Publikationsserver der Universitätsbibliothek Marburg

Titel:Synthese und Charakterisierung neuer zwitterionischer stationärer Phasen für die Zwitterionenchromatographie und die ZIC-HILIC
Autor:Sonnenschein, Lukas
Weitere Beteiligte: Seubert, Andreas (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0008
DOI: https://doi.org/10.17192/z2011.0008
URN: urn:nbn:de:hebis:04-z2011-00082
ISBN: 978-3-89703-758-8
DDC: Chemie
Titel (trans.):Synthesis and characterization of new zwitterionic stationary phases for deployment in zwitterionic ion chromatography and ZIC-HILIC
Publikationsdatum:2011-01-20
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Grafting, Stationary phase, Sulfobetain, ZIC-HILIC, Sulfobetain, Stationäre Phase, Pfropfpolymerisation, Zwitterion, ZIC, Ionenchromatographie, ZIC, Chromatographie, ZIC-HILIC, Chromatographiesäule

Zusammenfassung:
Durch Anwendung einer Pfropfpolymerisation zur Funktionalisierung von Polystyrol/Divinyl- benzol-Copolymeren kann eine homologe Reihe von fünf neuen zwitterionischen Sulfobetain- Austauschern hergestellt werden. Diese tragen quartäre Amine als Anionenaustauscherfunktio- nen nahe am Polymerkern und außenliegende Sulfonsäuregruppen als Kationenaustauscher. Die Unterschiede der fünf Materialien liegen ausschließlich in den Abständen dieser funktionel- len Gruppen, die von einer CH2-Gruppe bis zu fünf CH2-Gruppen reichen. Aufgrund identi- scher Funktionalisierungsreaktionen, bei denen eine homologe Reihe zwitterionischer Vorläu- fermoleküle eingesetzt werden, können Austauscher mit gleichem Grundmaterial, identischen Abstandsgruppen zu den polymeren Grundpartikeln und vergleichbaren Kapazitäten hergestellt werden. Um die Vergleichbarkeit der Kapazitäten sicherstellen zu können, werden verschiede- ne Methoden zur Kapazitätsbestimmung an zwitterionischen Austauschermaterialien untersucht und gegenübergestellt. Das chromatographische Verhalten der hergestellten Austauscher in Abhängigkeit der Abstän- de zwischen den Ladungen wird untersucht, indem anorganische Anionen unter Verwendung von Natriumacetat-Eluenten getrennt werden. Die Veränderung der Retentionsfaktoren wird in Bezug auf Variationen der Eluentionenstärke sowie der Eluent-pH-Werte untersucht. Neben der Trennung anorganischer Anionen werden die hergestellten Materialien auch auf ihre Fähigkeit zur Trennung von α-Aminosäuren mit rein wässrigen Eluenten untersucht. Des Weiteren werden Trennungen unter HILIC-Bedingungen, d. h. mit steigenden Acetoni- trilanteilen, durchgeführt. Als Analyten kommen dafür anorganische Anionen, Carbonsäuren, Flavonoide sowie pharmakologische Wirkstoffe zum Einsatz. Die – unter Einsatz der homolo- gen Reihe zwitterionischer Austauscher – durchgeführten Experimente führen zu einem tieferen Verständnis der ZIC und ZIC-HILIC-Mechanismen. Zudem liefert der erzeugte Satz an zwitte- rionischen Austauschern die Möglichkeit einer weiteren Optimierung zwitterionischer Phasen und damit eine bessere Anpassung an spezielle Trennprobleme.

Bibliographie / References

  1. Schwedt, G.: Chromatographische Trennmethoden. Stuttgart : Georg Thieme Verlag, 1979.
  2. Langrock, T.; Czihal, P.; Hoffmann, R.: Amino acid analysis by hydrophilic interaction chromatography coupled on-line to electrospray ionization mass spectrometry. In: Amino Acids 30 (2006), S. 291–297.
  3. van Deemter, J. J.; Zuiderweg, F. J.; Klinkenberg, A.: Longitudinal diffusion and resi- stance to mass transfer as causes of nonideality in chromatography. In: Chem. Engineer. Sci. 5 (1956), S. 271–289.
  4. Nesterenko, E. P.: The investigation of ion-exchange properties of novel zwitterionic and amphoteric stationary phases and their application to the separation of inorganic and organic ions. Dublin City University, Dissertation, 2007.
  5. Björklund, M.; Hearn, M. T. W.: Synthesis of silica-based heparin-affinity adsorbents. In: J. Chromatogr. A 728 (1996), S. 149–169.
  6. Ikegami, T.; Tomomatsu, K.; Takubo, H.; Horie, K.; Tanaka, N.: Separation efficiencies in hydrophilic interaction chromatography. In: J. Chromatogr. A 1184 (2008), S. 474–503.
  7. Sonnenschein, L.; Seubert, A.: Separation of inorganic anions using a series of sulfobetaine exchangers. In: J. Chromatogr. A (2011), re- submitted after revision. 11/2010
  8. Sonnenschein, L.; Seubert, A.: Synthesis of a series of monomeric styrene sulfobetaine precursors. In: Tetrahedron Lett. (2011), accep- ted.
  9. Lafosse, M.; Herbreteau, B.; Dreux, M.; Morin-Allory, L.: Controle de certains sys- temes de chromatographie liquide haute performance à láide d'un détecteur évaporatif à diffusion de lumière. In: J. Chromatogr. 472 (1989), S. 209–218.
  10. Wonnacott, D. M.; Patton, E. V.: Hydrolytic stability of aminopropyl stationary phases used in the size-exclusion chromatography of cationic polymers. In: J. Chromatogr. 389 (1987), S. 103–113.
  11. Jiang, W.; Irgum, K.: Synthesis and evaluation of polymer-based zwitterionic stationary phases for separation of ionic species. In: Anal. Chem. 73 (2001), S. 1993–2003.
  12. Yu, L. W.; Floyd, T. R.; Hartwick, R. A.: The synthesis and characterization of che- mically bonded silica-based zwitterion-exchangers for HPLC. In: J. Chromatogr. Sci. 24 (1986), S. 177–182.
  13. Sonnenschein, L.; Seubert, A.: Separation of α-amino acids using a series of zwitterionic sulfobetaine exchangers. In: J. Chromatogr. Sci. (2011), submitted.
  14. Hu, W.; Haddad, P. R.; Tanakar, K.; Hasebe, K.: Modulation of the separation selectivity of inorganic anions in electrostatic ion chromatography using acidic eluents. In: Analyst 125 (2000), S. 241–244.
  15. Nesterenko, E. P.; Nesterenko, P. N.; Paull, B.: Zwitterionic ion-exchangers in ion chromatography: a review of recent developments. In: Anal. Chim. Acta 652 (2009), S. 3–21.
  16. Shellie, R. A.; Ng, B. K.; Dicinoski, G. W.; Poynter, S. D. H.; O'Reilly, J. W.; Pohl, C. A.; Haddad, P. R.: Prediction of analyte retention for ion chromatography separa- tions performed using elution profiles comprising multiple isocratic and gradient steps. In: Anal. Chem. 80 (2008), S. 2474–2482.
  17. Nesterenko, P. N.; Kebets, P. A.: Ion-exchange properties of silica gel with covalently bonded histidine. In: J. Anal. Chem. 62 (2007), S. 2–7.
  18. Nesterenko, P. N.; Haddad, P. R.: Zwitterionic ion-exchangers in liquid chromatography. In: Anal. Sci. 16 (2000), S. 565–574.
  19. Ríordáin, C.; Barron, L.; Nesterenko, E.; Nesterenko, P. N.; Paull, B.: Double gra- dient ion chromatography using short monolithic columns modified with a long chained zwitterionic carboxybetaine surfactant. In: J. Chromatogr. A 1109 (2006), S. 111–119.
  20. Sugrue, E.; Nesterenko, P. N.; Paull, B.: Fast ion chromatography of inorganic anions and cations on a lysine bonded porous silica monolith. In: J. Chromatogr. A 1075 (2005), S. 167–175.
  21. Ríordáin, C.; Nesterenko, P.; Paull, B.: Zwitterionic ion chromatography with carboxy- betaine surfactant-coated particle packed and monolithic type columns. In: J. Chromatogr. A 1070 (2005), S. 71–78.
  22. Cook, H. A.; Dicinoski, G. W.; Haddad, P. R.: Mechanistic studies on the separation of cations in zwitterionic ion chromatography. In: J. Chromatogr. A 997 (2003), S. 13–20.
  23. Cook, H. A.; Hu, W.; Fritz, J. S.; Haddad, P. R.: A mechanism of separation in electro- static ion chromatography. In: Anal. Chem. 73 (2001), S. 3022–3027.
  24. Macka, M.; Haddad, P. R.: Elution mechanism in electrostatic ion chromatography with histidine as an isoelectric ampholytic mobile phase. In: J. Chromatogr. A 884 (2000), S. 287–296.
  25. Ripin, D. H.; Evans, D. A.: Evans pK a table. http://evans.harvard.edu/pdf/evans_pKa_ table.pdf, Version: November 2005, abgerufen: 26.10.2010.
  26. Ettre, L. S.: Nomenclature for chromatography. In: Pure & Appl. Chem. 65 (1993), S. 819–872.
  27. Hu, W.; Haddad, P. R.: Adsorption behaviour of zwitterionic surfactants onto a reversed- phase stationary phase. In: Chromatographia 52 (2000), S. 543–551.
  28. Tswett, M. S.: Adsorptionsanalyse und chromatographische Methode. Anwendungen auf die Chemie des Chlorophylls. In: Ber. Deutsch. Bot. Ges. 24 (1906), S. 384–393.
  29. Hemström, P.; Nygren, Y.; Björn, E.; Irgum, K.: Alternative organic solvents for HILIC separation of cisplatin species with on-line ICP-MS detection. In: J. Sep. Sci. 31 (2008), S. 599–603.
  30. Montero, C. M.; Dodero, M. C. R.; Sánchez, D. A. G.; Barroso, C. G.: Analysis of low molecular weight carbohydrates in food and beverages. In: Chromatographia 59 (2004), S. 15–30.
  31. Otto, M.: Analytische Chemie. 2. Auflage. Weinheim : Wiley-VCH, 2000.
  32. Martin, A. J. P.; Synge, R. L. M.: A new form of chromatogram employing two liquid phases. In: Biochem. J. 35 (1941), S. 1358–1368.
  33. Gomberg, M.: An instance of trivalent carbon: triphenylmethyl. In: J. Am. Chem. Soc. 22 (1900), S. 757–771.
  34. Clarke, A. P.; Jandik, P.; Rocklin, R. D.; Liu, Y.; Avdalovic, N.: An integrated ampe- rometry waveform for the direct, sensitive detection of amino acids and amino sugars following anion-exchange chromatography. In: Anal. Chem. 71 (1999), S. 2774–2781.
  35. Nesterenko, E. P.; Nesterenko, P. N.; Paull, B.: Anion-exchange chromatogra- phy on short reversed-phase columns modified with amphoteric (N-dodecyl-N,N-dime- thylammonio)alcanoates. In: J. Chromatogr. A 1178 (2008), S. 60–70.
  36. Hu, W.; Hasebe, K.; Reynolds, D. M.; Umemura, T.; Kamiya, S.; Itoh, A.; Haraguchi, H.: A novel ion chromatographic method using zwitterionic surfactants as the stationary phase and water as the moblie phase. In: J. Liq. Chrom. & Rel. Technol. 20 (1997), S. 1903–1919.
  37. Nesterenko, P. N.: Application of amino acid-bonded silicas as ion exchangers for the se- paration of anions by single-column ion chromatography. In: J. Chromatogr. 605 (1992), S. 199–204.
  38. Stach, H.: Bewertung von Ionen-Austauschern unter besonderer Berücksichtigung ihrer Austauschergeschwindigkeiten. In: Angew. Chem. 63 (1951), S. 263–267.
  39. Naidong, W.: Bioanalytical liquid chromatography tandem mass spectrometry methods on underivatized silica columns with aqueous/organic mobile phases. In: J. Chromatogr. B 796 (2003), S. 209–224.
  40. Dolgonosov, A. M.: Centrally localized ion exchangers as separating sorbents for ion chromatography: theory and application. In: J. Chromatogr. A 671 (1994), S. 33–41.
  41. Cowie, J. M. G.: Chemie und Physik der synthetischen Polymere. Wiesbaden : Vieweg, 1991.
  42. Liu, H.-L.; Hoff, B. H.; Anthonsen, T.: Chemoenzymatic synthesis of the non-tricyclic antidepressants Fluoxetine, Tomoxetine and Nisoxetine. In: J. Chem. Soc. Perkin Trans. 1 11 (2000), S. 1767–1770.
  43. Li, R.; Huang, J.: Chromatographic behavior of epirubicin and its analogues on high- purity silica in hydrophilic interaction chromatography. In: J. Chromatogr. A 1041 (2004), S. 163–169.
  44. Welch, L. E.; LaCourse, W. R.; Mead, D. A.; Johnson, D. C.: Comparison of pulsed coulometric detection and potential-sweep pulsed coulometric detection for underivatized amino acids in liquid chromatography. In: Anal. Chem. 61 (1989), S. 555–559.
  45. Verhaar, L. A. T.; Kuster, B .F. M.: Contribution to the elucidation of the mechanism of sugar retention on amine-modified silica in liquid chromatography. In: J. Chromatogr. A 234 (1982), S. 57–64.
  46. Jiang, W.; Irgum, K.: Covalently bonded polymeric zwitterionic stationary phase for simultaneous separation of inorganic cations and anions. In: Anal. Chem. 71 (1999), S. 333–344.
  47. Fukunaga, K.; Yamaguchi, H.: Debromination of vic-dibromides with sodium sulfide in dimethylformamide. In: Synthesis 11 (1981), S. 879–880.
  48. Hu, W.; Hasebe, K.; Tanaka, K.; Fritz, J. S.; Inoue, S.; Ozeki, M.: Determination of in- organic acids by ion chromatography with n-tetradecylphosphocholine (zwitterionic sur- factant) as the stationary phase and pure water as the mobile phase. In: Fresenius. J. Anal. Chem. 370 (2001), S. 399–402.
  49. Lindegårdh, N.; Hanpithakpong, W.; Wattanogoon, Y.; Singhasivanon, P.; White, N. J.; Day, N. P. J.: Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of oseltamivir and its metabolite oseltamivir car- boxylate in plasma, sialiva and urine. In: J. Chromatogr. B 859 (2007), S. 74–83.
  50. Peichang, L.; Xiaoming, L.: Development of a high-performance liquid chromatograph with artificial intelligence. In: J. Chromatogr. A 292 (1984), S. 169–188.
  51. Galin, M.; Chapoton, A.; Galin, J.-C.: Dielectric increments, intercharge distances and conformation of quarternary ammonioalkylsulfonates and alkoxydicyanoethenolates in aqueous and trifluoroethanol solutions. In: J. Chem. Soc. Perkin Trans. 2 (1993), Nr. 3, S. 545–553.
  52. Hu, W.; Cao, S.; Tominaga, M.; Miyazaki, A.: Direct determination of bromide ions in sea water by ion chromatography using water as the mobile phase. In: Anal. Chim. Acta 322 (1996), S. 43–47.
  53. Hu, W.; Hasebe, K.; Ding, M.-Y.; Tanaka, K.: Direct determination of nitrite traces in high ionic-strength samples by electrostatic ion chromatography using diluted acid solutions as eluent. In: Fresenius. J. Anal. Chem. 371 (2001), S. 1109–1112.
  54. Weers, J. G.; Rathman, J. F.; Axe, F. U.; Crichlow, C. A.; Foland, L. D.; Scheuing, D. R.; Wiersema, R. J.; Zielske, A. G.: Effect of the intramolecular charge separation distance on the solution properties of betaines and sulfobetaines. In: Langmuir 7 (1991), S. 854–867.
  55. Casella, I. G.; Guascito, M. R.; Cataldi, T. R. I.: Electroanalysis and amperometric detection of alditols and sugars at a gold-nickel composite electrode in anion-exchange chromatography. In: Anal. Chim. Acta 398 (1999), S. 153–160.
  56. Arshad, N.; Janjua, N. K.; Ahmed, S.; Khan, A. Y.; Skibsted, L. H.: Electroche- mical investigations of antioxidant interactions with radical anion and dianion of 1,3- dinitrobenzene. In: Electrochim. Acta 54 (2009), S. 6184–6189.
  57. Hu, W.; Haddad, P. R.: Electrostatic ion chromatography using dilute electrolytes as eluents: a new method for separation of anions. In: Anal. Commun. 35 (1998), S. 317– 320.
  58. Alpert, A. J.: Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. In: Anal. Chem. 80 (2008), S. 62–76.
  59. Happel, O.: Elementspeziesanalytik anionischer Aluminium-Carbonsäure-Komplexe mit- tels Ionenchromatographie. Philipps-Universität Marburg, Dissertation, 2007.
  60. Grimm, A.: Entwicklung stationärer Phasen für die Ionenchromatographie zur Trennung von Kohlenhydraten. Philipps-Universität Marburg, Dissertation, 2006.
  61. Iso, K.; Okada, T.: Evaluation of electrostatic potential induced by anion-dominated partition into zwitterionic micelles and origin of selectivity in anion uptake. In: Langmuir 16 (2000), S. 9199–9204.
  62. Umemura, T.; Kamiya, S.; Itoh, A.; Chiba, K.; Haraguchi, H.: Evaluation of sulfobetaine- type zwitterionic stationary phases for ion chromatographic separation using water as a mobile phase. In: Anal. Chim. Acta 349 (1997), S. 231–238.
  63. Rothwell, J. A.; Day, A. J.; Morgan, M. R. A.: Experimental determination of octanol- water partition coefficients of quercetin and related flavonoids. In: J. Agric. Food Chem. 53 (2005), S. 4355–4360.
  64. Painter, P. C.; Coleman, M. M.: Fundamentals of polymer science. 2. Auflage. Boca Raton : CRC Press, 1998.
  65. Geburtsort: Langenhagen Familienstand: Verheiratet Schulausbildung 1988 – 1992
  66. Theis, V.: Herstellung und Charakterisierung pfropfpolymerisierter Anionenaustauscher für die Ionenchromatographie. Philipps-Universität Marburg, Dissertation, noch nicht veröffentlicht.
  67. Zhao, H.; Campbell, S. M.; Jackson, L.; Song, Z.; Olubajo, O.: Hofmeister series of ionic liquids: kosmotropic effect of ionic liquids on the enzymatic hydrolysis of enantiomeric phenylalanine methyl ester. In: Tetrahedron Asym. 17 (2006), S. 377–383.
  68. Hemström, P.; Irgum, K.: Hydrophilic interaction chromatography. In: J. Sep. Sci. 29 (2006), S. 1784–1821.
  69. Boersema, P. J.; Mohammed, S.; Heck, A. J. R.: Hydrophilic interaction liquid chromato- graphy (HILIC) in proteomics. In: Anal. Bioanal. Chem. 391 (2008), S. 151–159.
  70. Yao, K.; Yun, J.; Shen, S.; Chen, F.: In-situ graft-polymerization preparation of cation- exchange supermacroporous cryogel with sulfo groups in glass columns. In: J. Chroma- togr. A 1157 (2007), S. 246–251.
  71. Ciminiello, P.; Dell'Aversano, C.; Fattorusso, E.; Forino, M.; Magno, S.; Santelia, F.; Tsoukatou, M.: Investigation of the toxin profile of Greek mussels Mytilus galloprovin- cialis by liquid chromatography-mass spectrometry. In: Toxicon 47 (2006), S. 174–181.
  72. Anderson, C.: Ion chromatography: A new technique for clinical chemistry. In: Clin. Chem. 22 (1976), S. 1424–1426.
  73. Haddad, P. R.; Jackson, P. E.: Ion chromatography – principles and applications. Ams- terdam : Elsevier, 1990 (Journal of Chromatography Library Series 46).
  74. Takeuchi, T.; Suzuki, E.; Ishii, D.: Ion chromatography with micropacked alumina co- lumns. In: Chromatographia 25 (1988), S. 480–482.
  75. Sonnenschein, L.: Ionenchromatographische Trennung und selektive Detektion von Flavonoid-Glycosiden und deren Al(III)-Komplexen mittels gepulster amperometrischer Detektion. Philipps-Universität Marburg, Diplomarbeit, 2007.
  76. Wheaton, R. M.; Bauman, W. C.: Ion exclusion – a unit operation utilizing ion exchange materials. In: Ind. Eng. Chem. 45 (1953), S. 228–233.
  77. Linden, J. C.; Lawhead, C. L.: Liquid chromatography of saccarides. In: J. Chromatogr. 105 (1975), S. 125–133.
  78. Dorsey, J. G.; Cooper, T. W.: Liquid chromatography: theory and methodology. In: Anal. Chem. 68 (1996), S. 515R–568R.
  79. LaCourse, W. R.; Johnson, D. C.: Liquid chromatography with pulsed electrochemical detection at gold and platinum electrodes. In: Anal. Chem. 62 (1990), S. 589A–595A.
  80. Snyder, L. R.; Poppe, H.: Mechanism of solute retention in liquid-solid chromatography and the role of the mobile phase in affecting separation. In: J. Chromatogr. 184 (1980), S. 363–413.
  81. Beermann, A.: Mechanistische Untersuchungen zur radikalischen Polymerisation von Io- nomeren an hochquervernetztem PS/DVB. Philipps-Universität Marburg, Diplomarbeit, 2010.
  82. McCann, M.; Purnell, H.; Wellington, C. A.: Mixed-solvent theory for liquid chroma- tography. In: Faraday Symp. Chem. Soc. 15 (1980), S. 83–91.
  83. Marques, R. M. L.; Schoenemakers, P. J.: Modelling retention in reversed-phase liquid chromatography as a function of pH and solvent composition. In: J. Chromatogr. A 592 (1992), S. 157–182.
  84. Yang, M.-H.; Chang, K.-C.; Lin, J.-Y.: Multifunctional ion-exchange stationary phases for high-performance liquid chromatography. In: J. Chromatogr. A 722 (1996), S. 87–96.
  85. Seubert, A.: Neue Einsatzgebiete der On-line-Kopplung Hochleistungsflüssigchromato- graphie-Atomspekrometrie in der Elementanalytik. Leibniz Universität Hannover, Habi- litationsschrift, 1995.
  86. Raskop, M.: Neue stationäre Phasen zum Einsatz in der Ionenchromatographie. Philipps- Universität Marburg, Dissertation, 2005.
  87. Hu, W.; Miyazaki, A.; Haraguchi, H.: New approach to the simultaneous separation of inorganic cations and anions by ion chromatography based on ion-exchange and electro- static interaction. In: Anal. Sci. 11 (1995), S. 999–1000.
  88. Müller, W.: New ion exchangers for the chromatography of biopolymers. In: J. Chro- matogr. 510 (1990), S. 133–140.
  89. Hart, R.; Timmerman, D.: New polyampholytes: the polysulfobetaines. In: J. Polymer Sci. 28 (1958), S. 638–640.
  90. Yang, Y.-B.; Verzele, M.: New water-compatible modified polystyrene as a stationa- ry phase for high-performance liquid chromatography. In: J. Chromatogr. 387 (1987), S. 197–205.
  91. Small, H.; Stevens, T. S.; Bauman, W. C.: Novel ion exchange chromatographic method using conductimetric detection. In: Anal. Chem. 47 (1975), S. 1801–1809.
  92. LaCourse, W. R.; Johnson, D. C.: Optimization of waveforms for pulsed amperometric detection of carbohydrates based on pulsed voltammetry. In: Anal. Chem. 65 (1993), S. 50–55.
  93. Zentrallabor der Bundesversicherungsanstalt für Angestellte, Bad Kissingen Studium 2002 – 2007 Diplomstudiengang Chemie, Philipps-Universität Marburg 25. Mai 2007, Diplom Berufstätigkeit 2007 – 2010 Wissenschaflicher Mitarbeiter am Fachbereich Chemie der Philipps- Universität Marburg, Arbeitsgruppe Prof. Dr. Andreas Seubert Promotion 2007 – 2010 Promotionsthema: Synthese und Charakterisierung neuer zwitterio- nischer stationärer Phasen für die Zwitterionenchromatographie und die ZIC-HILIC, Fachbereich Chemie der Philipps-Universität Mar- burg, Analytische Chemie, Arbeitsgruppe Prof. Dr. Andreas Seubert Publikationsverzeichnis Publikationen 10/2010
  94. Atkins, P. W.: Physikalische Chemie. 3. Auflage. Weinheim : Wiley-VCH, 2002.
  95. Palmi, M.; Youmbi, G. T.; Fusi, F.; Sgaragli, G. P.; Dixon, H. B. F.; Frosini, M.; Tipton, K. F.: Potentiation of mitochondrial Ca 2+ sequestration by taurine. In: Biochem. Pharm. 58 (1999), S. 1123–1131.
  96. Eith, C.; Kolb, M.; Seubert, A.: Praktikum der Ionenchromatographie -Eine Einführung. Metrohm Monographie, Herisau, 2000.
  97. Meyer, V. R.: Praxis der Hochleistungs-Flüssigkeitschromatographie. 10. Auflage. Wein- heim : Wiley-VCH, 2009.
  98. Yoshida, T.: Prediction of peptide retention time in normal-phase liquid chromatography. In: J. Chromatogr. A 811 (1998), S. 61–67.
  99. Flory, P. J.: Principles of polymer chemistry. 18. Auflage. Ithaca : Cornell University Press, 2002.
  100. Fujii, A.; Cook, E. S.: Probiotics. Antistaphylococcal and antifibrinolytic activities of ω- amino-and ω-guanidinoalkanesulfonic acids. In: J. Med. Chem. 18 (1975), S. 502–505.
  101. LaCourse, W. R.; Owens, G. S.: Pulsed electrochemical detection of thiocompounds following microchromatographic separations. In: Anal. Chim. Acta 307 (1995), S. 301– 319.
  102. Billiet, H. A. H.; Drouen, A. C. J. H.; de Galan, L.: Rapid optimization of the concentra- tion of the ion-pairing reagent in ion-pairing reversed-phase liquid chromatography. In: J. Chromatogr. 316 (1984), S. 231–240.
  103. Baddeley, G.; Wrench, E.; Williamson, R.: Reaction of indane and tetralin with excess of acetylating agent. In: J. Chem. Soc. (1953), S. 2110–2115.
  104. Churms, S. C.: Recent progress in carbohydrate separation by high performance liquid chromatography based on hydrophilic interaction. In: J. Chromatogr. A 720 (1996), S. 75– 91.
  105. Guo, Y.; Gaiki, S.: Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. In: J. Chromatogr. A 1074 (2005), S. 71–80.
  106. Nikolov, Z. L.; Reilly, P. J.: Retention of carbohydrates on silica and amine-bonded silica stationary phases: application of the hydration model. In: J. Chromatogr. 325 (1985), S. 287–293.
  107. Snyder, L. R.: Role of the solvent in liquid-solid chromatography – a review. In: Anal. Chem. 46 (1974), S. 1384–1393.
  108. Fisher, S.; Kunin, R.: Routine exchange capacity determinations of ion exchange resins. In: Anal. Chem. 27 (1955), S. 1191–1194.
  109. Weber, G.: Selective detection of metal species in HPLC and FIA by means of pulsed amperometric detection (PAD). In: Fresenius. J. Anal. Chem. 356 (1996), S. 242–246.
  110. Nesterenko, P. N.; Elefterov, A. I.; Tarasenko, D. A.; Shpigun, O. A.: Selectivity of chemically bonded zwitterion-exchange stationary phases in ion chromatography. In: J. Chromatogr. A 706 (1995), S. 59–68.
  111. Rabel, F. M.; Caputo, A. G.; Butts, E. T.: Separation of carbohydrates on a new polar bonded phase material. In: J. Chromatogr. 126 (1976), S. 731–740.
  112. Sonnenschein, L.; Seubert, A.: Separation of inorganic anions by EIC/ZIC using a homologous row of sulfobetaine exchangers. 22nd International Ion Chromatography Symposium – IICS, Cincinnati, OH, USA, 2010. Poster 03/2007
  113. Hu, W.; Haraguchi, H.: Simultaneous separation of inorganic cations and anions by ion chromatography using a single column coated with weak/strong-charged zwitterionic bile salt micelles. In: Anal. Chem. 66 (1994), S. 756–767.
  114. Schreiner, K.; Berndt, A.; Baer, F.: Spin density distribution and stereochemistry of triphenylmethyl radical in solution – Reinvestigation of 13 C E.S.R. coupling constants. In: Mol. Phys. 26 (1973), S. 929–939.
  115. Gritti, F.; Piatkowski, W.; Guiochon, G.: Study of mass transfer kinetics in a monolithic column. In: J. Chromatogr. A 983 (2003), S. 51–71.
  116. Brons, C.; Olieman, C.: Study of the high-performance liquid chromatographic separation of reducing sugars, applied to the determination of lactose in milk. In: J. Chromatogr. 259 (1983), S. 79–86.
  117. Winschel, R.: Sulfinsäurederivate als Initiatoren zur Emulsionspolymerisation. Universi- tät Hamburg, Dissertation, 2004.
  118. Ugelstadt, J.: Swelling capacity of aqueous dispersions of oligomer and polymer sub- stances and mixtures thereof. In: Makromol. Chem. 179 (1978), S. 815–817.
  119. Guarana, A.; Menchi, G.; Berti, G.; Cini, N.; Bottoncetti, A.; Raspanti, S.; Politi, A.; Pupi, A.: Synthesis and preliminary biological characterization of a new potential 125 I- radioligand for dopamine and serotonine receptors. In: Bioorg. Med. Chem. 9 (2001), S. 3197–3206.
  120. Preston, A. J.; Gallucci, J. C.; Paquette, L. A.: Synthesis and selected reactions of a bicyclic sultam having sulfur at the apex position. In: J. Org. Chem. 71 (2006), S. 6573– 6578.
  121. Bodwell, G. J.; Li, J.; Miller, D. O.: Synthesis, structure and AM1 conformational study of [3]paracylol[3](1,3)indolophane, a novel chiral cyclophane. In: Tetrahedron 55 (1999), S. 12939–12956.
  122. Schoenmakers, P. J.; Billiet, H. A.; de Galan, L.: Systematic study of ternary solvent be- haviour in reversed-phase liquid chromatography. In: J. Chromatogr. 218 (1981), S. 261– 284.
  123. Jiang, W.; Irgum, K.: Tentacle-type zwitterionic stationary phase prepared by sur- face-initiated graft polymerization of 3-[N,N-dimethyl-N-(methacryloyloxyethyl)-am- monium] propanesulfonate through peroxide groups tethered on porous silica. In: Anal. Chem. 74 (2002), S. 4682–4687.
  124. Eyring, H.: The activated complex in chemical reactions. In: J. Chem. Phys. 3 (1935), S. 107–115.
  125. Kolthoff, I. M.; Miller, I. K.: The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. In: J. Am. Chem. Soc. 73 (1951), S. 3055–3059.
  126. Taylor, W. R.: The classification of amino acid conservation. In: J. Theoret. Biol. 119 (1986), S. 205–218.
  127. Poole, C. F.: The essence of chromatography. Amsterdam : Elsevier, 2003.
  128. Orth, P.; Engelhardt, H.: Trennung von Zuckern an chemisch modifizierten Kieselgelen. In: Chromatrgraphia 15 (1982), S. 91–96.
  129. King, J. F.; Skonieczny, S.: Trimethylammoniomethynesulfinate and trimethylammonio- methanesulfonate, the simplest sulfinic and sulfonic acid betaines. Revision of the struc- ture of the trimethylamine oxide-sulfur dioxide product. In: Phosphorus and Sulfur 25 (1985), S. 11–20.
  130. Tswett, M. S.: Trudy Varshavskogo Obshchestva Estestvoispytatelei. In: Otd. Biologii 14 (1905), S. 20–39.
  131. Ettre, L. S.; Sakodynskii, K. I.: M. S. Tswett and the discovery of chromatography, I: early work (1899-1903). In: Chromatographia 35 (1993), S. 223–231.
  132. Schabram, K.: Vergleich verschiedener Herstellungsverfahren für sulfonierte Kationen- austauscher. Philipps-Universität Marburg, Diplomarbeit, 2007.
  133. Vorträge 09/2010
  134. Fa. SeQuant AB: Zwitterionic hydrophilic interaction liquid chromatography (HILIC) for ion analysis. Vortrag im Rahmen der 4. Conference über Ionenanalyse (CIA), Berlin, 12. März, 2007.
  135. Twohill, E.; Paull, B.: Zwitterionic ion chromatography using a dynamically coated column and a mobile phase recycling. In: J. Chromatogr. A 973 (2002), S. 103–113.
  136. Spencer, T. A.; Onofrey, T. J.; Cann, R. O.; Russel, J. S.; Lee, L. E.; Blanchard, D. E.; Castro, A.; Gu, P.; Jiang, G.; Shechter, I.: Zwitterionic sulfobetaine inhibitors of squa- lene synthase. In: J. Org. Chem. 64 (1999), S. 807–818.
  137. Cammann, K.: Instrumentelle Analytische Chemie. Heidelberg : Spektrum Verlag, 2001.
  138. Hofmeister, F.: Zur Lehre von der Wirkung der Salze. In: Arch. Exp. Pathol. Pharmakol.
  139. Hu, W.: Studies on behaviors of interactions between zwitterionic surfactants and inorga- nic ions by using an ion chromatographic technique. In: Langmuir 15 (1999), S. 7168– 7171.
  140. Picchioni, F.; Goossens, J. G. P.; van Duin, M.; Magusin, P.: Solid-state modification of isotactic polypropylene (iPP) via grafting of styrene. I. Polymerization experiments. In: J.
  141. Okada, T.: Nonaqueous ion-exchange chromatography and electrophoresis. Approaches to nonaqueous solution chemistry and design of novel separation. In: J. Chromatogr. A 804 (1998), S. 17–28.
  142. Baldwin, R. L.: How Hofmeister ion interactions affect protein stability. In: Biophys. J. 71 (1996), S. 2056–2063.
  143. Hu, W.; Haddad, P. R.; Hasebe, K.; Mori, M.; Tanaka, K.; Ohno, M.; Kamo, N.: Use of a biomimetic chromatographic stationary phase for study of the interactions occurring between inorganic anions and phosphatidylcholine membranes. In: Biophys. J. 83 (2002), S. 3351–3356.
  144. Hu, W.; Hasebe, K.; Tanaka, K.; Fritz, J. S.: Determination of total acidity and of divalent cations by ion chromatography with n-hexadecylphosphocholine as the stationary phase. In: J. Chromatogr. A 956 (2002), S. 139–145.
  145. Jiang, W.; Fischer, G.; Girmay, Y.; Irgum, K.: Zwitterionic stationary phase with cova- lently bonded phosphorylcholine type polymer grafts and its applicability to separation of peptides in the hydrophilic interaction liquid chromatography mode. In: J. Chromatogr. A 1127 (2006), S. 82–91.
  146. Zhang, Y.; Cremer, P. S.: Interactions between macromolecules and ions: the Hofmeister series. In: Curr. Op. Chem. Biol. 10 (2006), S. 658–663.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten