sundler, F. (1996). Expression of pituitary adenylate cyclase activating peptide (PACAP) and PACAP type I receptors in the rat adrenal medulla. Regul Pept 63, 129-139.
  46. Genomic organization and chromosomal localization of the mouse pituitary adenylate cyclase activating polypeptide (PACAP) gene. Vip, Pacap, Glucagon, and Related Peptides 921, 344-348.
  47. Wong, D. L., Lesage, A., Siddall, B., and Funder, J. W. (1992). Glucocorticoid regulation of phenylethanolamine N- methyltransferase in vivo. Faseb J 6, 3310-3315.
  48. Moley, K. H., and Mueckler, M. M. (2000). Glucose transport and apoptosis. Apoptosis 5, 99-105.
  49. Herman, J. P., and Seroogy, K. (2006). Hypothalamic-pituitary-adrenal axis, glucocorticoids, and neurologic disease. Neurol Clin 24, 461-481, vi.
  50. Holgert, H., Dagerlind, A., and Hokfelt, T. (1998). Immunohistochemical characterization of the peptidergic innervation of the rat adrenal gland. Horm Metab Res 30, 315-322.
  51. Shiotani, Y., Kimura, S., Ohshige, Y., Yanaihara, C., and Yanaihara, N. (1995). Immunohistochemical localization of pituitary adenylate cyclase-activating polypeptide (PACAP) in the adrenal medulla of the rat. Peptides 16, 1045-1050.
  52. Increase in rat adrenal phenylethanolamine N-methyltransferase mRNA level caused by immobilization stress depends on intact pituitary-adrenocortical axis. J Neurochem 63, 808-814.
  53. Honkaniemi, J., Kononen, J., Kainu, T., Pyykonen, I., and Pelto-Huikko, M. (1994). Induction of multiple immediate early genes in rat hypothalamic paraventricular nucleus after stress. Brain Res Mol Brain Res 25, 234-241.
  54. Sabban, E. L., and Serova, L. I. (2007). Influence of prior experience with homotypic or heterotypic stressor on stress reactivity in catecholaminergic systems. Stress 10, 137-143.
  55. Miyata, A., Jiang, L., Dahl, R. D., Kitada, C., Kubo, K., Fujino, M., Minamino, N., and Arimura, A. (1990). Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170, 643-648.
  56. Miyata, A., Arimura, A., Dahl, R. R., Minamino, N., Uehara, A., Jiang, L., Culler, M. D., and Coy, D. H. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164, 567-574.
  57. Morita, Y., Yanagida, D., Shintani, N., Ogita, K., Nishiyama, N., Tsuchida, R., Hashimoto, H., and Baba, A. (2006). Lack of trimethyltin (TMT)-induced elevation of plasma corticosterone in PACAP-deficient mice. Ann N Y Acad Sci 1070, 450-456.
  58. Itoi, K., Horiba, N., Tozawa, F., Sakai, Y., Sakai, K., Abe, K., Demura, H., and Suda, T. (1996). Major role of 3',5'-cyclic adenosine monophosphate-dependent protein kinase A pathway in corticotropin-releasing factor gene expression in the rat hypothalamus in vivo. Endocrinology 137, 2389-2396.
  59. Tomimoto, S., Qjika, T., Shintani, N., Hashimoto, H., Hamagami, K., Ikeda, K., Nakata, M., Yada, T., Sakurai, Y., Shimada, T., et al. (2008). Markedly reduced white adipose tissue and increased insulin sensitivity in Adcyap1-deficient mice. Journal of Pharmacological Sciences 107, 41-48.
  60. Waschek, J. A. (2002). Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Dev Neurosci 24, 14-23.
  61. Ulrich-Lai, Y. M., and Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10, 397-409.
  62. Morita, K., Bell, R. A., Siddall, B. J., and Wong, D. L. (1996). Neural stimulation of Egr-1 messenger RNA expression in rat adrenal gland: possible relation to phenylethanolamine N-methyltransferase gene regulation. J Pharmacol Exp Ther 279, 379-385.
  63. Herman, J. P., and Cullinan, W. E. (1997). Neurocircuitry of stress: central control of the hypothalamo-pituitary- adrenocortical axis. Trends Neurosci 20, 78-84.
  64. Swanson, L. W., Sawchenko, P. E., Rivier, J., and Vale, W. W. (1983). Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36, 165- 186.
  65. Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell- specific manner. J Neurochem 85, 622-634.
  66. Holgert, H., Holmberg, K., Hannibal, J., Fahrenkrug, J., Brimijoin, S., Hartman, B. K., and Hokfelt, T. (1996). PACAP in the adrenal gland--relationship with choline acetyltransferase, enkephalin and chromaffin cells and effects of immunological sympathectomy. Neuroreport 8, 297-301.
  67. Huang, Q., Legradi, G., and Arimura, A. (1996). Perfusion of the paraventricular nucleus with pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide stimulates local release of norepinephrine and its metabolite: microdialysis study in freely moving rats. Ann N Y Acad Sci 805, 737-742.
  68. Hannibal, J. (2002). Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol 453, 389-417.
  69. Hashimoto, R., Hashimoto, H., Shintani, N., Ohi, K., Hori, H., Saitoh, O., Kosuga, A., Tatsumi, M., Iwata, N., Ozaki, N., et al. (2010). Possible association between the pituitary adenylate cyclase-activating polypeptide (PACAP) gene and major depressive disorder. Neurosci Lett 468, 300-302.
  70. Tokunaga, H. (1996). Postnatal development of the blood vasculature in the rat adrenal gland: a scanning electron microscope study of microcorrosion casts. Arch Histol Cytol 59, 305-315.
  71. Wingate, A. D., and Arthur, J. S. (2006). Post-translational control of Nur77. Biochem Soc Trans 34, 1107-1109.
  72. Kovacs, K. J., Arias, C., and Sawchenko, P. E. (1998). Protein synthesis blockade differentially affects the stress- induced transcriptional activation of neuropeptide genes in parvocellular neurosecretory neurons. Brain Res Mol Brain Res 54, 85-91.
  73. Tanaka, K., Shintani, N., Hashimoto, H., Kawagishi, N., Ago, Y., Matsuda, T., Hashimoto, R., Kunugi, H., Yamamoto, A., Kawaguchi, C., et al. (2006). Psychostimulant-induced attenuation of hyperactivity and prepulse inhibition deficits in Adcyap1-deficient mice. Journal of Neuroscience 26, 5091-5097.
  74. Keegan, C. E., and Hammer, G. D. (2002). Recent insights into organogenesis of the adrenal cortex. Trends Endocrinol Metab 13, 200-208.
  75. Regulation of autonomic nerve activities by central pituitary adenylate cyclase-activating polypeptide. Regul Pept 161, 73-80.
  76. Kovacs, K. J., and Sawchenko, P. E. (1996a). Regulation of stress-induced transcriptional changes in the hypothalamic neurosecretory neurons. J Mol Neurosci 7, 125-133.
  77. Whitnall, M. H. (1993). Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 40, 573-629.
  78. McMahon, A., Kvetnansky, R., Fukuhara, K., Weise, V. K., Kopin, I. J., and Sabban, E. L. (1992). Regulation of tyrosine hydroxylase and dopamine beta-hydroxylase mRNA levels in rat adrenals by a single and repeated immobilization stress. J Neurochem 58, 2124-2130.
  79. Kikuta, A., and Murakami, T. (1984). Relationship between chromaffin cells and blood vessels in the rat adrenal medulla: a transmission electron microscopic study combined with blood vessel reconstructions. Am J Anat 170, 73-81.
  80. Koga, M., Ishiguro, H., Horiuchi, Y., Inada, T., Ujike, H., Itokawa, M., Otowa, T., Watanabe, Y., Someya, T., and Arinami, T. (2010). Replication study of association between ADCYAP1 gene polymorphisms and schizophrenia.
  81. Tai, T. C., Morita, K., and Wong, D. L. (2001). Role of Egr-1 in cAMP-dependent protein kinase regulation of the phenylethanolamine N-methyltransferase gene. J Neurochem 76, 1851-1859.
  82. Herman, J. P., Cullinan, W. E., Ziegler, D. R., and Tasker, J. G. (2002). Role of the paraventricular nucleus microenvironment in stress integration. Eur J Neurosci 16, 381-385.
  83. Wu, M. X. (2003). Roles of the stress-induced gene IEX-1 in regulation of cell death and oncogenesis. Apoptosis 8, 11- 18.
  84. Kovacs, K. J., and Sawchenko, P. E. (1996b). Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. J Neurosci 16, 262-273.
  85. Shintani, N., Hashimoto, H., Tanaka, K., Kawagishi, N., Kawaguchi, C., Hatanaka, M., Ago, Y., Matsuda, T., and Baba, A. (2006). Serotonergic inhibition of intense jumping behavior in mice lacking PACAP (Adcyap1-/-). Ann N Y Acad Sci 1070, 545-549.
  86. Haq, F., Mahoney, M., and Koropatnick, J. (2003). Signaling events for metallothionein induction. Mutat Res 533, 211- 226.
  87. Tai, T. C., Claycomb, R., Siddall, B. J., Bell, R. A., Kvetnansky, R., and Wong, D. L. (2007). Stress-induced changes in epinephrine expression in the adrenal medulla in vivo. J Neurochem 101, 1108-1118.
  88. Honkaniemi, J., Zhang, J. S., Longo, F. M., and Sharp, F. R. (2000). Stress induces zinc finger immediate early genes in the rat adrenal gland. Brain Res 877, 203-208.
  89. Sabban, E. L., and Kvetnansky, R. (2001). Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends in Neurosciences 24, 91-98.
  90. Hosoya, M., Kimura, C., Ogi, K., Ohkubo, S., Miyamoto, Y., Kugoh, H., Shimizu, M., Onda, H., Oshimura, M., Arimura, A., and et al. (1992). Structure of the human pituitary adenylate cyclase activating polypeptide (PACAP) gene. Biochim Biophys Acta 1129, 199-206.
  91. Jordan, D. A., and Miller, E. D., Jr. (1991). Subarachnoid blockade alters homeostasis by modifying compensatory splanchnic responses to hemorrhagic hypotension. Anesthesiology 75, 654-661.
  92. Swanson, L. W., Sawchenko, P. E., Lind, R. W., and Rho, J. H. (1987). The CRH motoneuron: differential peptide regulation in neurons with possible synaptic, paracrine, and endocrine outputs. Ann N Y Acad Sci 512, 12-23.
  93. Mustafa, T., Grimaldi, M., and Eiden, L. E. (2007). The hop cassette of the PAC1 receptor confers coupling to Ca2+ elevation required for pituitary adenylate cyclase-activating polypeptide-evoked neurosecretion. J Biol Chem 282, 8079- 8091.
  94. Vinson, G. P., Pudney, J. A., and Whitehouse, B. J. (1985). The mammalian adrenal circulation and the relationship between adrenal blood flow and steroidogenesis. J Endocrinol 105, 285-294.
  95. Martin, L. J., and Tremblay, J. J. (2009). The nuclear receptors NUR77 and SF1 play additive roles with c-JUN through distinct elements on the mouse Star promoter. J Mol Endocrinol 42, 119-129.
  96. Klopotowska, D., Matuszyk, J., Rapak, A., Gidzinska, B., Cebrat, M., Ziolo, E., and Strzadala, L. (2005). Transactivation activity of Nur77 discriminates between Ca2+ and cAMP signals. Neurochem Int 46, 305-312.
  97. Ishido, M., and Masuo, Y. (2004). Transcriptome of pituitary adenylate cyclase-activating polypeptide-differentiated PC12 cells. Regul Pept 123, 15-21.
  98. Santajuliana, D., Hornfeldt, B. J., and Osborn, J. W. (1996). Use of ganglionic blockers to assess neurogenic pressor activity in conscious rats. J Pharmacol Toxicol Methods 35, 45-54.
  99. Verdugo, R. A., and Medrano, J. F. (2006). Comparison of gene coverage of mouse oligonucleotide microarray platforms. BMC Genomics 7, 58.
  100. Vaudry, D., Chen, Y., Ravni, A., Hamelink, C., Elkahloun, A. G., and Eiden, L. E. (2002). Analysis of the PC12 cell transcriptome after differentiation with pituitary adenylate cyclase-activating polypeptide (PACAP). J Neurochem 83, 1272-1284.
  101. Mohn, C. E., Fernandez-Solari, J., De Laurentiis, A., Prestifilippo, J. P., de la Cal, C., Funk, R., Bornstein, S. R., McCann, S. M., and Rettori, V. (2005). The rapid release of corticosterone from the adrenal induced by ACTH is mediated by nitric oxide acting by prostaglandin E2. Proc Natl Acad Sci U S A 102, 6213-6218.
  102. Wakade, T. D., Blank, M. A., Malhotra, R. K., Pourcho, R., and Wakade, A. R. (1991). The peptide VIP is a neurotransmitter in rat adrenal medulla: physiological role in controlling catecholamine secretion. J Physiol 444, 349- 362.
  103. Sparrow, R. A., and Coupland, R. E. (1987). Blood flow to the adrenal gland of the rat: its distribution between the cortex and the medulla before and after haemorrhage. J Anat 155, 51-61.
  104. Holzbauer, M. (1957). The corticosterone content of rat adrenals under different experimental conditions. J Physiol 139, 294-305.
  105. Vogt, M. (1943). The output of cortical hormone by the mammalian suprarenal. J Physiol 102, 341-356.
  106. Sacchetti, P., Carpentier, R., Segard, P., Olive-Cren, C., and Lefebvre, P. (2006). Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1. Nucleic Acids Res 34, 5515-5527.
  107. Selye, H. (1936b). Thymus and adrenals in the response of the organism to injuries and intoxications. British Journal of Experimental Pathology 17, 234-248.
  108. Samal, B., Gerdin, M. J., Huddleston, D., Hsu, C. M., Elkahloun, A. G., Stroth, N., Hamelink, C., and Eiden, L. E. (2007). Meta-analysis of microarray-derived data from PACAP-deficient adrenal gland in vivo and PACAP-treated chromaffin cells identifies distinct classes of PACAP-regulated genes. Peptides 28, 1871-1882.
  109. Stroth, N., and Eiden, L. E. (2010). Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling. Neuroscience 165, 1025-1030.
  110. Kolber, B. J., and Muglia, L. J. (2009). Defining brain region-specific glucocorticoid action during stress by conditional gene disruption in mice. Brain Res 1293, 85-90.
  111. Volakakis, N., Kadkhodaei, B., Joodmardi, E., Wallis, K., Panman, L., Silvaggi, J., Spiegelman, B. M., and Perlmann, T. (2010). NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection. Proc Natl Acad Sci U S A 107, 12317-12322.
  112. Tasker, J. G., Di, S., and Malcher-Lopes, R. (2006). Minireview: rapid glucocorticoid signaling via membrane- associated receptors. Endocrinology 147, 5549-5556.
  113. Kanamatsu, T., Unsworth, C. D., Diliberto, E. J., Jr., Viveros, O. H., and Hong, J. S. (1986). Reflex splanchnic nerve stimulation increases levels of proenkephalin A mRNA and proenkephalin A-related peptides in the rat adrenal medulla.
  114. Nankova, B., Kvetnansky, R., McMahon, A., Viskupic, E., Hiremagalur, B., Frankle, G., Fukuhara, K., Kopin, I. J., and Sabban, E. L. (1994). Induction of tyrosine hydroxylase gene expression by a nonneuronal nonpituitary-mediated mechanism in immobilization stress. Proc Natl Acad Sci U S A 91, 5937-5941.
  115. Hashimoto, H., Shintani, N., Tanaka, K., Mori, W., Hirose, M., Matsuda, T., Sakaue, M., Miyazaki, J., Niwa, H., Tashiro, F., et al. (2001). Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A 98, 13355-13360.
  116. Westberg, J. A., Serlachius, M., Lankila, P., Penkowa, M., Hidalgo, J., and Andersson, L. C. (2007). Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling. Stroke 38, 1025-1030.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten